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Abstract. How to ensure that two different implementations of a sim-
ulation will produce the same results ? In order to assure simulation
reproducibility, some domain-independent functional unit must be pre-
cisely described. We show in this paper that the management unit that
rules the participation of an agent in simultaneous interactions is one of
them. Usually, many choices concerning this unit are made implicitly,
even if they might lead to many simulation biases. We illustrate this
issue through a study of biases that appear even in simple cases, due
to a specification lack, and we propose as a solution a classification of
interactions that makes those choices explicit.

1 Introduction

Multi-Agent Based Simulations (MABS) – and more generally computer simula-
tions – are a tool used to reinforce, invalidate or compare hypothesis on the origin
of a particular emergent phenomenon. The model of a simulation needs these
hypothesis become concrete, and has to provide all the information required to
perform experiments. Consequently, implementations of this model made by dif-
ferent persons have to produce results with similar nature – i.e. results of such
a model have to be reproducible.

Building a simulation is a process leading from a domain-specific model to
an operational model – through knowledge representation formalisms – and then
from the operational model to its implementation in a given programming lan-
guage, on a given simulation platform [1]. Sadly, there is no consensus about what
information each model should contain, since the separation between domain-
specific model, operational model and implementation – i.e. computer science-
specific model – is ambiguous itself [2, 3]. Thence, each step of the simulation
design process involves choices – both explicit or implicit – regarding ambiguous
parts of the previous step model. Those choices have a more or less dramatic
influence on the execution and outcomes of the simulation. Since simulations
have to be reproducible, the biases these choices may introduce must be studied,
and issues about how and to what extent each choice may change simulations
outcomes have to be handled.



We uphold that the modeler has to be aware of – and to understand – each
possible choice, and has to specify the ones he chooses for its model. Without
this specification, the ambiguity of the models leads to implementations that do
not behave as it was initially expected and thus produce unexploitable results.

The spectrum of implicit choices is wide, and concerns very different parts
of agent’s and simulation’s architecture. To make their study easier, the ar-
chitecture of a multi-agent simulation is considered here through three almost
independent functional units that underlie any kind of simulation. These units
are the Activation Unit that manages time related elements of the simulation
like when agents trigger their behavior, or in which interactions an agent may
participate simultaneously, the Definition Unit that specifies all the interac-
tions the agents are able to initiate, and the Selection Unit that corresponds
to interaction selection. In this paper the Activation Unit is studied.

Interactions between agents – i.e. actions involving simultaneously two or
more agents – are the source of simulation’s emergent properties. Thus, they
have a major role in MABS. But, because current MABS design methodologies
focus only on the behavior of independent agents, many design choices concern-
ing interactions are not explicit. In particular, the participation of an agent in
interactions occurring at the same time is almost never tackled, because of not
adapted knowledge representation.

This paper aims at studying implementation choices concerning the Activa-

tion Unit, and more precisely on how simultaneous interactions are handled.
In order to make the study of this issue possible, we use the knowledge rep-
resentation provided by the IODA methodology [4], which is fit to model such
problems. Thanks to a study of some experiments, we present the two main
patterns – called interaction classes – used to handle simultaneous interactions
in any kind of simulation. This study also illustrates the consequences of wrong
implementation choices – i.e. the misuse of interaction classes or wrong time rep-
resentations. We uphold that defining what simultaneously means in the model,
and providing a class for every interaction in the model determines precisely how
the Activation Unit is supposed to manage simultaneous interactions without
ambiguities. Thus, it makes sure that the model is implemented without biases.

This paper is organized as following. First, related work concerning the stud-
ied functional unit, the Activation Unit, are presented in section 2. Then, the
functional decomposition that underlies any multi-agent based simulation, on
which this paper’s studies are based, and the knowledge representation of the
IODA methodology are presented in section 3. Section 4 describes the protocol
followed by the experiments of the study. Section 5 to 6 describe two experiments
, which results are interpreted to identify interaction classes, and to illustrate the
consequences of erroneous implementation choices. Then, section 7 summarizes
the results of experiments, and proposes a classification of interactions in order
to avoid implementation biases of the Activation Unit. Eventually, section
8 discusses about these results, and emphasizes the need to understand what
”simultaneous interactions” means in the Activation Unit.



