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Geography of Social Ontologies: Testing a Variant of the
Sapir-Whorf Hypothesis in the Context of Wikipedia

Alexander Mehlera, Olga Pustylnikova, Nils Diewalda

aText Technology, Faculty of Technology, Bielefeld University, Universitätsstraße 25,
D-33615 Bielefeld, Germany

Abstract

In this article, we test a variant of the Sapir-Whorf Hypothesis in the area of
complex network theory. This is done by analyzing social ontologies as a new
resource for automatic language classification. Our method is to solely explore
structural features of social ontologies in order to predict family resemblances
of languages used by the corresponding communities to build these ontologies.
This approach is based on a reformulation of the Sapir-Whorf Hypothesis in
terms of distributed cognition. Starting from a corpus of 160 Wikipedia-based
social ontologies, we test our variant of the Sapir-Whorf Hypothesis by several
experiments, and find out that we outperform the corresponding baselines. All
in all, the article develops an approach to classify linguistic networks of tens
of thousands of vertices by exploring a small range of mathematically well-
established topological indices.

Key words: Sapir-Whorf Hypothesis, linguistic networks, automatic language
classification, social ontologies, quantitative network analysis

1. Introduction

This article presents an approach to automatic language classification based
on complex network theory [1–3]. It explores the topologies of social ontologies
as part of Wikipedia to get a new data source of genealogical classification.
In so doing, the article tests a variant of the Sapir-Whorf Hypothesis (SWH)
by means of a network-theoretical approach. It tackles the question, whether
structural similarities of social ontologies correspond to family resemblances of
the underlying languages.

Generally speaking, the SWH states that language structure imprints on
cognitive structure [4, 5]. If this principle of linguistic relativity is true, then
the usage of similar languages should result in similar conceptual structures.
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Therefore, conversely, conceptual structures should be indicative of family re-
semblances of the languages in which they are manifested. According to our
network-theoretical approach, we additionally hypothesize that these resem-
blances can be deduced from topological similarities of conceptual structures.

To test the SWH, we explore conceptual structures in terms of social on-
tologies as a sort of linguistic network in which vertices denote terminological
units while edges stand for terminological relations of subordination [6]. This
approach is indispensable as social ontologies are to date the only access point
to large scale conceptual structures in numerous languages of various families.1
As these systems are based on terminological relations of subordination accord-
ing to the wiki principle [7], we speak of social ontologies as instances of social
tagging [8], which extend the range of terminological ontologies [6].

Note that we do not use the notion of a social ontology in terms of philoso-
phy [9], nor in the sense that a social ontology is an ontology of social entities.
In contrast to this, the attribute ‘social’ relates to the wiki principle by which
the ontologies under consideration are generated. That is, social ontologies as
manifested by the category systems of Wikipedia are non-automatically, manu-
ally generated by their users according to guidelines2 which may vary between
different languages.

Generally speaking, a social ontology emerges as a solution to a coordination
problem among large groups of interacting agents [10]. This relates to the shar-
ing of a collaboratively-structured, dynamically-growing universe of semantic
units [11]. Social ontologies as exemplified by the category system of Wikipedia
[12] manifest the output of a kind of distributed cognition [13], which is dis-
tributed among agents who collaboratively generate and structure certain fields
of knowledge. By utilizing social ontologies as a resource of language classifica-
tion, we specify the general notion of cognition in the formulation of the SWH
as that of distributed cognition. As a consequence, we arrive at a variant of the
SWH, which states that language structure imprints on distributed cognition as
manifested by social ontologies so that their topologies are indicative of the cor-
responding language families. We present a series of experiments to test this
hypothesis.

The article is organized as follows: Section 2 brings our variant of the SWH
in line with research on this hypothesis. Related approaches to language classifi-
cation are discussed in Section 3. Further, Section 4 informs about the corpus of
social ontologies explored in this study. Our method to formalize these ontolo-
gies, to quantify their topology, and to automatically classify them is presented
in Section 5. Based on that, Section 6 tests our target hypotheses and discusses
our findings. Finally, Section 7 gives a conclusion.

1As of October 2009, there are Wikipedias for 271 languages, each of which includes a
category system that manifests conceptual structures shared by the underlying community of
wikilocutors (see http://meta.wikimedia.org/wiki/List_of_Wikipedias/sortable).

2See, for example, http://de.wikipedia.org/wiki/Wikipedia:Kategorien in relation to
http://en.wikipedia.org/wiki/Wikipedia:Categorization.
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2. Towards a Variant of the Sapir-Whorf Hypothesis

Few ideas have caused as much controversy and debate in linguistics as the
Sapir-Whorf Hypothesis. Basically, it states that language influences the way in
which we think about reality [4]. One reason for the controversy about this hy-
pothesis relates to its variant in terms of the principle of linguistic determinism,
which implies, for example, the impossibility of translations. Notwithstanding
this disputable variant, there is a less controversial version in terms of the princi-
ple of linguistic relativity. This version claims that language influences thought
by acting as a mediator between reality and its conceptual representation [14].
Despite this common understanding of language as a mediator, approaches to
the SWH are distinguished by their perspective on this role [14]:

∙ Structure-centered approaches start from an observed structural difference
between languages (e.g., on the level of single linguistic constructions).
They refer to this variation as the explanandum and try to explain it by
means of differences in the experience of reality and its conceptual repre-
sentation (the explanans). One problem with this approach is its uncritical
selection of particular languages as quasi-neutral reference points for com-
parison. Whorf’s classical comparison of the verbalization of time in Hopi
and English falls into this class of approaches. As a matter of fact, his
study is heavily disputed in linguistics [15, see 16 for a discussion].

