On the invariant distribution of a one-dimensional avalanche process

Abstract : We consider an interacting particle system $(η_t )_{t\geq 0}$ with values in ${0, 1}^Z$ , in which each vacant site becomes occupied with rate 1, while each con- nected component of occupied sites become vacant with rate equal to its size. We show that such a process admits a unique invariant distribu- tion, which is exponentially mixing and can be perfectly simulated. We also prove that for any initial condition, the avalanche process tends to equilibrium exponentially fast, as time increases to infinity. Finally, we consider a related mean-field coagulation-fragmentation model, we com- pute its invariant distribution, and we show numerically that it is very close to that of the interacting particle system.
Type de document :
Article dans une revue
Annals of Probability, Institute of Mathematical Statistics, 2009, 37 (1), pp.48-77. 〈10.1214/08-AOP396〉
Liste complète des métadonnées

https://hal-upec-upem.archives-ouvertes.fr/hal-00731532
Contributeur : Nicolas Fournier <>
Soumis le : jeudi 13 septembre 2012 - 09:43:26
Dernière modification le : vendredi 14 septembre 2018 - 09:16:05

Lien texte intégral

Identifiants

Citation

Xavier Bressaud, Nicolas Fournier. On the invariant distribution of a one-dimensional avalanche process. Annals of Probability, Institute of Mathematical Statistics, 2009, 37 (1), pp.48-77. 〈10.1214/08-AOP396〉. 〈hal-00731532〉

Partager

Métriques

Consultations de la notice

150