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Critical dimension for quadratic functional quantization

Gilles Pagès ∗
and Harald Luschgy †

Abstract

In this paper we tackle the asymptotics of the critical dimension for quadratic functional quan-
tization of Gaussian stochastic processes as the quantization level goes to infinity, i.e. the smallest
dimensional truncation of an optimal quantization of the process which is “fully” quantized. We
first establish a lower bound for this critical dimension based on the regular variation index of the
eigenvalues of the Karhunen-Loève expansion of the process. This lower bound is consistent with the
commonly shared sharp rate conjecture (and supported by extensive numerical experiments). More-
over, we show that, conversely, constructive optimized quadratic functional quantizations based on
this critical dimension rate are always asymptotically optimal (strong admissibility result).

Keywords : quadratic functional quantization; Karhunen-Loève expansion; Gaussian process ; op-
timal quantizer ; asymptotically optimal quantizer

2010 AMS Classification: 60G15, 60G99, 94A29.

1 Introduction

The aim of this paper is two-folded: first we aim at providing a constructive proof of the sharp
rate of functional quantization in the quadratic case for (a wide class of) Gaussian processes or
more generally of Gaussian random vectors X taking values in a separable Hilbert space

(
H, (.|.)H

)
.

Secondly, we provide several results about the critical quantization dimension in this framework,
especially a “sharp” asymptotic lower bound for the genuine critical dimension (sharp with respect to
a conjecture supported by extensive numerical experiments carried out on the Brownian motion and
the Brownian bridge, see [11]) and the sharp asymptotics of the “asymptotic” critical dimension.

By constructive proof we mean that we exhibit sequences of quantizers of size n which induces an
asymptotically sharp rate quadratic mean quantization error (this sharp rate has been first established
in [10]) as n goes to infinity. These quantizers live in finite dimensional subspaces spanned by the (first
component of the) Karhunen-Loève expansion of the Gaussian process of interest. The genuine critical
dimension at level n is the lowest dimension of such a subspace which contains an optimal n-quantizer
whereas the “asymptotic” critical dimension corresponds to asymptotically optimal n-quantizers. Like
the mean quantization rate, the asymptotics of the critical dimension is ruled by the rate of decay of
the K-L eigenvalues (listed in a decreasing order).

The Lr-mean quantization error of a random variable X defined on a probability space (Ω,A,P)
and having a finite rth moment taking value in a separable Hilbert space is defined by

en,r(X) = inf
{∥∥min

a∈α
|X − a|H

∥∥
r
, α ⊂ H, |α| ≤ n

}
.
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where |α| denotes the cardinality of the set α. It can also be characterized as

en,r(X) = min {‖ |X − Y |
H
‖r, Y : (Ω,A,P) → H, |Y (Ω)| ≤ n}

where | . |
H

denotes the norm on the Hilbert space H. Any random vector which achieves the above
minimum (there is always at least one) is called an (Lr-)optimal n-quantization. One can show that
such an optimal quantization is always of the form Y ∗ = πα∗(X) where π is a Borel projection on
α∗ = Y ∗(Ω) following the nearest neighbour rule. The subset α is called an optimal Voronoi n-
quantizer (or optimal Voronoi quantizer at level n). By extension any random vector of the form
πα(X) is called a Voronoi quantization whereas α is often called an n-quantizer (if |α| = n). The
term Voronoi refers to the nearest neighbour projection. A sequence (αn)n≥1 of n-quantizers is called
asymptotically n-optimal if

lim
n

‖mina∈αn
|X − a|H‖r

en,r(X)
= 1.

In the quadratic framework (r = 2), we will drop the subscript r for simplicity.

When H is an infinite dimensional separable Hilbert space (typically H is function space like
L2([0, T ], dt)), one often speaks of functional quantization. The first problem of interest (beyond
the existence of optimal n-quantizers for every n ∈ N) is the rate of decay of the mean (quadratic)
quantization error. This sharp rate problem in a Hilbert has been solved for a wide class of H-valued
Gaussian random vectors/processes X in [10] (see Theorem 2.1 below). Namely when the eigenvalues
of the Karhunen-Loève eigensystem of an H-valued random vector X ordered in a non-increasing order
read λn = ϕ(n) where ϕ is a non-increasing regularly varying function with index −b, b ≥ 1. Thus we
know that for the Brownian motion (or any Gaussian processwhose parameter b is equal to 2),

lim
n

√
log n en(W ) =

√
π

2
T.

and the conjecture on the genuine critical dimension reads as follows

lim
n
(log n)−1dWn = 2.

Rather unexpectedly, this proof in [10] is not constructive and provides no straightforward information
on the critical dimension dXn as n grows. In this paper we fill this two gaps (only partially as concerns
the second one). In particular the adopted approach relied on a block product quantization where
we let the size of the blocks go to infinity. Other proofs based on self-similarity arguments have been
proposed (in an Lr-framework, see [4]). Note however in [11] a first attempt of asymptotically optimal
quantization grids has been carried out using varying block sizes.