∙ Domain-centered approaches focus on a selected domain of experience
(explanandum) (e.g., the range of colors [5, 17]) to ask how particular
languages structure this domain (explanans). Unlike structure-centered
approaches, the scope of investigation of the linguistic anticipation of the
domain is narrow. In any event, this approach makes it possible to pre-
cisely compare large numbers of languages [18]. However, comparisons
of this sort are biased by the small range of categories under considera-
tion (e.g., color terms [19]) and the selection of the domain-related terms
according to linguistic introspection [14].

∙ Finally, behavior-centered approaches try to explain behavioral differences
(explanandum) by linguistic differences (explanans). Obviously, these ap-
proaches reverse the perspective of their structure-centered counterparts.
An example is Whorf’s [4] observation of how different readings of the
word ‘empty’ caused accidental fires. In any event, this approach is bi-
ased by the difficulty of verifying the salience and strength of the relation
between linguistic features and the observed behavior [20–23].

The present study combines the domain-centered with the structure-centered
approach. On the one hand, our method can be regarded as domain-centered
since we refer to encyclopedic domains as the data source of language classifi-
cation. At the same time, we overcome the restriction of traditional domain-
centered approaches to small ranges of terms. The reason is that social on-
tologies cover, in principle, the complete range of encyclopedic knowledge and
its terminological manifestation. Additionally, we circumvent the problematic
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introspection of many domain-centered approaches as we access social ontolo-
gies directly without any subjective mediation. Consequently, we depart from
domain-centered approaches in two respects. The first is that we do not com-
pare the terms of different ontologies directly, nor do we directly compare the
referents of these terms in the corresponding domains. Rather, we follow a strict
network-theoretical approach as outlined in Section 1.

This approach is inspired by experiments that demonstrate the expressive-
ness of exclusively structural classifications of linguistic units [24]. Dimter [25],
for example, asked subjects to guess the type of texts (e.g., weather forecast,
obituary announcement etc.) in which all content words had been replaced by
random strings. Surprisingly, most test persons guessed these types correctly,
obviously by exploring the structure of the texts.3 In this article, we transfer
Dimter’s approach to the level of linguistic networks: we explore topologies of
networks in contrast to text structures in order to classify language families
instead of text types. In this sense, our approach is structure-centered in that
we ask, how wikilocutors organize encyclopedic domains depending on the lan-
guages that they use. Starting with social ontologies, we look at structural
differences of their topologies and ask whether wikilocutors of related languages
organize encyclopedic domains in a similar way.

Altogether, this combines to a domain-structure-centered approach since we
ask whether wikilocutors of related languages structure encyclopedic domains in
a similar way. As our variant of the SWH focuses on distributed cognition, our
approach cannot directly be compared with recent findings on neural correlates
of the SWH [19], which focus on the cognition of single agents. However, as
we enlarge the scope of the SWH, this may help to bridge these two areas of
cognitive science. Our approach directly relates to a variant of the SWH that
has been recently formulated by Nisbett [28].

2.1. Nisbett’s Hypothesis
In his book “Geography of Thought” [28], Richard E. Nisbett compares the

Western tradition based on the philosophy of Ancient Greek to the Eastern
tradition shaped by several other philosophies [28, pp. 12]. He argues that dif-
ferences in these cultural traditions – as manifested in language – have different
influences on the speakers’ behaviors. For example, Nisbett observes that Indo-
European languages all have expressions for abstract nouns, whereas Chinese
does not (e.g., there is no direct translation for ‘size’ in Chinese, nor does this
language have a suffix ‘-ness’ with which to build abstract nouns).

3In a pretest, we successfully automatized Dimter’s experiment by classifying more than
30,000 texts into 31 text classes [26, 27]. This has been done by accentuating the structure-
oriented stance of Dimter’s experiment. In our trials, we deleted any content words so that
the classifier had no information about the length of the words, nor about numbers and their
text position – actually, this information was retained in Dimter’s experiment. The only
information used by our algorithm was the logical document structure of input texts (in terms
of the hierarchical nesting of sections, captions, paragraphs and sentences) while it disregarded
all lexical information (except from the number of tokens). Based on this information, more
than 70% of the texts were classified correctly.
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Nisbett reports a wide range of psycholinguistic experiments in support of
his hypothesis. Recent results from other studies concerned with the East-West
comparison are referred to in [20, 21, 23, 29].4 The present study tests Nisbett’s
Hypothesis by means of exploring social ontologies. That is, different social
ontologies belonging to a particular cultural group – Western or Eastern – are
tested for similarities within the group and in contrast to each other.