2 Related Works

In many simulation platforms, design is centered on agents and the actions they
initiate, rather than on the interactions that may occur between them. Conse-
quently, the definition of which interaction an agent may initiate at a particular
time does :

– neither take into account in which interaction it already participates as a
target (see section 3.1);

– nor take into account in which interaction the other agents already partici-
pate in.

This leads to many biases in the simulation and its outcomes.

For instance, Epstein and Axtell [5] presented an ecosystem simulation where
an agent may reproduce more than twice at the same time (once as a the initiator
of the interaction, and one or more times as a target). This bias was identified
by Lawson [6], and corrected with a modification of the model through the
addition of a gestation period.

Yet, this issue is not restricted to ecosystem simulation. Indeed, it applies to
every simulation where agents have to perform particular interactions at most
once at a time (for instance agents that trade goods). Thus, it has to be dealt
with in the domain-independent architecture of the simulation rather
than in the models.

This problem leads Michel [3] to manage interactions depending on their
Strong or Weak nature. This solution is adequate if agents are the only par-
ticipants in interactions. Thus, it does not solve the problem for interactions
between an agent and an object. Indeed, interactions like Withdraw cash from
an automated teller machine may be performed simultaneously by two different
agents with the same machine.

Weyns [7] proposes a more refined solution through the qualification of the
relationship between two actions1. Two actions may be Independent, Joint, Con-
current or Influencing. This solution manages interactions by getting from each
agent ”I intend to perform the I interaction with the A agent as target” like mes-
sages. A mastering unit then gathers these messages, finds out the relationship
between them and executes compatible ones.

In spite of its undeniable advantage of concurrent and influencing interaction
handling, this solution has a major issue. Indeed, because interactions not com-
patible with already occurring interactions are not considered during decision
making, an agent may try to perform an impossible interaction. Thus, the agent
performs nothing at that time, even if another interaction is possible.

To fill this gap, simultaneous interactions have to be considered at decision
making. This requires an interaction-oriented design of decision making, like the
one shortly presented in the next section.

1 Although the author uses the term “action”, it keeps the same meaning than our
“interaction” (see section 3.1).



3 Multi-agent Simulations

Even if the application domains of multi-agent simulations are heterogeneous,
they can be split into different and weakly dependent functional units [8, 9], like
agents scheduling, communications, modification conflicts solving, etc.

We consider here a particular decomposition of a simulation (see Fig. 2) in
three main units, called Activation Unit, Definition Unit and Selection

Unit, which respectively drive time related elements in the simulation, declara-
tion of what agents are able to perform, and finally how interaction selection is
made. This decomposition underlies any kind of simulation.

Activation Unit Definition Unit

Selection Unit

Fig. 1. The three main functional units of a multi-agent simulation.

This kind of separation in different software units is usual in cognitive agent
architectures with plans like the Act-R [10] or Soar [11] language, where knowl-
edge representation is at the center of the simulation, but does not exist in
reactive simulation platforms. Moreover the notion of interaction – i.e. semantic
block of actions involving simultaneously a fixed number of agents (see Sect. 3.1)
– is generally hard-coded in the behavior of agents. Because the design of sim-
ulations implies crucial choices about those three units, we claim that it is im-
portant to make this separation clear, even in reactive simulations, in order to
make modeling choices explicit.

3.1 An Interaction-Oriented Design of Simulations

The definition of interactions, and how they are integrated in the knowledge
of agents, are based on IODA concepts [4]. Please note that IODA provides
advanced methodological and software engineering tools to design interactions
in MABS. Since we do not need all refinements it provides, we use a simplified
version of its definitions.

To make the difference between the abstract concept of agent (for instance
Wolves), and agent instances (a particular Wolf), we use the notion of agent

families as abstract concept of agent. Thus, the word agent refers to an agent
instance.

Definition 1. An agent family is an abstract set of agent instances, which
share all or part of their properties and behavior.



Definition 2. An interaction is a structured set of actions involving simulta-
neously a fixed number of agents instances that can occur only if some conditions
are met.

An interaction is represented as a couple (conditions, actions), where
condition is a boolean function and action is a procedure. Both have agent
instances as parameters. Agents that are involved in an interaction play differ-
ent roles. We make a difference between Source agents that may initiate the
interaction (in general the one selected by the Activation Unit) and Target

agents that may undergo it.

Definition 3. Let F be the set of all agent families. Let S ∈ F and T ∈ F be
agent families.
We note aS/T the set of all interactions that an instance of the S agent family
is able to initiate with an instance of the T agent family as a target.

