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Model Selection in Block Clustering
by the Integrated Classification
Likelihood

Aurore Lomet, Gérard Govaert and Yves Grandvalet, Université de Technologie de Compiégne
— CNRS UMR 7253 Heudiasyc, {aurore.lomet,gerard.govaert,yves.grandvalet}@utc.fr

Abstract. Block clustering (or co-clustering) aims at simultaneously partitioning the rows
and columns of a data table to reveal homogeneous block structures. This structure can stem
from the latent block model which provides a probabilistic modeling of data tables whose block
pattern is defined from the row and column classes. For continuous data, each table entry is
typically assumed to follow a Gaussian distribution. For a given data table, several candidate
models are usually examined: they may differ in the numbers of clusters or in the number of
free parameters. Model selection then becomes a critical issue, for which the tools that have
been derived for model-based one-way clustering need to be adapted. In one-way clustering,
most selection criteria are based on asymptotical considerations that are difficult to render
in block clustering due to dual nature of rows and columns. We circumvent this problem by
developing a non-asymptotic criterion based on the Integrated Classification Likelihood. This
criterion can be computed in closed form once a proper prior distribution has been defined on
the parameters. The experimental results show steady performances for medium to large data
tables with well-separated and moderately-separated clusters.

Keywords. Block clustering, integrated classification likelihood, model selection, Gaussian
data.

1 Introduction

These last years have seen an increased interest in research and use of co-clustering of data
tables, in domains of machine learning, statistics, data mining [1] or genomics [7]. We consider
block clustering, whose objective is to organize a data table in homogeneous blocks (clusters).
Latent block models [6] enable to define a series of solutions to the block clustering problem,
which may differ in their numbers of clusters or in the number of free parameters. Then, model
selection [4], becomes a “critical point” to obtain a meaningful classification.



2 Model Selection in Block Clustering by the Integrated Classification Likelihood

Different model selection techniques have been adapted to block clustering. The first ap-
proach combines one-way clustering criteria (like Silhouette index) applied to the row and column
clusters, thus ignoring the specific nature of the co-clustering problem [3, 11]. For the latent
block model, an extension of AIC-3 has been devised to select the number of clusters, but it still
lacks a clear probabilistic interpretation [12]. Indeed, for AIC-3 and other asymptotic criteria,
the asymptotic regime needs to be clearly defined which is tricky for the latent block model: a
data table is a single element of the set of tables, which can be characterized by its number of
row vectors, its number of column vectors, or its number of entries. In the Bayesian setup, a
fitting algorithm incorporating the selection of the number of clusters has also been proposed
[13]. This computer intensive algorithm relies on Markov chain Monte Carlo to estimate the
model with maximum posterior probability (for a given prior distribution on the number of row
and column clusters).

We propose, in this paper, another model selection procedure, based on the Integrated
Classification Likelihood (ICL) [2]. Our proposal, derived for the latent block model, takes
into account the co-clustering structure, is well-motivated from the probabilistic viewpoint, and
requires marginal post hoc computations. It does not rely on asymptotic derivations, which is a
particularly welcomed property in the block clustering context where asymptotic are not clearly
defined.

In this paper, the different notions involved in the development of ICL are first introduced
by detailing the Gaussian latent block model and its classification likelihood. Then, our main
contribution is presented, that is, the adaptation of the so-called “exact ICL criterion” to the
latent block model. The last section compares the performances of this criterion to AIC-3 on a
series of numerical experiments.

2 Notations

Throughout this paper, we will use boldface lowercase for vectors, boldface uppercase for ma-
trices, calligraphic uppercases for sets, and medium uppercase for random variables, whatever
their type. The n x d data table to be processed is noted X = (x],...,x)T, with (x;); = =4,
and x;; € X will be here a real variable. We will systematically use ¢ as a row index and j as a
column index and, when not detailed in sums or products, ¢ goes from 1 to n and j goes from 1
to d. Column j of X will be noted x7, so that X = (x!,...,x™). The row labeling in g groups,
which is noted z = (21, ..., 2,,), takes its values in Z = {1,...,¢}". Similar notations are given
for the column labeling in m groups, with w € W = {1,...,m}%. Row and column clusters will
respectively be indexed by k and £. Probability distributions, on either discrete or continuous
variables are noted p(-).