The paper is organized as follows: in Section 2 we provide some more rigorous background on
Karhunen-Loève expansions of Gaussian random vectors and functional quantization. Then, we state
our main results by exhibiting a a sequence of asymptotically optimal quantization grids and provide
an asymptotic lower bound for the genuine critical dimension. In Section 3 and 4 we establish some
upper and lower bounds respectively for the mean quantization error. Section 5 is devoted to the proofs
and constructive aspects. We conclude by few numerical illustrations which support the conjecture.

Our main tools, beyond discrete optimization techniques used for the upper bounds, are the Shan-
non’s Shannon’s source coding Theorem and the connection between mean quantization error and
Shannon ε-entropy (or rate-distortion function, see [3]).

Notations. • | . | canonical Euclidean norm on R
d.

• N
∗ = {1, 2, 3, . . .} the set of positive integers.
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• L2
T
= L2([0, T ], dt) equipped with its Hilbert norm |f |L2

T

=
( ∫ T

0 f2(t)dt
) 1

2
.

• Let X : (Ω,A) → H.
• Let (an) and (bn) be two sequences of real numbers. an ∼ bn if there exists a sequence (un) such
that an = unbn and limn un = 1.
• o(1) denotes a sequence indexed by n∈ N

∗ going to 0 as n→ ∞ (which may vary from line to line)

2 Background on optimal functional quantization and main result

2.1 Karhunen-Loève expansion and main running assumption

Let X : (Ω,A,P) → H be a centered Gaussian random vector taking values in a separable Hilbert
space (H, | . |

H
) satisfying

dimKX = +∞, where KX is the self-reproducing space of X.

A typical example is the case of a Gaussian stochastic process X = (Xt)t∈[0,T ] with continuous
paths. Clearly, for such a process a.s. t 7→ Xt(ω) lies in L

2
T
so that X can be see as a random vector

taking values in
(
L2

T
, |.|L2

T

)
.

Let (λXk , e
X
k )k≥1 be the orthonormal eigensystem of the (positive trace) covariance operator of X,

also known as the Karhunen-Loève (K-L) orthonormal system of X. Since the sequence (λXn )n≥1

has only one limiting value, 0, one may assume without loss of generality that K-L eigensystem is
indexed so that the sequence of eigenvalues is non-increasing. To alleviate notations we will drop the
dependency of the eigenvalues in X by simply noting λn instead of λXn .

Throughout the paper, the main results are obtained under the following assumption about the
K-L eigenvalues:

(R) ≡
{

There exists b∈ [1,+∞) and a non-increasing function ϕ : (0,+∞) → (0,+∞) with regular
variations at infinity of index −b (hence going to 0 at infinity) such that λk = ϕ(k), k ≥ 1.

Then, the Karhunen-Loève decomposition of X reads

X =
∑

k≥1

√
λkξke

X
k

where ξk =
〈X, eXk 〉√

λk
, k ≥ 1, defines an i.i.d. sequence of N (0; 1)-distributed random variables defined

on (Ω,A,P). The convergence holds a.s. in H.

2.2 Optimal quadratic functional quantization

The optimal quantization problem for X in L2
H(P) is

en(X) = inf
{∥∥min

a∈α
|X − a|H

∥∥
2
, α ⊂ H, |α| ≤ n

}
. (2.1)

For every integer d ≥ 1, we define the H-orthogonal projection X(d) of X on span{eX1 , . . . , eXd },
namely

X(d) =
d∑

k=1

√
λk ξk e

X
k
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and

en(X
(d)) = inf

{∥∥min
a∈α

|X(d) − a|H
∥∥
2
, α ⊂ ⊕1≤k≤dRe

X
k , |α| ≤ n

}
(2.2)

= inf
{∥∥min

a∈α
|
(√

λkZk)1≤k≤d − a|
∥∥
2
, α ⊂ R

d, |α| ≤ n
}

where Z = (Z1, . . . , Zd)
d
= N (0; Id).

Finally we set,

e2n(X, d) = e2n(X
(d)) +

∑

k≥d+1

λk

and

C(d) = sup
k≥1

k2e2k

(
N
(
0; Id

))
.

We know from [9] (see Proposition 2.1) that, for every n ∈ N
∗, the infimum in (2.1) holds as

a minimum: there exists at least one optimal quantizer α∗,n which turns out to have full size n.
Furthermore α∗,n lies in a finite dimensional space spanned by finitely many elements of the K-L basis.
We can define the (genuine) critical dimension as the smallest vector subspace of span{eXn , n ≥ 1} in
which some optimal n-quantizer lies, namely:

dn = min
{
d∈ N

∗ : ∃α∗,n optimal n-quantizer s.t. α∗,n ⊂ span{eXk , 1 ≤ k ≤ d}
}
.

The sequence (dn)n≥1 makes up a sequence satisfying

e2n(X) = e2n(X, dn).