Thanks to these definitions, we can specify the knowledge of an agent family
S ∈ F as the set

⋃

T ∈F

aS/T , which contains every interactions it is able to initiate

as source with any agent family as target.

To unify knowledge, actions (for instance Wander or Die) are considered
as interactions, which target is implicit (either the environment, or the agent
itself). This kind of interactions is called degenerate interaction. We do not
add this to our notations, please see [4] for more information.

The definition of perceived affordances uses the notion of realizable interac-
tion, in order to determine if two agents can participate in an interaction.

Definition 4. Let I be an interaction, and x ≺ S, y ≺ T two agents. The tuple
(I, x, y) is realizable (written r(I, x, y)) if and only if :

– I ∈ aS/T , i.e. agents of S family are able to perform I with agents of T
family;

– the conditions of I hold true with x as source and y as target.

A realizable tuple represents one interaction that an agent can initiate with
a particular target agent. Moreover, the agent’s perceived affordances are the
set of all interactions it can initiate in a given context. Thus, at a time t, the
perceived affordances of the x agent are the set of all realizable tuples that x

may perform.

Definition 5. Let At be the set of all agents in the simulation at a time t, and
x ∈ At.
Then, the perceived affordances Rt(x) that x may perform at time t is the
set :

Rt(x) =
⋃

y∈At

⋃

I∈ax/y

{(I, x, y)|r(I, x, y)}



3.2 Discussion about this knowledge representation

In some cases, the distinction between source and target agents might appear
as a restriction. This implies that the knowledge representation of IODA cannot
be used to model any kind of simulation.

For instance the Handshaking interaction does not seem to make the dif-
ference between the source and the target agent – i.e. source and target roles
are symmetric.

The IODA methodology upholds that, even if the roles in the interaction are
symmetric, the two agents do not spontaneously choose to perform the Hand-

shaking together. One agent is at the origin of the Handshake, and requests
the other agent if it wants to perform that interaction.

Consequently, interactions have always an initiator – i.e. a source. Thus, the
knowledge representation provided by IODA can be used to model any kind of
simulation.

3.3 Time Representation and Simultaneous Interactions

The model of a simulation has to define how time is represented in the simulation.
Indeed, this representation has a deep influence on how the Activation Unit

is supposed to work. Moreover, the representation of time defines directly the
meaning of simultaneous interactions.

Mainly, two different time representation are used2 in MABS. Both are based
on the discrete event paradigm, where time is considered as a number that
increases during simulation, given a particular evolution process. Time can :

– either evolve by steps of fixed length. Usually, these kind of simulation are
called Discrete, because time can be considered as a finite set of integers
called time steps. At each time step, the Activation Unit will ask one or
more agents to perform their Selection Unit. The choice of asked agents is
up to the policy used in the Activation Unit. For instance, ask all agents
sequentially in random order, or ask one agent chosen randomly, etc;

– or evolve event by event. Usually, these kind of simulation are called Contin-
uous, or at least Pseudo-Continuous, because the time elapsed between two
event is not fixed. At each event, an agent performs its Selection Unit,
and schedules an event for its next activation, depending on the interaction
it initiated.

For each time representation, interactions have a duration – i.e. a time
interval during which the interaction is considered as being performed. The side-
effects of the interaction are considered consistent only at the end of this interval.

In the case of continuous time, the duration has to be defined by the modeler,
because the scheduling of events depends on the date agents finish their current
interaction. Thus, duration is explicit in the model.

2 these two are used for illustration purposes, in order to elicit the notion of interaction
duration. Other time representation might exist.



For discrete time, this notion of duration is not as obvious. Implicitly, the
duration of actions and interactions is the length of a time step. Sadly, the lack
of specification concerning this point causes critical issues in simulation (see
section 8).

Thanks to this definition, simultaneous interactions can be defined :

Definition 6. Two interactions are considered as simultaneous iff their du-
ration time interval are intersecting.

We uphold that the meaning of simultaneous interactions has to be

explicitly defined in the model, in order to assure simulation repro-

ducibility.

3.4 Functional Decomposition of a Multi-agent Simulation

Each functional unit is in charge of a specific feature of a multi-agent simulation.

The Activation Unit tells when agents may act, the time elapsed between
their actions/interactions, what to do if an agent tries to interact with an already
acting agent, etc. It describes all time-related elements in the simulation.