In summary, we test two related hypotheses: a variant of the SWH and a
variant of the closely related hypothesis of Nisbett. Note that the latter variant
is a special case of our variant of the SWH as it focuses on the manifestation of
cultural differences in terms of the topologies of social ontologies.

3. Related Work to Language Classification

Generally speaking, language classification aims to categorize languages by
means of their genealogical descent. The basic idea is that languages inherit
structural features from a common root so that they can be ascribed to the
same family. By measuring different degrees of similarity between languages, a
language family tree can be reconstructed (often referred to as glossogeny [31]).

Early lexicostatistical approaches – closely connected to the name of Morris
Swadesh – were solely based on calculating differences between the lexical mate-
rial of pairs of languages [32]. The main units of these approaches are so-called
cognates. These are pairs of words taken from different languages that have
the same meaning, coincide in their phonetic/phonological form, and originate
from a common ancestor in a (hypothetical) parental language. The degree of
relatedness of two languages is then calculated by the number of shared cog-
nates which occur in a limited list of pairs of core words that are synonymous
in both languages. In the beginning, the decision of whether or not two words
were phonetically similar was made based on intuition [32, 33]. Subsequently,
algorithms were developed to formalize these judgments [e.g., 34, 35]. In many
cases, these algorithms used the character-based edit distance of words [36, 37],
sometimes enhanced by phonetic criteria [38, see 39 for a survey on phonetic
string matching].

According to Swadesh, the list of core word forms is the primary access
point to what he calls the fundamental vocabulary of a language, which sup-
posedly covers the part of the lexicon that is mostly independent from cultural
influences. Following an assumption made by Sapir, that “[the] greater the de-
grees of linguistic differentiation within a stock, the greater is the period of
time that must be assumed for the development of such differentiations” [40,
p.76], Swadesh [32] proposes that this vocabulary changes at a roughly constant
rate over time. This hypothesis is the starting point for the reconstruction of
language family trees complemented by information about the probable time
of language divergence (in the style of carbon-14 dating in archaeology). Even

4Of course, this differentiation in behavior does not imply any difference in cognitive abil-
ities [29, 30].
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though Swadesh’s universal glottochronological approach was quickly disputed
[41, 42], it led to a better understanding of language change and motivated fur-
ther studies on its variation rate. For example, [43] show a significant variation
based on the frequency of word use: the more frequently a word is used in a
language, the slower it evolves over time.

The existence of loanwords is another effect that takes part in lexicostatis-
tics and influences the variation of change rates. Besides their inheritance
from a common origin, languages can share cognates by borrowing in areal
neighborhood. While Swadesh reduces the borrowability of words to the non-
fundamental, cultural part of vocabularies (and sorts them out of his core lists),
[44] argue that the borrowability of a word (or a grammatical construction [45])
depends on its frequency of use similar to the variation of its change rate.5
Recent models additionally account for such geographical effects [47].

Despite the success of glossogenetic reconstructions by lexicostatistics, the
validity of inter-lexical comparison for language classification and family tree
reconstruction is controversial. This is not only due to the lack of additional
linguistic features (such as morphological or syntactical aspects), but also in
respect to a debated incomparability of phonetic forms throughout languages:
Cognates must be objectively transcribed into a common phonetic space and it
is highly questionable whether such a common space exists or not [see 48 for a
discussion].

Consequently, newer approaches concentrate on intra- rather than inter-
language comparisons. These approaches generate profiles of languages in order
to calculate their dissimilarity. They compare, for example, confusion proba-
bility matrices (as a kind of intra-language edit-distance matrix) [44], n-gram
profiles [49], or typological feature vectors [50]. Finally, approaches to network-
based language profiles calculate dissimilarities of languages by means of topo-
logical differences. This relates, for example, to explorations of phoneme net-
works [51] or so-called Global Syntactic Dependency Networks (GSDNs) [2, 52].

A central advantage of the network-theoretical approach as followed here is
that it disposes of direct comparisons of lexical units or typological features.
Rather, it opens the door to topological information as a novel resource for lan-
guage classification. Thus, with our approach to language classification based on
comparisons of the structures of ontologies, we aim to avoid known shortcomings
of lexicostatistics with a simple, yet comprehensive model.

