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We theoretically demonstrate that long period twisted elliptical fibers have the ability to change in a 
certain wavelength range the topological charge of the incoming field by two units. We also show that 
such fibers can generate charge 2 optical vortices from the incoming Gaussian beams.
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1. Introduction

Generation of optical fields with singularities has
become a topical problem of singular optics since first
discussions of optical vortices (OVs) [1,2]. At present,
several methods of OV generation are used for such a
purpose: generation by lens converters [3], spiral
phase plates [4], and phase holograms [5]. In past
years other new methods have been suggested
[6,7,8]. The method of OV generation by so-called
q-plates has shown great promise [9,10].

Among the variety of the existing methods, one can
single out the special group concerned with OV gen-
eration with optical fibers. Though some of them ex-
ploit the semblance of stress-applied fibers with lens
converters [11], the majority are based on the effect
of mode coupling in chiral fiber gratings. Historically,
first such an effect of vortex generation (without its
recognition) from the Gaussian mode was presented
in [12]. Similar phenomena have been observed in
other types of helical fiber gratings [13–15]. A theo-
retical explanation of the observed results, though,
has been presented quite recently [2,16,17]. In those
papers it has been pointed out that a helical pertur-

bation of refractive index brings forth the coupling
between fiber modes with orbital numbers differing
by unity. The effect of such mode coupling is insensi-
tive to a particular technique of creation of a helical
perturbation and leads to changing the topological
charge of the incident field by unity [18]. At present
such helical-core fibers are no longer some bizarre
objects but are within the reach of state of the art
technology [19,20].

However, all such waveguides with a helical per-
turbation of refractive index have a common limita-
tion: they can change the topological charge of the
incoming field only by unity. Meanwhile, it is desir-
able to have the possibility of changing this charge in
somewhat wider limits. In this paper we propose the
method of all-fiber changing the topological charge of
the incoming field by two units. An inspiring hint on
the nature of the class of fibers, which could be the
candidates for such systems, can be found in the pa-
pers of Kopp et al. on twisted fibers. In one of their
early papers on that topic the authors refer to effec-
tively elliptic twisted fiber as to a double-helix fiber
[21]. Indeed, in a way, such fibers feature π-shifted
helices of larger refraction index n. Though, gener-
ally speaking, actual distribution of n is more compli-
cated, this notion proves to be sufficient to focus
attention on such class of fibers.
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The aim of this paper is to demonstrate that long-
period twisted elliptic fibers can change the topologi-
cal charge of the incoming field by two units. In
particular, we show that such fibers can generate
charge-2 OV from the incoming Gaussian beams.

2. Basic Equations and Coupled Modes

Elliptical twisted fibers are manufactured by simul-
taneously drawing and twisting the fiber from a pre-
form with an elliptically deformed core. During such
technological process no elastic strains appear in the
fiber and the effect of twisting is reduced to a mere
geometrical modification of refractive index distribu-
tion. As is shown in [22], for weakly guiding fibers
this leads to the following distribution of the refrac-
tive index:

n2�r;φ; z� � n2
co�1 − 2Δf �r��

− 2n2
coΔδrf 0r cos�2�φ − qz��; (1)

whereΔ is the height of the profile f , δ ≪ 1 is dimen-
sionless parameter of ellipticity, nco is the core’s re-
fractive index, and q � 2π∕H, with H being the
pitch of the fiber [see Fig. 1]. Here the axial-polar co-
ordinates �r;φ; z� are implied and are introduced in
the standard way.

In the scalar approximation, which proves to be
sufficient for our purposes, the transverse electric
field E⃗t satisfies the following equation [23]:

ΔE⃗t � k2n2E⃗t � 0; (2)

where k is the wave number in vacuum and Δ is the
Laplace operator. The change of variables ~r � r,
~z � z, ~φ � φ − qz enables one to obtain the transla-
tional invariant in ~z equation:
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which after the substitution E⃗t � e⃗t�~r; ~φ� exp
�iβ~z�, β being the propagation constant, is reduced to
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In the basis of linear polarizations jei �
�
ex
ey