The Definition Unit lists all interactions in the simulation, under what con-
ditions and between what kind of agents they are possible, and what actions
they launch. It is the set of all possible behaviors, defined independently from
agents specificities. This unit provides information required to build the space
of all possible interactions the selected agent may initiate as a source – i.e. all
realizable tuples (Interaction, Selected Agent, Target agents), also corresponding
to the perceived affordances of the source, as defined in [12].

The Selection Unit describes the cognitive or reactive process an agent uses
to select which interaction it initiates, and, if many are possible, decides among
them the one to initiate.

A simulation is a repetition of 3-steps sequences, where each step exploits a
different functional unit (see Fig. 2).

We already argued in [4] for the advantage of agent-independent defined
interactions and proposed a formal definition for it, thus creating a software
separation between the Definition Unit – which is domain dependent – and
both Selection Unit and Activation Unit.

4 Experimental Frame

The goal of this paper is to measure to what extent modifications of the Ac-

tivation Unit may change simulation outcomes, and how an adequate one
may avoid simulation biases. This point is illustrated through two experiments,
each confronting two different implementations of the Activation Unit. Thus,



Activation Unit

selects the next agent a that will behave.

Definition Unit

provides the information required to build a’s perceived
affordances.

Selection Unit

selects from perceived affordances of a what action or
interaction a initiates.

Fig. 2. How the three main functional units of a multi-agent simulation are used to
run a simulation.

the only variating parameter in an experiment is the Activation Unit : its
Definition Unit and Selection Unit remain the same.

This section presents the Definition Unit, Selection Unit, the protocol
used in our experiments, and preliminary discussions concerning the Activation

Unit.

4.1 The Definition Unit

The Definition Unit, which defines all domain-dependent information, will
change from one experiment to the other. In order to make the comprehension
of our examples easier, every experiment deals with the same overall simulation
problem : the evolution of an ecosystem containing predators and preys. Please
note that experiments provide only an illustration of the general issue we deal
with. The solutions presented in this paper are obviously not restricted to that
particular simulation, and do not avoid only the biases emphasized in this paper.

4.2 The Selection Unit

The Selection Unit, which corresponds to agent’s decision making process,
will keep the same architecture in all our experiments.

The architecture we use is the most used one for reactive agents : a
subsumption-like architecture [13] that tries every interaction sequentially until
a realizable one is found. Every source agent gives to every interaction it can
initiate a priority value, which denotes the order it tries the interactions (see
Fig. 1).

4.3 The Activation Unit

The model of a simulation has to define how time is represented in the simulation.
In the experiments of this paper, we consider that :



Algorithm 1 Selection Unit used in the experiments of this paper. It defines
how an agent a chooses what interaction it initiates at a time z.

Rz(a) ⇐ the set of all realizable interactions a may initiate
P ⇐ the decreasing set of all priorities a gives to the interactions it can initiate
L ⇐ ∅
for p in P do

for (I, a, t) in Rz(a) do

if I has p priority for a then

L ⇐ L ∪ {(I, a, t)}
end if

end for

if L 6= ∅ then

a initiates the interaction of a tuple of L chosen at random
stop

end if

end for

a initiates nothing

– time is Discrete (see Sect. 3.3);
– during every time step, the agents trigger their Selection Unit in sequence.

The order of this sequence is defined at random for each time step, in order
to keep equity between agents.

– the duration of interactions is the length of a time step. Thus, two interac-
tions occurring at the same time step are considered simultaneous.

These choices are the most usual ones in classical reactive simulations. Moreover,
we make the assumption that an agent may initiate at most one interaction at a
time – i.e. it cannot be simultaneously the source of two or more interactions.
This issue will be discussed in section 8.

4.4 Experimental Protocol

The experimental protocol used in this paper is :

1. first, the aim of the experiment is outlined;
2. then, the Definition Unit and Selection Unit used by both implemen-

tations of this experiment are defined;
3. next, the two Activation Unit used in the experiment, and experiment’s

initial conditions, are described;
4. eventually, the results of the execution of both implementation of the exper-

iment are presented and discussed. From this discussion, an interaction class
is emphasized to avoid a possible simulation bias.

Please note that all experiments presented below are voluntary basic to stress
out where the problems lie : they obviously do exist in more complex situations
as well.