4. A Corpus of Social Ontologies

In order to study our variant of the SWH and its descendant in the form of
Nisbett’s Hypothesis, we explore a corpus of social ontologies from Wikipedia,
which is henceforth called Social Ontology Corpus (SOC). Table 1 and 2 show

5However, recent investigations question a direct correlation between stability and bor-
rowability of words [46].
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Table 1: Wikimedia codes of 160 Wikipedias (underlined) whose social on-
tologies have been analyzed in this article. They have been selected be-
cause their largest weakly connected component contains at least 100 vertices (see
http://meta.wikimedia.org/wiki/List_of_Wikipedias/sortable).

aa ab af ak als am an ang ar arc as ast av ay az ba bar bat-smg bcl be be-x-old
bg bh bi bm bn bo bpy br bs bug bxr ca cbk-zam cdo ce ceb ch cho chr chy co cr crh
cs csb cu cv cy da de diq dsb dv dz ee el eml en eo es et eu ext fa ff fi fiu-vro
fj fo fr frp fur fy ga gan gd gl glk gn got gu gv ha hak haw he hi hif ho hr hsb
ht hu hy hz ia id ie ig ii ik ilo io is it iu ja jbo jv ka kaa kab kg ki kj kk kl
km kn ko kr ks ksh ku kv kw ky la lad lb lbe lg li lij lmo ln lo lt lv map-bms mdf
mg mh mi mk ml mn mo mr ms mt mus my myv mzn na nah nap nds nds-nl ne new ng nl nn
no nov nrm nv ny oc om or os pa pag pam pap pdc pi pih pl pms ps pt qu rm rmy rn
ro roa-rup roa-tara ru rw sa sah sc scn sco sd se sg sh si simple sk sl sm sn so
sq sr srn ss st stq su sv sw szl ta te tet tg th ti tk tl tn to tokipona tpi tr ts
tt tum tw ty udm ug uk ur uz ve vec vi vls vo wa war wo wuu xal xh yi yo za zea zh
zh-classical zh-min-nan zh-yue zu

the Eurasian-centered distribution of the releases of Wikipedia that have been
analyzed here. This corpus has been analyzed in two ways:

∙ The corpus of 160 social ontologies (see Table 1) of at least 100 vertices
in their largest weakly connected component has been analyzed in order
to study the separability of various topological indices (see Section 5.2).
This has been done to select those indices which best separate the different
ontologies only by virtue of their topology. The ontologies in this corpus
range from a minimum order of 103 vertices and a minimal size of 102 arcs
to a maximum order of 102,129 vertices and a maximum order of 205,391
arcs (see Table 3). These 160 ontologies have on average 8,348.9 vertices
(order) and 14,634 arcs (size).6 To the best of our knowledge, this is the
largest corpus of social ontologies that has been analyzed so far.7

∙ Based on this corpus, we have selected several subcorpora of Western
and Eastern languages in order to perform experiments in genealogical
language classification according to our variant of the SWH. With the ex-
ception of the English Wikipedia, the elements of these subcorpora have
been selected according to their size: for a given language family, ontolo-
gies were selected whose order is of at least 1,000 vertices. See Table 2 for
a complete listing of the experiments based on these subcorpora.

5. A Network Model of Ontology-Based Language Classification

Our variant of the SWH states that the structure of social ontologies is
indicative of family resemblances of the underlying languages. In this section,

6The data was downloaded in November and December, 2008.
7It can be downloaded from www.linguistic-networks.net (Resources/Corpora/Social

Software). Note that we have transformed all ontologies into GraphML [53] in order to secure
the text-technological sustainability of our social ontology corpus.

7



Page 8 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 2: The list of 46 social ontologies considered in 7 experiments E0–E6 (Section 6) on
language classification including the pilot study E0. The table reports the Wikimedia codes
of the ontologies together with the names of the corresponding languages, their mapping onto
language families as well as the order (#vertices) and size (#arcs) of the ontologies. Finally,
columns E0–E6 report which languages have been considered in which experiment.
code name family area order size E0 E1 E2 E3 E4 E5 E6

zh Chinese Sinitic Eastern 1 38,468 68,903 × × ×
zh-classical Classical Chinese Sinitic Eastern 1 1,115 1,123 × × ×
zh-yue Cantonese Sinitic Eastern 1 3,839 5,214 × × ×
ja Japanese Japonic Eastern 1 54,362 115,713 × × ×
ko Korean Korean Eastern 1 28,708 53,174 × ×

id Indonesian Sundic Eastern 2 25,781 43,137 ×
ms Malay Sundic Eastern 2 4,922 7,915 ×
su Sundanese Sundic Eastern 2 4,365 5,050 ×

af Afrikaans Germanic Western 2,262 3,248 × × × ×
da Danish Germanic Western 13,727 23,542 × × × × × × ×
de German Germanic Western 58,466 114,421 × × × × × × ×
fy West Frisian Germanic Western 1,609 1,949 × × × ×
is Icelandic Germanic Western 9,344 13,964 × × × × ×
ksh Ripuarian Germanic Western 2,245 4,635 × × × ×
lb Luxembourgish Germanic Western 6,892 10,463 × × × × ×
nds Low German Germanic Western 1,620 2,142 × × × ×
nl Dutch Germanic Western 37,192 69,505 × × × × × × ×
nn Norwegian Nynorsk Germanic Western 13,928 25,605 × × × × ×
no Norwegian Germanic Western 25,984 45,457 × × × × ×
sv Swedish Germanic Western 40,777 72,996 × × × × × × ×