3 Latent Block Model

Derivation of the Model

The latent-block model [6] is a probabilistic model enabling to classify a data table in homoge-
neous blocks. The rows and columns of the data table are clustered to reveal similarities and
differences between groups of entries. This model generalizes mixture models, its density being
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a mixture of block components pertaining to the latent row and column classes:

pX) = Y plzw)p(X[z,w) .
(z,w)EZXW
The latent block model is then derived from the two following assumptions:

Assumption 1.
Conditionally on the row and column labels, all table entries are independent, and all the entries
belonging to the same block are identically distributed:

p(Xlz, w, a) = Hp(xij|azi:wj) )
iJ

where a is a shorthand notation for all o, ., parameters that characterize the distribution of
xij gwen (z;,w;). For Gaussian data, oy is the mean pge and the variance a,%g of block (k,?).

Assumption 2.
All latent variables are independent. The row labels are independent from the column labels:

p(z,w) =p(z) p(w) .

The row labels are independent and identically distributed, and correspondingly, the column labels
are independent and identically distributed:

pei) = [LoCalm) |
p(wlp) = []p(wle) ,
j

where ™ = (my,...mg) 4s the prior probability of row labels and p = (p1,...,pm) is the prior
probability of column labels.

Under these assumptions, the probability distribution of the model is:

p(X|0) = > plzlw) p(wlp) p(X|z, w,a) ,
(z,w)EZXW

= Z Hﬂ-zipw]'p(xiﬂazi,wj) )

(z,w)EZXW 1i,j

where 8 = (m, p, a,n,d) is a shorthand notation for all parameters.

Model Types

A family of models can be defined by considering several numbers of classes in rows and columns.
We additionally consider the options where the class priors (7, p) are free or equal and where
the variance parameters o2 are free or equal for all clusters . Thus, four models are defined for
fixed numbers of clusters by combining these two options.

Q@ COMPSTAT 2012
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Complete Data

The latent block model considers that the distribution of the observed data table X depends
on the unobserved latent class variables (z,w). The complete data refers thus to the triplet
(X,z,w), and the complete data log-likelihood for the latent block model that assumes that
(X, z,w) is observed is then:

L.(X,z,w|0) = Zziklogwk—i—Zwﬂlogpg
ik .

+ > zgwjelog plwigl o)
i,5,k,0
where, slightly abusing notations, the double subscript class indicators z;, and wj, are such that
zi. = 1 if z; = k and z;, = 0 otherwise.

The complete data likelihood plays a central role in a variational expectation-maximization
(VEM) algorithm [9] which is used to the estimate model parameters. As the regular EM algo-
rithm, VEM maximizes the log-likelihood iteratively by maximizing the conditional expectation
of the complete data log-likelihood given a current estimate of @ and the observed X. This
maximization relies on the computation of p(z, w|X, 8) at the E-step. Without further assump-
tions, this computation is intractable for the latent block model, requiring n9 x d” operations.
This problem is circumvented thanks to a variational approximation assuming the conditional
independence of z and w: p(z, w|X) = p(z|X)p(w|X). Both terms of the factorized distribution
are easily dealt with, requiring respectively n x g and d x m operations. The M-step then pro-
ceeds as for the regular EM algorithm. At convergence, this algorithm returns an approximate
log-likelihood L, its maximizer 9, and the estimation of the corresponding most probable row
and column labeling (2, w). An approximate classification likelihood L.(X,%, w|0) can also be
computed.