It is clear that dn goes to infinity, otherwise one could extract a subsequence dn′ such that dn′ ≤ d̃ <
+∞. If so, we would have

e2n(X) ≥
∑

k≥d̃+1

λk

which contradicts the obvious fact that e2n(X) goes to zero as n goes to infinity (see e.g. [9]). This
last claim is a consequence of the fact that, if (zn)n≥1 is everywhere dense in H, then

e2n(X) ≤ E

(
min
1≤i≤n

|X − zi|2H
)
→ 0 as n→ ∞.

Otherwise very little is known on the sequence (dn)n≥1, in particular we do not know whether this
sequence is monotone.

We will use the following easy lemma

Lemma 2.1. Let n ≥ 1 be an integer. The sequence d 7→ e2n(X, d) is non-increasing (and so is
constant for d ≥ dn).

Proof. Let d ≤ d′. Let α∗,n(d) be an optimal quadratic quantizer for X(d) of size (at most) n. It is
clear that for every a∈ α∗,n(d),

|X(d′) − a|2H = |X(d) − a|2H +
d′∑

k=d+1

λk
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since α∗,n(d) ⊂ span{eX1 , . . . , eXd }. As a consequence e2n(X
(d′)) ≤ e2n(X

(d)) +
∑d′

k=d+1 λk and one
concludes by adding the tail

∑
k≥d′+1 λk. �

It holds as a conjecture for a long time that, under Assumption (R),

lim
n

dn
log n

=
2

b

whereas the sharp rate of quadratic quantization has been elucidated for long in [10] (with several
extension to more general Banach settings obtained ever since for Lp([0, T ], dt)-norms, 1 ≤ p ≤ +∞,
see [4], etc).

Extensive computations carried out in [11] provide strong evidence that in fact, as concerns the
standard Brownian motion and the Brownian bridge (which corresponds to b = 2), we even have that

dn∈ {⌊log n⌋, ⌈log n⌉}.

These conjecture are also supported by results obtained for optimal block quantization results
either with constant size blocks or varying size blocks (see [10, 11]).

The aims of this paper can now be summed up as follows : firstly to provide a constructive proof of
the sharp rate theorem recalled below, secondly to provide a partial answer to the above conjecture
and finally to provide a complete answer to the “asymptotic” dimension problem.

Theorem 2.1. (see [9]) Assume (R). Let ψ : (0,+∞) → (0,+∞) be defined by

ψ(x) =





1

xϕ(x)
if b > 1 so that ψ is a regularly varying function with index b− 1

1∫∞

x
ϕ(y)dy

if b = 1 so that ψ is a slowly varying function.
(2.3)

Then lim
n
ψ(log n)e2n(X) =





(
b

2

)b−1 b

b− 1
if b > 1

1 if b = 1.

2.3 Main result: critical dimension

Now we pass to results on the critical dimension, with an emphasis on the constructive aspects.
While the genuine critical dimension is of considerable theoretical interest, for practical purposes
the “asymptotic” critical dimension is more interesting. It corresponds to the smallest admissible
dimension according to the definition below.

Definition 2.1. Assume (R). Let ψ be defined as in Theorem 2.1. Let (δn)n≥1 be a sequence of
positive integers going to infinity.

(a) A sequence (δn)n≥1 is admissible for X if

lim
n

e2n(X, δn)

e2n(X)
= 1.

(b) If b > 1, an admissible sequence (δn)n≥1 is strongly admissible for X if

lim
n
ψ(δn)e

2
n(X

(δn)) = 1.
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Admissibility suggests that such a sequence of “pseudo-critical dimensions” can be used to produce
asymptotic optimal quantizers in practice.

Strong admissibility models the fact that, asymptotically no dimension, is useless in X(δn) so that
the dimension δn is (asymptotically) minimal in view of practical computations of optimal quadratic
quantizers of a Gaussian process. For more insight on these numerical aspects, we refer to [11] and [12].

The following theorem provides a complete solution of the dimension problem in the asymptotic
sense, at least for b > 1.

Theorem 2.2. Assume (R). Let ψ be defined as in Theorem 2.1.

(a) If b > 1,

(δn)n≥1 is admissible ⇐⇒ lim inf
n

δn
log n

≥ 2

b

and

(δn)n≥1 is strongly admissible ⇐⇒ lim
n

δn
log n

=
2

b
.

(b) If b = 1,

(δn)n≥1 is admissible =⇒ lim inf
n

ψ(δn)

ψ(log n)
≥ 1

and

lim inf
n

δn
log n

> 0 =⇒ (δn)n≥1 is admissible.

As for the genuine critical dimension, we thus obtain the following lower bounds.

Corollary 2.1. Assume (R). (a) If b > 1,

lim inf
n

dn
log n

≥ 2

b
.

(b) If b = 1,

lim inf
n

ψ(dn)

ψ(log n)
≥ 1.

where this time ψ(x) =
1∫∞

x
ϕ(y)dy

, x > 0, is a slowly varying function.