an Aragonese Romanic Western 4,901 6,585 × × × ×
ast Asturian Romanic Western 2,362 3,016 × × × ×
ca Catalan Romanic Western 11,556 19,729 × × × × × × ×
es Spanish Romanic Western 68,471 126,633 × × × × × × ×
fr French Romanic Western 102,129 205,391 × × × × ×
gl Galician Romanic Western 4,540 5,929 × × × ×
it Italian Romanic Western 59,259 107,473 × × × × × × ×
la Latin Romanic Western 5,274 7,394 × × × × ×
oc Occitan Romanic Western 7,049 13,128 × × × × ×
pms Piedmontese Romanic Western 1,548 1,834 × × × ×
pt Portuguese Romanic Western 48,229 100,986 × × × × ×
ro Romanian Romanic Western 28,513 49,060 × × × × × × ×

be Belarusian Slavic Western 4,449 5,414 × × × ×
be-x-old Belarusian Taraškievica Slavic Western 17,118 36,438 × × × × ×
bg Bulgarian Slavic Western 8,453 15,213 × × × × × × ×
bs Bosnian Slavic Western 15,220 21,301 × × × × ×
cs Czech Slavic Western 24,830 44,295 × × × × × × ×
hr Croatian Slavic Western 7,207 12,524 × × × × ×
mk Macedonian Slavic Western 10,999 19,146 × × × × ×
pl Polish Slavic Western 37,796 62,434 × × × × ×
ru Russian Slavic Western 63,772 118,871 × × × × × × ×
sh Serbo-Croatian Slavic Western 2,364 3,087 × × × ×
sk Slovak Slavic Western 24,730 43,200 × × × × ×
sl Slovenian Slavic Western 24,526 44,785 × × × × × × ×
sr Serbian Slavic Western 11,941 16,743 × × × × ×
uk Ukrainian Slavic Western 17,781 30,557 × × × × ×

AVG / SUM 21,535 39,333 12 12 28 38 42 43 46

we make this hypothesis a measurable and testable property. This is done in
four steps:

Step 1. by specifying the formal class of graphs spanned by social ontologies;
Step 2. by identifying topological characteristics of this class of graphs;
Step 3. by representing social ontologies by vectors of these topological indices;
Step 4. by using these feature vectors as input to automatic classification.

The first two steps relate to our representation model of social ontologies
and are explained in Section 5.1 and 5.2, respectively. The last two steps are
covered by cluster analysis. As the features in use denote topological indices of
networks, we subsume these two steps under the notion of quantitative network
analysis (see Section 5.3).
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Table 3: Some statistical characteristics of the Social Ontology Corpus (SOC) analyzed here:
height is the eccentricity [54] of the main category v of the corresponding social ontology,
width is the maximum number of vertices with equal distance to the root and level is the
corresponding distance for which this maximum is reached.

order size height width level

minimum 103 102 2 20 1
median 1, 570 1, 949 9 582 4

maximum 102, 129 205, 391 30 34, 181 13
average 8, 348.9 14, 634 9.8616 2, 774.9 4.5031

standard deviation 15, 377 29, 583 4.1269 5, 169 2.1784

5.1. Social Ontologies as Directed Acyclic Graphs
Figure 1 exemplifies the kind of relations which form the skeleton of social

ontologies. It shows an outline of the category system of the English Wikipedia
in which the category mammal is subordinated to the categories vertebrates,
tetrapods, and synapsids, while it subordinates, for example, the categories bats,
primates and fur. This example shows that in social ontologies, subordination
does not necessarily coincide with hyperonymy relations (fur is not a kind of
mammal). Figure 1 also shows that social ontologies may include cycles: in the
German Wikipedia, the category Druckerzeugnis [print product] is subordinated
to Buch [book], which is subordinated to Bibliothekswesen [librarianship] which
is finally subordinated to Druckerzeugnis. Figure 1 also shows a larger cyclic
structure as part of the social ontology of the Turkish Wikipedia. Obviously,
ontologies of this sort do not span trees, but a certain class of more general
graphs as exemplified in Figure 2. It shows three Wikipedia-based category
systems of approximately the same size. As exemplified by these digraphs, social
ontologies do not span trees, but graphs with a kernel hierarchical structure that
is superimposed by arcs which add a graph-like structure. Figure 2 also hints
at the fact that the widths of social ontologies grow more than their depths.
This is shown in Figure 3 (left), which reports the ratio of depth and width of
the 160 ontologies in our SOC. Obviously, for a growing order (i.e., number of
vertices) this ratio is close to zero.