4 ICL for the Gaussian Latent Block Model

The objective of model selection is to choose the “best model”. In the Bayesian framework,
the best model may be defined as the most probable one given the observed data and a prior
distribution over models. When this prior is flat on the finite set of models under consideration,
the best model maximizes the integrated likelihood:

p(X|M) = [r p(X|8, M) p(6]M)d6 |

where T is the parameter space and p(@|M) is the prior distribution over parameter 8 for
model M. This integrated likelihood is commonly approximated by the Bayesian information
criterion (BIC). Nevertheless, this approximation is not valid for block clustering due to the
inter-dependence between rows and columns and the violation of the necessary regularity con-
ditions [2].

The integrated classification likelihood (ICL) [2] is constructed on the complete data to
overcome the problems pertaining to regularity; it then relies on the ability of clustering models
to provide evidence with regards to the unobserved data:

(X, 2, w|M) = / p(X, 2, w|0, M) p(6]M)d6 :
T
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for the latent block model described in Section 3, it also solves the issues raised by the depen-
dencies among table entries.

For convenience, the ICL criterion evaluates the logarithm of the integrated classification
likelihood:

ICL(M) = logp(X,z,w|M)
= logp(X|z, w, M) + logp(z|M) + log p(w|M) , (1)

where the decomposition follows from Assumption 2, supposing the independence of priors
p(0) = p(a) p(m) p(p).

Then, ICL(M) can be expanded in several forms according to the model type, as listed in
Section 3. For the first term, assuming that the variances differ, we choose a Gaussian prior
distribution of parameters (1o, 03,/o) for the conditional mean of a block pge|oz, and a scaled
inverse x? prior distribution of parameters (v, 08) is then appropriate for the variance parameter
o2, The first term of (1) then becomes (see appendix):

agmury

nd
logp(X|z,w, M) = - log 7 + 5 log(ugao) gmlog F( 5 ) + 7 log Ko
vy + nidy 1
i Z { () D log(so + mady)
_1/0 + ngdy Konkdy

5 log (Voffo + (nide — 1)s7; + m(fw - M0)2>} ,(2)
where Ty = ﬁ Z” Zi] W55, si’g = ﬁ Z” zikwie(xij — Tre)?, i and dy are respectively
the mean, the unbiased sample variance, the number of rows and the number of columns of the
block (k, /).

When the variances are assumed to be equal, a Gaussian prior distribution of parameters
(po, 0% /Ko) may be postulated for i|o? and a scaled inverse x? prior distribution of parameters

(19, 03) for the variance parameter o2. The first term of (1) is then:

log p(X|z,w, M) = ——d log + 0 log(l/oao) logf(%) + % log o
—i—logF(VO —; nd) -3 Z {log(ko + nide) }
Kt
_ —; nd log (1/008 + (nd — gm)s> + ; m&m — u0)2> ,(3)
where s2% = m > we(nrde — 1)s%5 is the unbiased within-cluster sample variance.

When the proportions (7, p) are assumed to differ, a symmetric Dirichlet prior distribution
of parameters (dy, ..., dp) is postulated, and the last two terms of (1) respectively become:

logp(z| M) = logT(gdo) + »_logT(ns + 6o) — glogT'(%) — log T'(n + gdo) , (4)
k
logp(w|M) = logT'(mdy) + Z logT'(dg + 00) — mlogT'(d9) — log T'(d + mdy) . (5)

Q@ COMPSTAT 2012



Model Selection in Block Clustering by the Integrated Classification Likelihood

Parameters ICL(M) expansion
Variances | Proportions || logp(X|z,w, M) | logp(z|M) | logp(w|M)
o’ T p (3) (6) (7)
Thy Tk Pt (2) (4) (5)
o? Ths Pt (3) (4) (5)
o3 TP (2) (6) (7)

Table 1: Variants of the IC'L(M) expansion, for a single or multiple variance parameters, and
for free or fixed proportion parameters.