�
this

equation can be recast as

�Ĥ0 � V̂�jei � β2jei; (5)

where
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V̂ � −2k2n2
co ~rΔδf 0~r cos 2 ~φ. Zero approximation eigen-

value equation Ĥ0jei � β2jei readily yields eigen-
vectors given by circularly polarized OVs:

jσ; li �
�
1
iσ

�
exp�il ~φ�Fl�r�; (6)

where σ � �1 determines the circular polarization,
l � 0;�1;�2… is the topological charge of the vortex
solution, and radial functions satisfy [23]
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�
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For the spectrum of propagation constants, one
obtains

β�1;2�l � � ~βl � lq: (8)

As is seen from Eq. (8), in general, at q ≠ 0 there is
no degeneracy in the spectra (at q � 0 one should take
account of the vector term in the waveguide equation
[22]). However, at certain points the curves plotted as
functions of q may intersect. In such points of the
so-called accidental degeneracy, one has to use the
perturbation theory with degeneracy to allow for
the influence of the perturbation term V̂ in Eq. (5).
Wewill demonstrate the application of this technique
at the example of l � 0, 2 families of spectral curves.

Since the perturbation term V̂ cannot provide any
coupling of fields with opposite polarizations, it is
sufficient to study only spectral curves of zero-
approximation modes of the same polarization.
The spectra of σ � 1 modes at l � 0, 2 are

β1;2 � � ~β0; β3;4 � � ~β2 � 2q; β5;6 � � ~β2 − 2q:

(9)

The plots of these curves are given in Fig. 2. At
the points (a) and (b) (at q � q0 ≡ � ~β0 − ~β2�∕2) the
curves of l � 0 and l � 2 modes intersect. In such

Fig. 1. Geometry of the problem: Schematically shown genera
tion of the optical vortex OV from the incident Gaussian beam
GB. Insets show intensity distribution of the corresponding fields.
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points there takes place intensive hybridization of
forward-propagating (a) and backward-propagat-
ing (b) zero-approximation modes. For example, at
point (a), forward-propagating modes j1; 0i and j1; 2i
get coupled, whereas other modes do not interact. Ac-
cording to [24], to obtain the exact form of coupled
modes, one has to build the matrix of the total
Hamiltonian Ĥ0 � V̂ in the basis of those zero-
approximation eigenvectors of Ĥ0, whose spectra
coincide at q � q0. Then the eigenvector problem is
reduced to [3,16]

�
~β20 − β2 A

A ~β22 − �β − 2q�2
�
x⃗a � 0; (10)

where A � −k2n2
coΔδ∕N0N2, normalization factor

Ni �
R
∞
0 xF2

i dx
q

. Here the vector x⃗a � �x1; x2� corre-
sponds to the field x1j1; 0i � x2j1; 2i. Introducing de-
tunings ε � q − q0 and δ � β − ~β0, one can further
simplify the eigenvalue problem:

�
2~β0δ A
A 2~β2�2ε − δ�

�
x⃗a � 0: (11)

The spectra feature the so-called repulsion of spec-
tral curves [24] (see insets in Fig. 2) and are given by
the expressions

β�a�1;2 � ~β0 � ε� ε2 � Γ2
p

;

β�b�1;2 � − ~β0 − ε� ε2 � Γ2
p

;
(12)

where Γ2 ≈ A2∕4~β20. After a little algebra, one can
obtain the expressions for coupled modes:

jΨ1ai � fc1j1;0iexp�i�~β0 � ε�z� � c2j1;2iexp�i� ~β2 − ε�z�g

× exp
�
iz ε2 �Γ2
p �

;

jΨ2ai � f−c2j1;0iexp�i� ~β0 � ε�z� � c1j1;2i

× exp�i�~β2 − ε�z�gexp
�
−iz ε2 �Γ2

p �
; (13)

where c1;2 � 1
2

p 1∓ ε
ε2�Γ2

pq
. Analogously, one obtains

the formulae for coupled backward-propagating
modes:

jΨ1bi � f−c2j1; 0i exp�−i�~β0 � ε�z� � c1j1;−2i

× exp�−i�~β2 − ε�z�g exp
�
iz ε2 � Γ2
p �

;

jΨ2bi � fc1j1; 0i exp�−i� ~β0 � ε�z� � c2j1;−2i

× exp�−i�~β2 − ε�z�g exp
�
−iz ε2 � Γ2

p �
: (14)

It should be emphasized that the fields in Eqs. (13)
depend on the azimuthal coordinate φ and not on ~φ.
The remaining OVs: backward-propagating j1; 2i and
forward-propagating j1;−2i, remain uncoupled and
their fields do not alter. The results obtained are suf-
ficient to solve the problem of Gaussian mode’s pas-
sage through such a fiber.