Figure 4 presents a schematic account of this class of graphs. From left
to right we observe an increase in structural complexity: while graph (b) gen-
eralizes tree (a) by graph-inducing downward, upward and lateral arcs, graph
(c) additionally possesses a second source [56] called A. It is this third graph
that best captures the scenario of social ontologies, which may contain multiple
sources, cycles and even loops. However, social ontologies are neither trees, nor
acyclic or arbitrary graphs. Rather, they form a class in the range of these
extreme cases: graphs which are spanned around a kernel hierarchy that build
nearly acyclic graphs [57]. That is, social ontologies contain cycles, but not very
many. This is shown in Figure 3 (right), which reports the number of vertices
that belong to cycles in relation to the order of the ontologies in our SOC.
Obviously, this ratio is mostly near but not equal to zero.
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Figure 1: Left (top): Hyperonyms and hyponyms from the point of view of the category
‘Mammal’ in the category graph of the English Wikipedia. Arcs go from the superordinate
category to its subordinate. Right (top): a cyclic structure of three categories in the social
ontology of the German Wikipedia. Bottom: Cyclic structures in the social ontology of the
Turkish Wikipedia.

To give a formal definition of this class of graphs we extend the notion of a
directed generalized tree [55, 58], which is, in turn, based on the notion of a tree.
The reason to proceed in this way is that while Directed Acyclic Graphs (DAG)
generalize the notion of a tree, social ontologies have a graph-like structure
which extends the one of generalized trees as they are spanned around a kernel
DAG-like structure. It is necessary to consider this class of graphs in formal
terms as it constrains the set of network indices that actually characterize social
ontologies. Definition 1 and 2 provide this formal account.

Definition 1. Let T = (V,A′, r) be a directed tree rooted in r ∈ V . Further,
for any vertex v ∈ V let Prv = (vi0 , aj1 , vi1 , . . . , vin−1 , ajn , vin), vi0 = r, vin =
v, ajk ∈ A′, in(ajk) = vik−1

, out(ajk) = vik , 1 ≤ k ≤ n, be the unique path in
T from r to v such that V (Prv) = {vi0 , . . . , vin} is the set of all vertices on
that path. A Directed Generalized Tree G = (V,A1..5, r) based on the kernel

10
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Figure 2: The largest connected component of the category system of the Friulian Wikipedia
(A), the Northern Sami Wikipedia (B) and the Moksha Wikipedia (C) – Moksha is an Uralic
language spoken in Mordovia. It belongs, with Northern Sami, to the Finno-permic languages.

tree T is a pseudograph whose arc set is partitioned so that A1..5 = ∪5i=1Ai,
∀1 ≤ i < j ≤ 5: Ai ∩Aj = ∅ and a ∈ A1..5 iff a ∈ ∪5i=1Ai and

a ∈ A1 = A′ (kernel arcs)
a ∈ A2 ⊆ {a ∣ in(a) = v ∈ V ∧ out(a) = w ∈ V (Prv) ∖ {v}} (upward arcs)
a ∈ A3 ⊆ {a ∣ in(a) = w ∈ V (Prv) ∖ {v} ∧ out(a) = v ∈ V } (downward arcs)
a ∈ A4 ⊆ {a ∣ in(a) = out(a) ∈ V } (reflexive arcs)
a ∈ A5 ⊆ V 2 ∖ (A1 ∪A2 ∪A3 ∪A4 ) (lateral arcs)

G is said to be generalized by its reflexive, lateral, up- and downward arcs.

Graph (b) in Figure 4 exemplifies a generalized tree. Graphs of this sort
are quite common in web-based communication [59]. They provide a blueprint
for defining generalized nearly acyclic graphs (see Figure 4.C) that naturally
extend generalized trees in the sense of the following definition.

Definition 2. Let G′ = (V,A′, S) be a Directed Acyclic Graph (DAG) with
the set of sources S ⊆ V and P(G′) be the set of all paths in G′ such that
∀r ∈ S∀v ∈ V : ∣{(x, . . . , y) ∈ P(G′) ∣x = r ∧ y = v}∣ ≤ 1. We denote this
unique path (that excludes the existence of downward arcs) by Prv ∈ P(G′), if

11
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Figure 3: Left: the ratio of depth and width of the largest connected component (y-axis) in
relation to the order (x-axis) of 160 social ontologies in our SOC. Right: the ratio C/∣V ∣ of
the number C of vertices that belong to cycles and the order ∣V ∣ of the ontologies (y-axis) as
a function of ∣V ∣ (x-axis).

(a): (b): (c):

Figure 4: (a): A directed tree rooted by vertex 1. (b): a generalized directed tree with the
same kernel hierarchical structure in conjunction with four upward arcs, one downward and
one lateral arc [55]. (c): a structural scenario that resembles social ontologies, that is, a graph
with two sources, 1 and A, whose kernel (resulting from deleting all upward and lateral arcs)
spans a directly acyclic graph.