5 First Experiment : Multiple Participation to

Interactions Bias

This experiment studies the limits of the usual naive algorithm and introduces
as a solution a first interaction class called exclusive interaction.

Model used : This simulation studies an ecosystem composed by grass and sheep.
Because sheep can move, classical analytical models cannot be used to model
the population of species : this simulation requires multi-agent systems.

The environment is a two dimensions toroidal continuous space split into
unitary square parcels. Every parcel P has an attribute q(P) that increases of
one unit at every simulation step. P is said containing grass when q(P) > 0. If P
is emptied by an agent, then q(P) = 1−rgrass (i.e. rgrass is the time grass needs
to grow) . A sheep S is an agent with an energy attribute e(S) representing its
health, which can initiate the interactions :

1. To Die if e(S) ≤ 0. Then :

– S is removed from the environment.

2. To Reproduce with another sheep S′ at a maximal distance of 1 from S if
e(S) > 0 and e(S′) > 0. Then :

– A new sheep S′′ is created at S’s location, and e(S′′) =
Min(e(S), erepr) + Min(e(S′), erepr), where erepr stands for the energy
consumed by reproduction.

– e(S) and e(S′) are decreased by erepr.

– S, S′ and S′′ execute the Wander interaction (see below).

3. To Eat grass on S’s parcel if it contains some. Then :

– e(S) increases from eeat, where eeat is the energy gained by eating.

– S empties the parcel he is onto.

4. To Wander with no conditions. Then :

– S turns itself from an angle in [−π, π[ and moves forward from 1 unit.

– e(S) decreases from ewan, where ewan is the energy consumed by moving.

Sheep behave by using the order 1 > 2 > 3 > 4 in their Selection Unit,
thus they first have to Die, if they don’t, they try to Reproduce, if they don’t,
they try to Eat, . . .

Experimental design : We used this model in a 33 × 33 environment containing
1089 parcels, where 30% have q(P) = 0 and 70% q(P) ∈] − rgrass,−1], and 70
sheep such that e(S) = 2 × erepr. We also set rgrass = 10, erepr = 15, ewan = 2
and eeat = 7.

Figure 3 compares the evolution of the sheep population of this model im-
plemented with respectively the naive (single interaction) Activation Unit,
from Algorithm. 2 (from Algorithm. 3).



Algorithm 2 ”Naive Activation Unit”. In this implementation, an agent
does not take into account simultaneous interactions. MAX is the duration of
the simulation, in time steps.

for i = 1 to MAX do

Update the environment
for a in agents in the environment at time z do

Rz(a) ⇐ all realizable tuples that a may initiate
(I, a, t) ⇐ a tuple of Rz(a) selected with a particular Selection Unit

if (I, a, t) 6= null then

Execute I with a as source and t as target.
end if

end for

end for

Algorithm 3 ”Single Interaction Activation Unit” In this implementation,
an agent participates only in one interaction at a time, either as the source or
as the target. MAX is the duration of the simulation, in time steps.

for i = 1 to MAX do

Update the environment
for a in agents in the environment at time z do

Tag a as operative
end for

for a in agents in the environment at time z do

Rz(a) ⇐ all realizable tuples that a may initiate
for (I, a, t) in Rz(a) do

if a is not operative or t is not operative then

Remove (I, a, t) from Rz(a)
end if

end for

(I, a, t) ⇐ a tuple of Rz(a) selected with a particular Selection Unit

if (I, a, t) 6= null then

Execute I with a as source and t as target.
Tag a and t as not operative

end if

end for

end for

Results and Discussion : With exactly the same initial environment, the exper-
iment using the naive algorithm (see Algorithm 2) produces in overall 68 more
sheep than the one using the single interaction algorithm (see Algorithm 3).

This difference lies in the number of interactions an agent may participate in
during a simulation step. In the naive algorithm, a sheep targeted by a Repro-

duce interaction can be the source of another interaction. On the opposite, in
the single interaction algorithm an agent participates at maximum in one inter-
action, either as a source or as a target. This difference has a great impact on
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Fig. 3. Sheep population evolution against time (in simulation steps) respectively dis-
played in dots (in line), for the model presented in Sect. 5 implemented with the naive
(single interaction) algorithm of Algorithm. 2 (Algorithm. 3).

the sheep energy dynamics, their reproduction and death rate, and their density,
and, as a consequence, on the sheep population dynamics.