Furthermore, it follows from Theorem 2.2 that the above conjecture is true if and only if

lim
n→+∞

ψ(dn)e
2
n(X

(dn)) = 1.

3 Upper bound

Since we are trying to provide a fair new constructive proof of the sharp rate for quadratic functional
quantization, we are not yet in position at this stage to claim that limn ψ(log n)e

2
n(X) does exist. This

is the reason why the claims in the proposition below involve lim supn ψ(log n)e
2
n(X) which always

exists (the same will be true with Proposition 4.1 in the next section).
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Proposition 3.1. Assume (R). Let (δn)n≥1 be a sequence of integers going to infinity.

(a) If b > 1 and lim inf
n

δn
log n

≥ 2

b
, then

lim sup
n

ψ(log n) e2n(X) ≤ lim sup
n

ψ(log n) e2n(X, δn) ≤
(
b

2

)b−1 b

b− 1
.

Furthermore, if lim
n

δn
log n

=
2

b
, then

lim sup
n

ψ(log n) e2n(X
(δn)) ≤

(
b

2

)b−1

.

(b) If b = 1 and lim infn
δn

logn = κ∈ (0,+∞), then

lim sup
n

ψ(log n)e2n(X) ≤ lim sup
n

ψ(log n) e2n(X, δn) ≤ 1.

First we need two lemmas devoted two block quantization and their critical dimension which are

the key of the proof. For every integer d ≥ 1, we define set λ
(d)
k = λ(k−1)d+1.

Lemma 3.1 (Block quantization). Let d, d0∈ N
∗, d > d0. Then, for every k∈ N

∗, k ≤ d
d0
, we have

e2n(X
(d)) ≤ C(d0)min

{
k∑

ℓ=1

λ
(d0)
ℓ n

− 2
d0

ℓ , n1, . . . , nk∈ N
∗,

k∏

ℓ=1

nℓ ≤ n

}
+

d∑

i=kd0+1

λi

Proof. We introduce the (sub-optimal) d0-block product quantizer defined as follows

X̃(d,d0,k) =
k∑

ℓ=1

d0∑

i=1

√
λ(ℓ−1)d0+i

(
Projα(ℓ)

(
(ξj)(ℓ−1)d0+1≤j≤ℓd0

))

i
eX(ℓ−1)d0+i

where α(ℓ) ⊂ R
d0 is an optimal quadratic quantizer of size (at level) nℓ of N

(
0; Id0

)
and Projα(ℓ) :

R
d0 → α(ℓ) a Borel nearest neighbour projection on α(ℓ).
Elementary computations based on Pythagorus’s theorem (see Lemma 4.2) in [10]) show that

∥∥∥X − X̃(d)
∥∥∥
2

=

k∑

ℓ=1

d0∑

i=1

λ(ℓ−1)d0+iE

∣∣∣
(
Projα(ℓ)

(
(ξj)(ℓ−1)d0+1≤j≤ℓd0

))
i
− ξ(ℓ−1)d0+i

∣∣∣
2
+

d∑

i=kd0+1

λi,

≤
k∑

ℓ=1

λ(ℓ−1)d0+1E

∣∣∣
(
Projα(ℓ)

(
(ξj)(ℓ−1)d0+1≤j≤ℓd0

))
i
− ξ(ℓ−1)d0+i

∣∣∣
2
+

d∑

i=kd0+1

λi,

≤
k∑

ℓ=1

λ(ℓ−1)d0+1e
2
nℓ

(
N
(
0; Id0

))
+

d∑

i=kd0+1

λi.

The definition of C(d0) completes the proof. �

This optimal integer bit allocation has a formal almost optimal solution given by

nℓ = ⌊xℓ⌋ with xℓ =
(
λ
(d0)
ℓ

) d0
2




k∏

j=1

λ
(d0)
j




−
d0
2k

n
1
k , ℓ = 1, . . . , k,

as suggested by considering the problem on (R+)
k instead of (N∗)k. This solution is admissible as

soon as all the nℓs are nonzero or equivalently since they are non-increasing in ℓ as soon as nk ≥ 1.
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Lemma 3.2 (Critical dimension for block quantization). Let d, d0 and k be like in Lemma 3.1.

A(n, d0) =




k ≥ 1 :

(
λ
(d0)
k

) d0
2




k∏

j=1

λ
(d0)
j




−
d0
2k

n
1
k ≥ 1




.

(a) A(n, d0) = {1, . . . , kn(d0)}.
(b) Assume (R) Then kn(d0) ∼ 2

bd0
log n.

(c) For every integer k≤ min
(
kn(d0),

d
d0

)
,

e2n(X
(d)) ≤ 4

1
d0C(d0)kλ

(d0)
k +

d∑

i=kd0+1

λi.