it exists, and write Prv ∕∈ P(G′), if not. Additionally, we demand that G′ does
not contain lateral arcs that connect vertices reachable from different sources:
∀r, s ∈ S : (r ∕= s ∧ Prv, Psw ∈ P(G′) ∧ Prw, Psv ∕∈ P(G′)) ⇒ ¬∃(v, . . . , w) ∈
P(G′). A Generalized Acyclic Graph G = (V,A1..5, S) based on the DAG G′ is
a graph such that A1..5 = ∪5i=1Ai, ∀1 ≤ i < j ≤ 5: Ai ∩Aj = ∅ and8

a ∈ A1 = a ∈ A′

a ∈ A2 ⊆ {a ∣ ∃r ∈ S∃Prv ∈ P(G′) : in(a) = v ∈ V ∧ out(a) = w ∈ V (Prv) ∖ {v}}
a ∈ A3 ⊆ {a ∣ ∃r ∈ S∃Prv ∈ P(G′) : in(a) = w ∈ V (Prv) ∖ {v} ∧ out(a) = v ∈ V }
a ∈ A4 ⊆ {a ∣ in(a) = out(a) ∈ V }
a ∈ A5 ⊆ V 2 ∖ (A1 ∪A2 ∪A3 ∪A4 )

8Note that, as defined in Definition 1, V (P ) ⊆ V is the set of vertices on the path P .
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G is called a Generalized Nearly Acyclic Graph (GNAG) if its number C of
vertices that enter into cycles is small in relation to its order, that is, if 0 <
C/∣V ∣ ≪ 1.

Obviously, Figure 3 (right) shows that social ontologies are indeed charac-
teristic in that their number of vertices that enter into cycles is close (but not
necessarily equal) to 0.

In order to capture the structure of social ontologies according to this graph
model we need to go beyond network theory, which deals with less restricted
graphs. In short, we may explore social ontologies as networks because of their
cyclicity. However, because of their kernel hierarchy, we may explore them as
acyclic graphs or even as trees. This plurality is captured by our quantitative
model of social ontologies.

5.2. Topological Fingerprints of Directed Acyclic Graphs
In this section we present our approach to characterizing social ontologies

by topological indices of their graph model. As explained in the last section,
we capture both the network- and tree-like structures of social ontologies in a
single model. This is done by taking fingerprints of GNAGs by means of four
classes of topological indices:

Class 1. Network Theoretical (NT) measures: We utilize the apparatus of scale-
free networks [1]. In a pilot study (see Section 6.1), we test the hypoth-
esis that languages can be classified into families based on topological
indices of dependency networks as invented by [2]. In line with this
approach, we test whether the same indices indicate the membership
of social ontologies to language families. We test this for the cluster
coefficients Cws [60], Cbr [61] and their weighted counterparts ⟨Cw(k)⟩
and ⟨Cns

w (k)⟩ [62]. Further, we consider the diameter � together with
the average geodesic distance ⟨L⟩, the average degree, Newman’s as-
sortativity index [1] and the expected ⟨L⟩ and Cws of the random and
regular graphs of equal order and size.9 All in all, we consider 12 in-
dices in Class 1 – see [57] for a thorough exemplification of these indices
in the context of linguistic networks.

Class 2. Information Theoretical (IT) Measures: In addition, we investigate a
range of measures that have been invented in order to describe the in-
formation content of graphs and processes of information flow based on
them [see 54 for a first introduction into this topic]. This relates to so-
called measures of graph entropy [64]. The idea behind this approach
is more related to Nisbett’s Hypothesis, which states that information

9As GNAGs are more restricted than general networks, the exponent of the power law that
best fits to the out-degree distribution of vertices [63] together with its adjusted coefficient of
determination [57] do not make sense as indices here.
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content tells us something about the shareability [65] of knowledge sys-
tems. Therefore, we direct our attention to this class of topological in-
dices. Further, a pre-study has shown that compactness and centrality
measures are informative about differences of linguistic networks like
such as wiki graphs [57]. This includes the compactness measure of
hypertext theory [66] as well as graph-related centrality measures such
as graph, degree and closeness centrality, which have been successfully
applied in NLP [67]. As centrality measures are primarily based on
the notion of geodesic distance, they relate to graph entropy measures
so that we commonly refer to this group as Information Theoretical
(IT) measures. All in all, we experiment with 45 indices in Class 2 as
further described in Section 5.2.1.

Class 3. GNAG-based Measures: We additionally utilize a range of measures
that have been developed in order to capture the topological specifics
of social ontologies in contrast to terminological and formal ontologies
[68]. This class of measures is sensitive to the kernel hierarchical struc-
ture of GNAGs and, therefore, goes beyond network-theoretical indices
(of Class 1). We experiment with 52 indices in Class 3 as described in
Section 5.2.2.

Class 4. Measures related to a Sensitivity Analysis (SA): As a fourth class of
features, rather than beginning a new measurement, we instead under-
take a deterministic selection among all 109 = 12 + 45 + 52 topological
indices described so far. That is, we compute for each index I how well
it differentiates among all 160 social ontologies in our SOC (see Section
4). This is done by means of the sensitivity measure S(I) of Konstanti-
nova et al. [69] for a topological index I:

S(I) =
∣C∣ − ∣Ci∣
∣C∣

∈ [0, 1] (1)

where Ci is the set of networks from the SOC C that I cannot distin-
guish. These are networks for which there is at least one other network
in C that is mapped onto the same number by I. As we know that
all ontologies in C are pairwise different, we ask whether a candidate
topological index accounts for this difference by mapping the networks
onto different numbers. Indices I for which S(I)→ 0 are called degen-
erated [69, 70]. The results of computing S for our indices can be seen
in Figure 5. It shows that 34 of 109 indices distinguish exactly 100%
of the networks correctly. These 34 indices are collected in Class 4 as
they are minimally degenerated in terms of S.10 As an alternative to
this subset, we consider the set of indices that are degenerated only by
5%. These are indices, which distinguish at least 95% of the networks
in our reference SOC.