When the parameters (7, p) are fixed (and equal), p(z| M) and p(w|M ) are multinomial variables
(of parameter 1/g and 1/m respectively), and the last two terms of (1) respectively become:

logp(z|M) = nlogg , (6)
logp(w|M) = dlogm . (7)

As the latent variables z and w are unobserved, we replace them by their most probable
inferred values, z and w, as estimated by the VEM algorithm [9]. Thus, we obtain four variations
of ICL(M), whose lengthy expressions are summarized in Table 1.

5 Numerical Experiments

In this section, the performances of ICL are studied on simulated data, which were generated
from the latent block model defined in Section 3, so as to have a known ground truth to assess
model selection. We use block models with 3 row and 3 column clusters from two model types,
either with free or fixed proportions, and both with multiple variances parameters. These two
intermediate model types allow for under and over-estimation of the number of free parameters.
To avoid unbalanced errors between clusters, the row and column means are equidistant. We
consider three degrees of cluster overlap (5%, 12% and 20% of classification error according to
conditional Bayes risk) and four data sizes (50 x 50, 200 x 200, 500 x 500 and 1000 x 1000)
(see [8] for thorough details). For each setup, twenty data sets are simulated, and for each data
set, 64 candidate latent block models are estimated by the VEM algorithm: the numbers of row
and column clusters are varied from 1 to 4, and for each such number, the four model types are
considered. Note that these 64 models define the set of possible models over which a flat prior
will be assumed to compute the ICL criterion.

Our ICL criterion requires specifying the five hyperparameters (o, 1o, %0, Vo, 03). For the
Dirichlet distribution on the proportions parameters, we chose to use a non-informative prior
(6o = %) For the prior on block means, p is set to the overall mean of the data table entries.
The hyperparameter kg is set to y/nd/gm: its increase with the number of entries in each
cluster encodes a prior assumption on the difficulty of the problem, and the chosen rate reflects

our observations on the decrease error rates as table size increases. For the prior on the block
Voo
vo+2
overall variance. The hyperparameter v is set to 10~" in order to allow for large deviations from

this modal value. Therefore, ag is equal to 20s%* where s%* is the unbiased sample variance.
This type of empirical Bayes method is commonly used to set the value of some of the
hyperparameters, such as the ones related to the mean distribution [13]. They may even be

variances, the hyperparameters vy and 08 are defined such as the mode ( ) is equal to the
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Table Size 50 x 50 200 x 200 500 x 500 1000 x 1000
Bayes’ risk 5% 12% 20% | 5% 12% 20% | 5% 12% 20% | 5% 12% 20%
™ Cluster 0 0 0 0 0 0 0 0 0 0 0 0
g Model Type 8 8 15 19 20 20 20 20 20 20 20 20
= | Clusterand Type | 0 0 0 | 0 0 0 |0 0 0|0 0 0
3 Cluster 9 0 0 18 2 0 20 17 0 20 20 0
E Model Type 5) 5) 15 17 20 20 20 20 20 20 20 20
Cluster and Type | 2 0 0 16 2 0 20 17 0 20 20 0

Table 2: Number of correct selections over 20 trials for different table sizes and cluster overlaps.
The simulated model has multiple variances and free proportions.

employed in more elaborate construction of priors, such as in hierarchical models [10] . That
being said, the mathematical properties of this approach are little known and have been little
investigated in general and in co-clustering in particular. In this paper, we fix the values of the
hyperparameters as stated above and study their sensitivity to evaluate their effects on model
selection.

The ICL criterion is compared to the extension of Akaike Information Criterion 3 proposed
by [12]:

AIC3(M) = —2L(X|0,M)+3x (na+n(g—1)+dm—1)+g+m—2)

where L is the variational approximation of the likelihood, 0 is the set of parameters estimated
by VEM and 74 denotes the number of free parameters in . This criterion is adapted to the
four variants of the latent block model by adjusting 7, and dropping the last three terms when
proportions are fixed.