Proof. (a) This follows from the fact that the sequence

ak = a
(d0)
k :=

d0
2

(
k∑

ℓ=1

log λ
(d0)
ℓ − k log λ

(d0)
k

)
(3.4)

is non-decreasing since A(n, d0) = {k : ak ≤ log n}.
(b) First note that λ

(d0)
j = ϕ((j − 1)d0 + 1) and that ϕ((. − 1)d0 + 1) is regularly varying still with

index b if ϕ is. As a consequence standard arguments on regularly varying functions show that

2ak
d0

∼ bk or equivalently ak ∼
bd0k

2
as k → ∞

which in turn implies that kn(d0) ∼ 2
bd0

log n as n→ ∞.

(c) It is straightforward that

k∑

ℓ=1

λ(d0)n
− 2

d0
ℓ ≤ 2

2
d0

k∑

ℓ=1

λ
(d0)
ℓ (nℓ + 1)

− 2
d0

≤ 4
1
d0

k∑

ℓ=1

λ
(d0)
ℓ x

− 2
d0

ℓ

≤ 4
1
d0 kλ

(d0)
k x

− 2
d0

k

≤ 4
1
d0 kλ

(d0)
k

since λ
(d0)
ℓ x

− 2
d0

ℓ =




k∏

j=1

λ
(d0)
j




−
d0
2k

n
1
k does not depend on ℓ and xk ≥ 1. �

Proof of Proposition 3.1. (a) First assume that lim
n

δn
log n

=
2

b
. Let d0 ∈ N

∗ be a (temporarily)

fixed integer. Set kn = kn(d0)∧
⌊
δn
d0

⌋
for n large enough to have δn ≥ d0. It follows from Lemma 3.2(b)

8



that kn ∼ 2

b

log n

d0
and kn ≤ kn(d0) and kn ≤ δn

d0
so that by Lemma 3.2(c) we get as soon as n ≥ nd0 ,

e2n(X
(δn)) ≤ 4

1
d0C(d0)knλ

(d0)
kn

+

δn∑

i=knd0+1

λi

≤ 4
1
d0C(d0)knλ

(d0)
kn

+ (δn − d0kn)λ
(d0)
kn+1. (3.5)

Now, mimicking arguments in [10] involving regularly varying functions, namely ϕ, we get

d0knλ
(d0)
kn

= d0knϕ(knd0 + 1) ∼ 2

b
log n

(
2

b

)−b

ϕ(log n) =

(
2

b

)1−b 1

ψ(log n)
as n→ ∞.

Moreover

(δn − d0kn)λ
(d0)
kn+1 =

( δn
knd0

− 1
)
knd0λ

(d0)
kn+1 = o

( 1

ψ(log n)

)

since δn ∼ knd0 ∼ 2
b
log n.

Consequently, by letting d0 go to infinity, we get

lim sup
n

ψ(log n)e2n(X
(δn)) ≤

(
2

b

)1−b

lim sup
d0

C(d0)

d0
.

One concludes by using (see [10]) that owing to the converse Shannon theorem

lim
d

C(d)

d
= 1.

On the other hand

∑

i≥knd0+1

λ
(d0)
i ∼ knd0ϕ(knd0)

b− 1
∼ 1

(b− 1)ψ
(
2
b
log n

) ∼
(
2

b

)1−b 1

(b− 1)ψ
(
log n

) .

which yields the announced result by sub-additivity of lim supn.

If lim inf
n

δn
log n

≥ 2

b
, then set δ′n = δn ∧

⌊
2 logn
b

⌋
, n ≥ 1. Then lim

n

δ′n
log n

=
2

b
whereas by Lemma 3.1

e2n(X, δn) ≤ e2n(X, δ
′
n) which implies

lim sup
n

ψ(log n)e2n(X, δn) ≤ lim sup
n

ψ(log n)e2n(X, δ
′
n) ≤

(
2

b

)1−b b

b− 1
.

(b) Assume first that limn
δn

logn = κ∈ (0,+∞). Owing to Lemma 3.1, we can assume as above that kn

defined like in (a) satisfies kn ∼ κ′ log n where κ′ = κ ∧
(

2
d0

)
. First we derive that

∑

i≥δn+1

λ
(d0)
i ∼ 1

ψ(δn)
∼ 1

ψ(κ log n)
∼ 1

ψ(log n)

since ψ has slow variation defined in Theorem 2.1 satisfying xϕ(x) = o(1/ψ(x)) (see [2], Proposition
1.5.9 b). On the other hand,

d0knλ
(d0)
kn

= d0knϕ(d0kn + 1) = o
( 1

ψ(d0kn + 1)

)
= o
( 1

ψ(log n)

)

9



since ψ is slowly varying, and

δn∑

i=d0kn+1

λi ≤
( δn
d0kn

− 1
)
d0knλ

(d0)
kn

= o
( 1

ψ(log n)

)

since δn
d0kn

− 1 has a finite limit κ
d0κ′

− 1. As a consequence

lim sup
n

ψ(log n)e2n(X, δn) ≤ 1.