In this simple experience, this difference may be considered as the result of
different interpretations of the model, thus it cannot be considered as a bias.
Nevertheless, it corresponds to a bias in other experiences, as shown in [3] : if a
sheep participates in more than one reproduction per time step, then the sheep
reproduction probability is different from the one designed in the model.

We outlined with this experience that the number of interactions an agent
can simultaneously participate in has to be restricted. To cope with this problem,
we identified a first interaction class called exclusive interactions. An agent can
participate in such an interaction only once at a time, either as source or as
target.

6 Second Experiment : Single Participation to

Interactions as Target Bias

This section illustrates a simulation problem concerning the target of an inter-
action that exclusive interactions alone are too restrictive to solve.

Model used : This model adds to the one of experiment 5 a new agent named
wolf, and a new interaction to a sheep S :

5. To Flee from a wolf W at a maximal distance of 10 from S. Then :
– S turns its back towards where W is and moves forward from 1 unit.
– e(S) decreases from ewan.

Sheep behave using the order 1 > 5 > 2 > 3 > 4 in their Selection Unit, and
wolves only Wander in the environment.

In this simulation, sheep Flee systematically wolves. As a consequence,
wolves are supposed to be at the center of an empty area.



Experimental design : They are the same as in the experiment of Sect. 5, except
that there is a wolf at a random position, and that the simulation is implemented
with :

– firstly with the single interaction Activation Unit (from Algorithm. 3);
– then with the parallel interactions Activation Unit (from Algorithm. 4)

where
• Flee is from I2 interaction class;
• other interactions are from I1 class.

Algorithm 4 ”Parallel Interaction Activation Unit”. In this implementation,
an agent participates only in one interaction of I1 at a time, either as the source
or as the target. An agent can be the target of as many interaction of I2 as
necessary. MAX is the duration of the simulation, in time steps.

for i = 1 to MAX do

Update the environment
for a in agents in the environment at time z do

Tag a as operative
end for

for a in agents in the environment at time z do

Rz(a) ⇐ all realizable tuples that a may initiate
for (I, a, t) in Rz(a) do

if I is from I1 class and (a is not operative or t is not operative) then

Remove (I, a, t) from Rz(a)
else if I is from I2 class and a is not operative then

Remove (I, a, t) from Rz(a)
end if

end for

(I, a, t) ⇐ a tuple of Rz(a) selected with a particular Selection Unit

if (I, a, t) 6= null then

Execute I with a as source and t as target.
if I is from I1 class then

Tag a and t as not operative
else if I is from I2 class then

Tag a as not operative
end if

end if

end for

end for

The outcomes of such implementations of this model are displayed in Fig. 4.

Results and Discussion : The parallel interactions Activation Unit produces
the expected result (right on Fig. 4), and the single interaction Activation

Unit (left on Fig. 4) is obviously biased : there is no empty halo around the
wolf.



Fig. 4. Outcomes screenshot of the experiment presented in Sect. 6. This model was
respectively implemented with the single interaction (parallel interactions) Activa-

tion Unit from Algorithm. 3 (from Algorithm. 4), displayed to the left (right), where
respectively light (dark) arrows are sheep (wolves), and light (dark) squares are empty
(full) parcels.

The difference lies in the number of interactions a wolf can undergo simulta-
neously. When a wolf is the target of a Flee interaction, it is set not operative,
thus it cannot be the target of another Flee interaction. Consequently, a wolf
is fled once per simulation step, and other sheep behave as if there was no wolf.

We outlined with this experiment that all interactions do not put the same
restrictions onto their target agent. Interaction classes have to reflect this dif-
ference, thus, in addition to exclusive interactions, we introduce parallel inter-
actions, where agents may simultaneously be targeted as many times as needed.

7 Experiments Summary : A Classification of Interactions

Through two experiments, we have shown that the model has to answer the
question ”is the source (or target) agent of an interaction allowed to be simul-
taneously the source (or target) of another interaction ?”. Otherwise the lack of
specifications leads to ambiguities from which many biases may result.

7.1 Interaction classes

As a solution, we identified two interaction classes, each answering differently
to the question above. Considering our modeling experience, these classes corre-
spond to the two main recurrent patterns used to handle simultaneous interac-
tions. The association of a class to each interaction in a model describes explicitly
how they are managed, and thus avoids many biases at implementation.