The competing criteria aim to retrieve the correct model, which was used for generating the
data table. This model is defined by two arguments: its number of row and column clusters and
the model type (with single or multiple variance parameters and free or fixed proportions). We
tested the ability to select the correct number of clusters knowing model type, the model type
knowing the correct number of clusters and to retrieve both model arguments.

Tables 2 and 3 report the number of successes among the 20 repetitions for each setup
(respectively for free and fixed proportions). For each criterion three types of selection are
studied: the correct number of clusters knowing the type of model, the correct type of model
knowing the number of clusters and the correct number of clusters and type of model. Overall,
I1CL performs better than AIC5, though AICj is usually slightly better at recovering the model
type for known number of clusters. The main weakness of AICj is its inability to retrieve the
correct number of clusters even in the most favorable cases (with well-separated clusters and
large data tables). This behavior contrasts with the performances of IC'L that improve when
table size increases and when the degree of overlap decreases, eventually selecting systematically
both model types and number of clusters in the most favorable cases tested here. When these
criteria fail to select the correct model, AIC3 and ICL underestimate the number of clusters,
while they pick a more complex model type (with free proportions for example).

An empirical study of the sensitivity of the hyperparameters highlights that wrong choices
may badly influence the results of the model selection realized by the ICL criterion, but that

Q@ COMPSTAT 2012



8 Model Selection in Block Clustering by the Integrated Classification Likelihood

Table Size 50 x 50 200 x 200 500 x 500 1000 x 1000
Bayes’ risk 5% 12% 20% | 5% 12% 20% | 5% 12% 20% | 5% 12% 20%
Cluster 0 0 0 0 0 0 0 0 0 0 0 0

AICs

Model Type 19 13 16 |16 13 13 | 20 20 17 | 20 20 19
Cluster and Type | 0 0 0 0 0 0 0 0 0 0 0 0
Cluster 13 1 0 16 13 2 20 20 14 20 20 19
Model Type 20 17 16 | 16 13 4 20 20 15 | 20 20 16
Cluster and Type | 12 0 0 16 9 1 20 20 0 20 20 1

I1CL

Table 3: Number of correct selections over 20 trials for different table sizes and cluster overlaps.
The simulated model has multiple variances and fixed proportions.

a wide range of values perform about equally well in this regard. Figure 1 shows the influence
of each hyperparameter on the number of correct selections (clusters and models). Each graph
represents this number versus one hyperparameter (in log-scale), while the other ones are fixed
as stated above. For the hyperparameter pg, different values were tested and revealed that the
mean of the whole data table is a well-advised choice. The other hyperparameters behave well,
with wide plateaus of nearly optimal values. Note that this univariate analysis only provide a
partial picture of sensitivity, as we observed a strong coupling between some of them, like 0'(2)
and vy which govern the distribution of the prior on the variance parameter(s) of the model.

6 Conclusion

The Latent Block Model is a probabilistic model that enables to organize a data table in homo-
geneous blocks. A critical point of the overall fitting procedure is to select a correct model, in
order to obtain a meaningful co-clustering.

We proposed a model selection strategy based on the adaptation of the exact integrated
classification likelihood criterion to the Gaussian latent block model. This non-asymptotic cri-
terion allows to avoid asymptotical problems due to dual nature of rows and columns in block
clustering. Moreover, ICL does not require costly additional calculations. Indeed, once the
clusters have been estimated, this criterion can be computed in closed form once a proper prior
distribution has been defined on the parameters.

The experiments on simulated data targeted two types of model selection, either related to
the number of row and column clusters, or to the model type, or both. Model type is defined
from parameter restraints, such as considering equal variances or proportions for all clusters.
Our results show that AIC3 is unable to select the correct number of clusters and that it is less
successful than ICL regarding model type. The latter perform well when the overlap between
clusters is small to moderate, and its performances improve with the size of the data table. The
study of the sensitivity of hyperparameters highlights that adjusting the values of some of them
allows to improve the performances of ICL.

Beyond the Gaussian latent block model, this approach can be used for other model types
such as the latent block model for binary or contingency data, by modifying appropriately the
prior of the conditional distribution on the data.