The extension to the general case lim infn
δn

logn = κ∈ (0,+∞) is straightforward up to the extraction
of a subsequence. �

Remark. Note that when b = 1, we do not need to let d0 go to infinity. Since this rate is optimal
(in view of Theorem 2.1) i.e., this means in particular that scalar product quantization (i.e. block
quantization with blocks of size d0 = 1) is asymptotically optimal.

4 Lower bound

We will rely on the famous notion in Information Theory, the Shannon ε-entropy (or rate-distortion
function) of P (see [13]). Let P be a probability measure on H. For ε > 0, it is defined by

RP (ε) = inf
{
H(Q|P ⊗Q2) : Q probability measure on H ×H

with first marginal Q1 = P and

∫

H×H

‖x− y‖2dQ(x, y) ≤ ε2
}
,

where H(Q|P ⊗Q2) classically denotes the relative entropy (mutual information)

H(Q|P ⊗Q2) =





∫

H

log
( dQ

dP ⊗Q2

)
dQ if Q is absolutely continuous with respect to P ⊗Q2

+∞ otherwise.

The simple converse part of the source coding theorem (see [1] Theorem 3.2.2; [5], p.163) says that
the minimal number N(ε) of codewords needed in a codebook α such that Emina∈α ‖X − a‖2 ≤ ε2

satisfies logN(ε) ≥ R(ε) so that, in particular

R(en(X)) ≤ log n.

We rely here on the closed form for Shannon’s entropy of Gaussian vectors known as Kolmogorov-

Ihara’s formula (see [8, 6]) that we will apply to P = L(X(d)) and H =
d⊕

k=1

ReXk (or equivalently to

the d-dimensional normal distribution P = N
(
0;Diag(λ1, . . . , λd)

)
on the canonical space H = R

d).

Of course, the eigenvalues are still supposed to be ordered in a non-increasing way.

Theorem 4.1 (Kolmogorov-Ihara, see [8, 6]). Let d ≥ 1 and let P = N
(
0;Diag(λ1, . . . , λd)

)
where

λ1 ≥ · · · ≥ λd. For every ε > 0 such that ε2∈ (0, λ1 + · · ·+ λd),

R(ε) =
1

2

r(ε)∑

k=1

log
( λk
θ(ε)

)
= log



r(ε)∏

k=1

λk
θ(ε)




1
2

10



where r(ε) = max{k ∈ {1, . . . , d} : λ̄dk > ε2}, with λ̄dk = kλk + λk+1 + · · · + λd, k = 1, . . . , d and
λ̄dk = 0, k ≥ d+ 1, and θ(ε) is the unique solution to the equation

ε2 = r(ε)θ(ε) +
d∑

k=r(ε)+1

λk.

Note that the definition of r(ε) is consistent since (λ̄dk)1≤k≤d is non-increasing; furthermore by
construction θ(ε)∈ [λr(ε)+1, λr(ε)).

By the definition of optimal quantization at level n, we have, as recalled above (see also [10]),

∀n ≥ 1, R
(
en(X

(d))
)
≤ log n.

Lemma 4.1. Let d, n∈ N
∗. Then e2n(X

(d)) ≥ min


n− 2

d d

(
d∏

k=1

λk

) 1
d

, dλd


.

Proof. If e2n(X
(d)) =: ε2 < λ̄dd, then r(ε) = d and θ(ε) = ε2

d
so that

R(ε) = log

(
d∏

k=1

λk

) 1
2

− d

2
log
(ε2
d

)
≤ log n

iff

e2n(X
(d)) = ε2 ≥ n−

2
d d

(
d∏

k=1

λk

) 1
d

.

Proposition 4.1 (Lower bound). Assume (R). Let δn be a sequence of dimensions going to infinity.

(a) If b > 1 and κ = lim sup
n

δn
log n

∈ [0,+∞] then, with standard conventions,

lim inf
n

ψ(log n)e2n(X, δn) ≥ κ1−b
(

1

b− 1
+ e−2( 1

κ
− b

2
)+

)
.

Furthermore, if lim sup
n

ψ(log n)e2n(X, δn) = lim sup
n

ψ(log n)e2n(X), then

lim inf
n

δn
log n

≥ 2

b
.

(b) If b = 1, then

lim inf
n

ψ(log n)e2n(X) ≥ lim inf
n

ψ(log n)

ψ(δn)
.

Furthermore, if if lim sup
n

ψ(log n)e2n(X, δn) = lim sup
n

ψ(log n)e2n(X), then

lim inf
n

ψ(δn)

ψ(log n)
≥ 1.

11



Proof. (a) Having in mind that ψ(x) = 1/(xϕ(x)), it follows from Lemma 4.1 that

ψ(log n)e2n(X
(δn)) ≥ ψ(log n)min


n−

2
δn δn

(
δn∏

k=1

λk

) 1
δn

,
1

ψ(δn)




=
ψ(log n)

ψ(δn)
min

(
e−2 log n

δn

1

ϕ(δn)
e

1
δn

∑
1≤k≤δn

logϕ(k), 1

)
.