The two interaction classes are :

exclusive interaction : An agent is allowed to participate only to one exclusive
interaction at a time, whether as source or as target. In the experiments and in
the Algorithm. 3 and Algorithm. 4, it corresponds to I1 interaction class. It is
the case of the Reproduce interaction.



Table 1. Summary of what interactions an agent may participate in simultaneously,
depending on its role in them. The cross at the intersection of the line (Exclusive, S)
and column (Parallel, T) is read ”An agent can simultaneously be the source (S) of an
exclusive interaction and the target (T) of a parallel interaction”. The empty cell at
the intersection of the line (Exclusive, T) and column (Exclusive, T) is read ”An agent
cannot simultaneously be the target (T) of an exclusive interaction and the target (T)
of another exclusive interaction”.

Exclusive Parallel
S T S T

Exclusive
S ×
T ×

Parallel
S ×
T × × × ×

parallel interaction : An agent is allowed to be simultaneously the target of as
many parallel interaction as needed. In the experiments and in the Algorithm. 4,
it corresponds to I2 interaction class. It is the case of the Flee interaction.

Moreover, we consider that an agent can initiate only one interaction at a
time. Thus an agent cannot simultaneously be the source of a parallel interaction,
and participate to an exclusive interaction (either as source or target).

Table. 1 provides a summary of what interaction classes allow and forbid.

7.2 Use of interaction classes

In practice, interaction classes are exploited before the Selection Unit exe-
cutes. The agent that performs the Selection Unit cannot initiate all the af-
fordances – i.e. all realizable tuples – it listed. Indeed, this agent might already
be involved in some interactions. Thus, it has to remove from its affordances
all interactions that cannot be initiated simultaneously with the interactions al-
ready occurring. This removal is based on the table 1 that summarizes what
interactions are allowed simultaneously. For instance, an agent cannot initiate
an exclusive interaction with an agent that is already the target of an exclu-
sive interaction (see the intersection of the line (Exclusive, S) and the column
(Exclusive, T ) in Fig. 1).

Thus, the 3-steps sequence of Fig. 2 in section 3.4 becomes as displayed in
Fig. 5. The algorithm 4 provides an implementation of such an Activation

Unit, where :

– time is Discrete (see Sect. 3.3);
– during every time step, the agents trigger their Selection Unit in sequence.

The order of this sequence is defined at random for each time step, in order
to keep equity between agents.

– the duration of interactions is the length of a time step. Thus, two interac-
tions occurring at the same time step are considered simultaneous.

– an agent may initiate at most one interaction at a time, i.e. it cannot be
simultaneously the source of two or more interactions.



Activation Unit

selects the next agent a that will behave.

Definition Unit

provides the information required to build a’s perceived
affordances.

Activation Unit

removes from perceived affordances of a all tuples incom-
patible with already occurring interactions.

Selection Unit

selects from perceived affordances of a what action or
interaction a initiates.

Fig. 5. How the three main functional units of a multi-agent simulation are used to
run a simulation, This takes into account simultaneous interactions.

7.3 Why defining interaction classes in the model ?

Interaction classes answer the question ”is the source (or target) agent of an
interaction allowed to be simultaneously the source (or target) of another inter-
action ?”.

These interaction classes are deeply bound with the algorithms used to
process interactions at implementation. Thus, knowledge on which interaction
classes are present in an operational model :

– removes ambiguities found during implementation.

– determines if a simulation platform is fit to implement the model. For in-
stance, a simulation platform like Netlogo[14] is no fit by default to imple-
ment models containing exclusive interactions : the user has to develop his
own Activation Unit;

The implementation of such specifications is made easier by a software sep-
aration between Activation Unit, Definition Unit and Selection Unit.
Indeed, it forces the user to choose interaction classes explicitly, and thus forces
to understand the underlying algorithms. It is the case of the IODA methodol-
ogy and the JEDI simulation platform [4] where this separation is made by the
reification of interactions through the whole simulation process.

Note that even if these classes are defined in the context of discrete simula-
tions – i.e. with simulation steps of fixed length – they remain valid for other
simulations.



8 Discussion about our solution

Our solution makes the assumption that an agent can simultaneously be the
source of at most one interaction. This seems to be an hindrance for some sim-
ulations. We illustrate this point on an example.

8.1 Issues about simultaneous initiation of many interactions

Many reactive simulations, such as the Wolf Sheep Predation of Netlogo (see
Algorithm. 5) seem to make the assumption that the Selection Unit can
select and initiate more than one interaction during a time step.

