T. Bastogne, A. Samson, R. Keinj, P. Vallois, S. Wantz-mézières et al., Phenomenological modeling of tumor diameter growth based on a mixed effects model, Journal of Theoretical Biology, vol.262, issue.3, pp.544-552, 2010.
DOI : 10.1016/j.jtbi.2009.10.008

URL : https://hal.archives-ouvertes.fr/hal-00390380

J. Chapman, Target Theory Revisited: Why Physicists are Essential for Radiobiology Research, Clinical Oncology, vol.19, issue.3, p.12, 2007.
DOI : 10.1016/j.clon.2007.01.311

A. Dawson and T. Hillen, Derivation of the Tumour Control Probability (TCP) from a Cell Cycle Model, Computational and Mathematical Methods in Medicine, vol.7, issue.2-3, pp.121-141, 2006.
DOI : 10.1080/10273660600968937

D. Brener and E. Hall, The origins and basis of the linear-quadratic model, International Journal of Radiation Oncology*Biology*Physics, vol.23, issue.1
DOI : 10.1016/0360-3016(92)90574-2

R. Durrett, J. Foo, K. Leder, J. Mayberry, and F. Michor, Intratumor Heterogeneity in Evolutionary Models of Tumor Progression, Genetics, vol.188, issue.2, pp.461-477, 2011.
DOI : 10.1534/genetics.110.125724

J. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy, The British Journal of Radiology, vol.62, issue.740, pp.679-694, 1989.
DOI : 10.1259/0007-1285-62-740-679

H. Gay and A. Niemierko, A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy, Physica Medica, vol.23, issue.3-4, pp.115-125, 2007.
DOI : 10.1016/j.ejmp.2007.07.001

P. B. Gupta, C. M. Fillmore, G. Jiang, S. D. Shapira, K. Tao et al., Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells, Cell, vol.146, issue.4, pp.633-644, 2011.
DOI : 10.1016/j.cell.2011.07.026

J. Hoeijmakers, Genome maintenance mechanisms for preventing cancer, Nature, vol.411, issue.6835, pp.366-374, 2001.
DOI : 10.1038/35077232

P. Kallman, A. Agren, and . Brahme, Tumour and Normal Tissue Responses to Fractionated Non-uniform Dose Delivery, International Journal of Radiation Biology, vol.14, issue.2, pp.249-262, 1992.
DOI : 10.1080/09553009214552071

R. Keinj, P. Bastogne, and . Vallois, Multinomial model-based formulations of TCP and NTCP for radiotherapy treatment planning, Journal of Theoretical Biology, vol.279, issue.1, pp.55-62, 2011.
DOI : 10.1016/j.jtbi.2011.03.025

URL : https://hal.archives-ouvertes.fr/hal-00588935

N. Kirkby, N. G. Burnet, and D. Faraday, Mathematical modelling of the response of tumour cells to radiotherapy. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, pp.210-215, 2002.

J. Lyman, Complication probability as assessed from dose volume histograms, Radiat. Res, vol.104, pp.513-519, 1985.
DOI : 10.2307/3576626

S. Michelson and J. T. Leith, A survey of Models for Tumor-Immune System Dynamics, chapter Tumor Heterogeneity and Growth Control, Birkhäuser, pp.295-333, 1997.

E. Pollard, W. Guild, R. Hutchinson, and . Setlow, The direct action of ionizing radiation on enzymes and antigen, Progress in Biophysics, vol.5, pp.72-108, 1955.

R. Sachs, L. Hlatky, and P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or radiation treatment, Mathematical and Computer Modelling, vol.33, issue.12-13, pp.1297-1305, 2001.
DOI : 10.1016/S0895-7177(00)00316-2

C. Wyman and R. Kanaar, DNA Double-Strand Break Repair: All's Well that Ends Well, Annual Review of Genetics, vol.40, issue.1, pp.363-383, 2006.
DOI : 10.1146/annurev.genet.40.110405.090451

M. Zaider and G. Minerbo, Tumour control probability: a formulation applicable to any temporal protocol of dose delivery, Physics in Medicine and Biology, vol.45, issue.2, pp.279-293, 2000.
DOI : 10.1088/0031-9155/45/2/303