The function ϕ being regularly varying with index −b, b > 1, one checks (see [2])

1

m

m∑

k=1

logϕ(k) = b+ logϕ(m) + o(1) as m→ ∞

so that,

ψ(log n)e2n(X
(δn)) ≥ ψ(log n)

ψ(δn)
min

(
e−2 log n

δn
+b+o(1), 1

)

which in turn implies that

ψ(log n)e2n(X, δn) ≥
ψ(log n)

ψ(δn)

(
min

(
e−2 log n

δn
+b+o(1), 1

)
+

1 + o(1)

b− 1

)
.

At this stage we introduce the function gb defined on [0,+∞] (with the usual conventions) by

gb(u) :=

(
min

(
e−2( 1

u
− b

2
), 1
)
+

1

b− 1

)
u1−b = u1−b

(
1

b− 1
+ e−2( 1

u
− b

2
)+

)
.

The function gb is decreasing on [0,+∞] with

gb

(2
b

)
=
( b
2

)b−1 b

b− 1
.

Let (n′) be a subsequence such that
δ
n′

logn′ → u∈ [0,+∞]. Using that ψ is regularly varying with index
b− 1 we derive that

lim inf
n

ψ(log n′)e2n(X, δn′) ≥ gb(u)

so that finally

lim inf
n

ψ(log n)e2n(X, δn) ≥ sup
u≤κ

gb(u) = gb(κ) where κ = lim sup
n

δn
log n

.

Assume now that lim sup
n

ψ(log n)e2n(X, δn) = lim sup
n

ψ(log n)e2n(X). Let c =: lim inf
n

δn
log n

∈

[0,+∞] and let (δn′)n≥1 be a subsequence such that
δ
n′

logn′ → c. Let (δ̃n)n≥1 be a sequence going

to infinity and satisfying δ̃n′ = δn′ and lim sup
n

δ̃n
log n

= c. Then one gets

lim sup
n

ψ(log n)e2n(X, δn) ≥ lim inf
n

ψ(log n′)e2n′(X, δn′) ≥ lim inf
n

ψ(log n)e2n(X, δ̃n) ≥ gb(c).

If c = 0, gb(0) = +∞ and we would have that ψ(log n)e2n(X, δn) → +∞ which is in contradiction with
claim (a) in Proposition 3.1.
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If c ∈ (0,+∞], the upper bound obtained in Proposition 3.1 implies gb(c) ≤ gb

(
2
b

)
which in turn

implies c ≥ 2
b
.

(b) Using again standard results from [2] about regularly varying functions with index −1, we get

∑

i≥δn+1

λi ∼
1

ψ(δn)
still with ψ(x) =

1∫ +∞

x
ϕ(y)dy

.

Hence

ψ(log n)e2n(X, δn) ≥ ψ(log n)
∑

i=δn+1

λi ∼
ψ(log n)

ψ(δn)
.

Using the same trick (based on the sequence (δ̃n)n≥1) as in the former case, we derive similarly

that, if lim sup
n

ψ(log n)e2n(X, δn) = lim sup
n

ψ(log n)e2n(X), then lim supn
ψ(log n)
ψ(δn)

≤ 1 i.e. the announced

result. �

5 Synthesis

5.1 Proof of Theorem 2.1

First we provide a proof of Theorem 2.1 based on the upper and lower bounds established in former
sections and the following lemma (already established in [10] but reproduced here for the reader’s
convenience). Furthermore it has to be noticed that it provides an easily tractable (and asymptoti-
cally optimal) lower bound for the quadratic quantization error, keeping in mind that the sequence
(kn(1))n≥1 is defined in Lemma 3.2.

Lemma 5.1. For every n∈ N
∗,

e2n(X) ≥ kn(1)λkn(1)+1 +
∑

k≥kn(1)+1

λk

Proof. It follows from Kolmogorov-Ihara’s formula that for every ε2∈ (0, λ1 + · · ·+ λd), R(ε) > a
(1)
r(ε)

since θ(ε) < λr(ε) (see Equation (3.4) for a definition of a
(1)
k ). As a consequence, a

(1)

r(en(X(d)))
≤ log n.

Consequently, it follows from Lemma 3.2(a) that r(en(X
(d))) ≤ kn(1) which in turn implies that, for

every d∈ N
∗, λ̄d

kn(1)+1 ≤ e2n(X
(d)). Noting that e2n(X) ≥ e2n(X

(d)) and letting d go to infinity, we get,
for every n∈ N

∗,

e2n(X) ≥ (kn(1) + 1)λkn(1)+1 +
∑

k≥kn(1)+2

λk. �

Proof of Theorem 2.1 Case b > 1. We know from Proposition 3.1 that lim supn ψ(log n)e
2
n(X) ≤(

b
2

)b−1
b
b−1 .