For instance, in the Wolf Sheep Predation :

– the Activation Unit is defined by the ”go” block. This block ends with a
”tick” command, which tells that the Activation Unit uses discrete time.
The code ”ask sheep” tells that for each simulation time step, sheep agents
are asked in a random sequence to perform once the content of the ”ask
sheep” block.

– the Definition Unit and Selection Unit are mixed, and defined in the
content of the ”ask sheep” block. In this block sheep may initiate a move

interaction, then a eat-grass interaction, then a reproduce-sheep inter-
action and finally a death interaction.

Sheep seem to be able to initiate up to four interactions during a time step.

8.2 Discussion about this simulation

Time steps are the most easiest way to build an Activation Unit. In simulation
using this kind of Activation Unit, the most atomic representation of time is
the time step. Thus, interactions are considered as simultaneous if they occur
during the same time step.

In the simulation presented above, this means that an agent is able to initiate
up to four interactions simultaneously. This seems to invalidate our hypothesis
that an agent is able to initiate at most one interaction at a time, and conse-
quently seems to invalidate our solution.

In fact, there is no such thing like initiating simultaneously more than one
interaction. The issue is rather related to the wrong use of discrete time, and its
underlying definition of simultaneous interactions. Indeed, it makes no sense to
uphold that a sheep can initiate Die and Reproduce-Sheep simultaneously.
The same holds for any other combination containing two interactions among
Die, Reproduce-Sheep, Eat-Grass and Move. These interactions are meant
to be executed separately, in sequence. Thus, they are not simultaneous, and have
to occur during different time steps. In this case, the implementation does not
reflect what the model means.

We uphold that simulations that let agents initiate more than one interaction
during the same time step are misusing discrete time Activation Unit, and
do not implement the model as it was meant. Thus, initiating at most one
interaction at a time is sufficient to model all kinds of simulations.



Algorithm 5 Part of the implementation in Netlogo of a Wolf Sheep predation
simulation.
to go

(...)

ask sheep [

move

if grass? [

set energy energy - 1

eat-grass

]

reproduce-sheep

death

]

(...)

tick

(...)

end

to move ;; turtle procedure

rt random 50

lt random 50

fd 1

end

to eat-grass

if pcolor = green [

set pcolor brown

set energy energy + sheep-gain-from-food

]

end

to reproduce-sheep

if random-float 100 < sheep-reproduce [

set energy (energy / 2)

hatch 1 [ rt random-float 360 fd 1 ]

]

end

to death

if energy < 0 [ die ]

end

9 Conclusion

Most simulations assume and compare hypothesis on a given phenomenon. The
model is the mirror of such hypothesis. Thus, it has to contain enough infor-
mation to assure simulations reproducibility – i.e. two implementations of the
same model have to produce outcomes with similar natures. Sadly, many model-
ing and implementation choices are left implicit. This can lead to biases, and thus
to non-reproducible simulations. Thus the biases that may result from modeling
and implementation choices must be identified and quantified.

In this paper we have shown that the reproducibility of a simulation is not
possible without specifying a particular domain-independent functional unit that
underlies any simulation, called Activation Unit.

This unit specifies all time related elements in the simulation. In particular,
it indicates to what interactions an agent can participate simultaneously. Ex-
periments showed that the lack of specifications concerning the particularities of
these interactions may introduce biases in simulation outcomes. Indeed, as an
example, the target of a reproduction behavior cannot initiate simultaneously
another interaction, otherwise an agent may reproduce twice at the same time.

To solve this kind of problem, we uphold that the model must specify :

– what simultaneous interaction means. For discrete simulations, where time
is divided in time steps of the same length, interactions are simultaneous if
they occur during the same time step;



– the interaction class of each interaction of the simulation, among exclusive
and parallel. Thanks to these classes, an agent can determine which interac-
tions it can initiate – i.e. be the source – at a particular time, according to
all the interactions already occurring at that time.

We illustrated on an experiment that the lack of knowledge on what simulta-
neous interactions means may lead to implementations that do not correspond
what the model meant. Thus, the specification of what interactions agents may
participate in simultaneously have meaning only if the notion of simultaneous
interactions is known and understood.

Taking into consideration time representation and these classes while con-
ceiving the model removes ambiguities that would have led to biases. Without
the specification of these two points, two different developers will likely obtain
very different outcomes for the same model.
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