COMPSTAT 2012 Proceedings
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Figure 1: Number of correct selections (clusters and model) according to variations in hyper-
parameter values. Here, the data table size is 500 x 500, the latent block model has different
proportions and variances and the clusters are moderately-separated (Bayes’ error at 12% for
3 x 3 clusters).
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1 Appendix: Derivation of ICL

The first term of the expansion (1) is rewritten using the following decomposition:

p(X|z, w, o, M)p(c| M)

X M
Pz M) peXzw. i)

where p(a| M) and p(a|X,z, w, M) are respectively the prior and posterior distributions of a.
For the latent block model with different variances, given the row and column labels, the
entries x;; of each block are independent and identically distributed. We thus apply the standard
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results for Gaussian samples [5], where the distributions are defined by:

p(X|z, w,a, M) = H {N(@ij; e, o)}

i7j7k7£
O 2/ 2 2
p(a|M) :H{ ,Ukéa)u(]v ) X IIlV— (O'kg;l/o,O'O)} 3
k.t ko
Kopto + M dpTre o?

p(a|X, Z,w, M) = H {N(,UMQ

P, Ko + ngdy ’ Ko + ndy

x Tnv-x*(ajgs vo + ndy,

voog + (ngdy — 1)3ke + %(mw ,uo)z)
vy + ngdy

Using the definitions of these distributions, the first term of the expansion (1),
log p(X|z, w, M) = log p(X|z, w, &, M) + log p(e| M) — log p(et| X, z, w, M) ,

is identified, after some calculations, as (2).

For the latent block model with equal variances, the standard results need to be adapted to
account for the shared parameter 2. The prior distributions are now defined as follows:

p(X|Z,w,a,M) = H {N(xij;/lké,gz)}zikwﬂ ’
i,5.k,0
2
plalM) H{ sz,uo,o)} x Inv-x%(0%; vo, 08) .
k¢
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The posterior distribution is then computed from the Bayes formula
p(p,0?1X) o p(p,0®)p(X|p,0?)
v 1 1
< (o) W exp( gy x TT{ (0% oxp (—gpamaline — o)) |

202
k0

_nd 1
x(0%)7"2 exp ( ~ 552 > zinwje(wig — pre)? ) ,

i7j7k7€

(nd — gm)sZ + Z nidy(pine — Tre)®
k.l

(1003 + (nd — gm)s?;))

vg+nd

= (62 7 texp <_
(

202
1
202

1

(Ko(tke — p0)* + nide(pre — $k€)2>> }

= (0'2)*(‘V072Lnd*+1) exp (_ 1/00-8 + (nd — gm)ST%I*)

» H(Uz)_% exp [~ + npdy Koo + mudeTre\? (konade) (Ere — pi0)?
ko + nidy QJZ(HQ + nkdg)

_ H(Uz)—% exp [ -0 + nrdy _ Kopo + nideTrg ?
202 Hit Ko + npdy

voog + (nd — gm)syt + 3 o Aok (T — M0)2>

202
This probability can be factorized:
p(p, 0°|X) = p(plo?, X)p(a?|X)
Thus, the posterior distribution is defined (assuming the posterior independence of pix):

Kopo + NpdeTre o? > }
ko +nrde Ko + npdy

plalX.z,w.00) =T { (s

k.0

wog + (nd — gm)syr + 35, nZZjTEO (Zke — M0)2>

x Inv-y? <o2; vo + nd, T nd
vy +n

For the terms related to the proportions, when the proportions are free, we assume a sym-
metric Dirichlet prior distribution of parameters (do, ..., d9) for the row and column parameters
(7, p), so that:

n n )
M) = Loy ————1 _
p(zlM) /p”l "9 T (80)T(30) Sem=1dm
(

I'(gdo) I'(60 + m1)...I'(do + ng)
F(50)9 F(n + 950)

Details can be found in [2].
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