On the other hand, combining the fact that kn(1) ∼ 2
b
log n and arguments based on regularly

varying functions already used in Proposition 3.1 yield that

kn(1)λkn(1)+1 ∼
1

ψ(kn(1))
∼
( b
2

)b−1 1

ψ(log n)
and

∑

k≥kn(1)+1

λk ∼
1

(b− 1)ψ(kn(1))
∼
( b
2

)b−1 1

(b− 1)ψ(log n)
.

so that lim inf
n

ψ(log n)e2n(X) ≥
( b
2

)b−1 b

b− 1
which completes the proof.

Case b = 1. One concludes likewise since kn(1)λkn(1)+1 ∼ 1
ψ(log n) and

∑
k≥kn(1)+1 λk = o(1/ψ(log n)). �
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5.2 Proof of Theorem 2.2

Proof of Theorem 2.2. (a) When b > 1, the direct claim on admissibility is a consequence of
Proposition 4.1 The converse claim follows from Proposition 3.1(a) and Theorem 2.1.

As for strong admissibility, the direct claim is as follows: from the definition of strong admissibility,
we get en(X, δn)

2 ∼ en(X)2 (by admissibility) and

en(X, δn)
2 ∼ 1

ψ(δn)
+

1

b− 1

1

ψ(δn)
=

b

b− 1

1

ψ(δn)

so that
b

b− 1

1

ψ(δn)
∼ en(X)2. Then comparing with the sharp rate from Theorem ??, we get

1

ψ(δn)
∼
(
b

2

)b−1 1

ψ(log n)

which finally implies, having in mind that ψ is regularly varying with index b− 1, that

δn ∼ b

2
log n.

The converse claim is a consequence of Proposition 3.1(a) and Theorem 2.1. Claim (b) follows the
same lines and details are left to the reader. �

⊲ Back to the conjecture(s) (b > 1). As concerns the conjecture lim
n

dn
log n

=
2

b
on the sharp

asymptotics of the critical dimension dn, strictly speaking, we only made half the way by proving that

lim inf
n

dn
log n

≥ 2

b
.

However the strong admissibility result in Theorem 2.2(a) can be seen as an answer in the asymp-

totic sense since it shows that if lim
n

δn
log n

=
2

b
, then the resulting quadratic quantization error is

asymptotically optimal and (asymptotically almost) all dimensions are used (strong admissibility).

This result is helpful from a numerical point of view since it shows, e.g. for the Brownian motion
(for which b = 2, see below), that considering a truncation at δn = ⌊log n⌋ or δn = ⌈log n⌉ is at least
asymptotically optimal whatever the future of the sharper conjecture

dn∈ {⌊log n⌋, ⌈log n⌉}.

could be. Of course, such a choice is also asymptotically optimal for all processes whose K-L eigen-
system has an varying index equal to 2 like the Brownian bridge, Ornstein-Uhlenbeck process, etc.

For other examples of families of processes satisfying Assumptions (R) (including multi-parameters
processes like the Brownian sheet, we refer to [10]).

⊲ Numerical experiments on the Brownian motion.
We know that the K-L eigensystem of the standard Brownian motion W = (Wt)t∈[0,T ] over [0, T ]

is given by

λWk =
( T

π(k − 1
2)

)2
, eWn (t) :=

√
2

T
sin
( t√

λk

)
, k ≥ 1.
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so that b = 2. Then, Theorem 2.1 yields

lim
n

log(n)e2n(W ) =
2T 2

π2
≈ 0.2026 × T 2

Figure 1 depicts the graph of the n 7→ log(n)e2n(W ) (with T = 1) . One can see that it looks as a
piecewise affine function with breaks in the slope. Note that the exponential function ex satisfies

e3 ≈ 20.09 ≈ 20 e4 ≈ 54.59 ≈ 55 e5 ≈ 148.41 ≈ 148.

These values graphically fit with the monotony slope breaks.

0 50 100 150 200 250 300 350 400 450
0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

Figure 1: n 7→ log(n)e2n(W ); green: d = 2 ; red: d = 3 ; cyan : d = 4 ; magenta : d = 5.

The graph in Figure 1 suggests, at this (low) range of the computation, that the limiting value for
n 7→ log(n)e2n(W ) is higher (≈ 0.22) than the theoretical one (≈ 0.2026). This impression is misleading
since further computations not reproduced here show that the sequence n 7→ log(n)e2n(W ) starts to be
slowly decreasing beyond n ≥ 1000. The value 0.22 seems to be a local maximum. For further details
on these (highly time consuming) computations we refer to [11].

The quantization grids computed at the occasion of these numerical experiments by stochastic
optimization methods (randomized Lloyd’s procedure, Competitive Learning Vector Quantization al-
gorithm) for N = 1 up to 104 for the standard Brownian motion (when T = 1) can be downloaded
from the website

www.quantize.maths-fi.com
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