3. Generation of Double-Charged Optical Vortices

Let us study now the passage of the Gaussian beam
through the twisted elliptical fiber with q � q0. If the
waist radius of the beam is correlated with the core’s
radius near the input end [23] the incident Gaussian
beam can be approximated by j1; 0imode. Before the
fiber the field is given by the incident and reflected
fields:

jΦ1�z ≤ 0�i � j1; 0ieikz � R1j1; 0ie ikz �R2j1; 2ie ikz

�R3j1;−2ie ikz: (15)

Within the fiber, the field can be represented as

jΦ2i � T1jψ1ai � T2jψ2ai � T3jψ1bi � T4jψ2bi
� T5j1; 2ie i ~β2z � T6j1;−2iei ~β2z; (16)

Fig. 2. Zero approximation spectra of twisted elliptical fiber
modes versus lattice vector q. The type of the mode is indicated
at the corresponding curve. Insets show repulsion of spectral
branches due to the effect of mode coupling; the fiber’s parameters
are: nco 1.5, Δ 0.01, δ 0.05, r0 8λ0, λ0 632.8 nm,
q ≈ q0 11216.845 m−1.
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whereas the output field looks like

jΦ3�z ≥ d�i � �P1j1; 0i � P2j1; 2i � P3j1;−2i�eik�z d�:

(17)

Here Ri, Ti, and Pi are unknown coefficients. As
usual, the linear algebraic equations for these coeffi-
cients are obtained from matching fields and their
derivatives with respect to z at the boundaries.

The dependence of transmission coefficients jPij2
versus wavelength of the incident Gaussian beam
is shown in Fig. 3. As follows from numerical results,
at certain wavelength range the incident Gaussian
beam gets almost completely transformed into
charge-2 OV j1; 2i. As the fiber’s length increases,
the area of effective conversion diminishes. Figure 4
shows typical conversion curves at d � 207 mm.
These results demonstrate that twisted elliptical fi-
bers can be used as all-fiber generators of charge-
2 OV.

As is evident, this class of fibers has the ability to
change the topological charge of the incoming field by
2 units. For example, such fibers can convert an in-
cident j1; 1iOV into OV j1; 3i [Fig. 5]. Such selectivity
can be explained through dynamical properties of the
perturbation operator V̂ ∝ cos 2 ~φ: it can couple only
the basic vectors jσ; li, whose orbital numbers differ
by two units: hσ; ljV̂jσ; l� 2i ≠ 0. Of course such con-
version would take place at other q or wavelength λ
than q0 and λ0, where the Gaussian beam gets
converted into the OV. Basically, this conversion of
the topological charge is closely connected with the

Fig. 3. Transmission coefficients jPij2 for the outcoming modes
j1;0i (a) and j1; 2i (b) versus wavelength of the incoming field
j1;0i; the fiber’s length d 2.55 mm,Δ 0.01, δ 0.05, r0 8λ0,
λ0 632.8 nm, H 0; 56 mm. The coefficient for the outcoming
mode j1; 2i is negligibly small (not shown).

Fig. 4. Transmission coefficients for the outcoming modes
j1; 0i (a) and j1; 2i (b) versus wavelength of the incoming field j1; 0i;
the fiber’s length d 207 mm. The other parameters are the same
as in Fig. 3.

Fig. 5. Transmission coefficient for the outcoming vortex j1; 3i
versus wavelength of the incoming field j1; 1i. Fiber parameters:
d 209.3 mm, nco 1.5, Δ 0.01, δ 0.05, r0 8λ0, λ0
632.8 nm, H 0.44 mm.
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presence of a double-helix in the structure of lines of
equal refractive index.

4. Conclusion

In this paper we have theoretically demonstrated
that long-period twisted elliptical fibers possess the
ability to change in a certain wavelength range the
topological charge of the incoming field by two units.
In particular, we have also shown that such fibers
can generate charge-2 optical vortices from the in-
coming Gaussian beams.
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