10Interestingly, Cws , Cbr and diameter, for example, are deselected in this way.
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Figure 5: Sensitivity measure of 109 indices based on the approach of [69]. The horizontal
line denotes the 95% limit.

The measures that fall into the first class have been extensively discussed
in the literature [see, e.g., 1, 71–73 and 67 for thorough introductions]. In this
article, we concentrate on a short presentation of measures in Class 2 and 3.

5.2.1. Graph Entropy
The literature discusses a wide range of measures of graph entropy [64].

One approach to apply the notion of entropy H to a vertex v ∈ V in a graph
G = (V,E) is to say that H(v) codes information about the topology of G from
the perspective of v: if the geodesic distances from v to the other vertices of G
are uniformly distributed, H(v) is high. In this case, we are little determined
in entering the neighborhood of v, when randomly selecting v as an entry point
to G. An extreme case is a star graph around the center v. In case of a social
ontology this is tantamount to a very flat, but broad ontology. If, in contrast
to this, the distances are non-uniformly distributed, so that H(v) is low, we are
more determined in traversing the neighborhood of v, when selecting v as our
starting point. Now, an extremal case would be a line graph starting from v. In
case of a social ontology this is tantamount to a very deep, but narrow ontology.
Dehmer [74] has generalized the vertex-related entropy to arrive at a class of
entropy measures of graphs – we use its variant from [70]:

Hfc(G) = −
∑
v∈V

fc(v)∑
w∈V fc(w)

log

(
fc(v)∑

w∈V fc(w)

)
(2)

where

fc(v) =

�(G)∑
j=1

cj ∣Sj(v)∣ ; Sj(v) = {w ∈ V ∣ �(v, w) = j} (3)

�(v, w) is the geodesic distance of v and w in G, c′ = (c1, . . . , c�(G)) is a vec-
tor of weights ci ≥ 0,

∑
i ci > 0, used to bias the so-called j-spheres Sj , and
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�(G) is the diameter of G. By varying c, we get different instances of the class
of entropy measures in Equation 2. In this article, we experiment with expo-
nentially and logistically decaying weights. This is done in order to simulate
processes of growth and of disintegration of spreading activation [75]. In this
way, we obtain a scheme for experimenting with entropy-related measures where
a genetic algorithm is used to finally select those measures that are most char-
acteristic of ontologies. All in all, we experiment with 45 entropy, centrality
and compactness-related measures as elements of Class 2 indices [see 57, 74 for
thorough discussions of them].

5.2.2. Imbalance
Social ontologies have been contrasted with classification schemes (e.g., the

DDC), terminological ontologies (e.g., WordNet), and formal ontologies (e.g.,
the Suggested Upper Merged Ontology) [6]. Using a small range of topological
indices, the membership of an ontology to one of these classes has been correctly
predicted in 93% of the ontologies considered [68]. As these indices are indicative
of different types of ontologies, they may also be indicative of different families
of social ontologies. We aim to test this assumption by utilizing the approach of
[68], which basically explores the imbalance of the graphs spanned by ontologies
as follows: let D = (V,A) be a directed graph and x ∈ V be a distinguished
vertex (e.g., the one that denotes the main category in the ontology represented
by D). Further, let Q : S1(x) → [0, 1] be an interval-scaled function such that
∀vij ∈ {vi1 , . . . , vin} = S1(x) : Q(vij ) ≥ 0 and

∑n
j=1Q(vij ) = 1 so that we get a

feature vector

q(x) = (Q(xi1), . . . , Q(xin))
′ = (q1, . . . , qn)

′ (4)

as input to the relative entropy to measure the balance of D from the point of
view of x with respect to Q:

RH (q(x)) =
H(q(x))

log2 n
= −

∑n
i=1 qi log2 qi
log2 n

∈ [0, 1] (5)

Finally, we define a measure of imbalance IQ of x in D induced by Q by means
of the redundancy measure R [76]:

IQ(x) = R(q(x)) = 1− RH (q(x)) ∈ [0, 1] (6)

Equation 6 gives a scheme for measuring the imbalance of a digraph D from
the point of view of the distinguished vertex x according to the attribute Q. By
varying this attribute we get alternative measures of imbalance of D. Following
[68], we consider the depth, width, level, order, length (the number of leafs within
the scope of the focal node), complexity (the number of immediate constituents)
and dependency (as a function of the number of vertices subordinated in a tree-
like structure [77]) as different attributes. Taking the main category as the
distinguished vertex, these attributes allow for characterizing ontologies with
respect to their intricacy of design, richness of detail and related structural
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attributes. We experiment with 52 such Class 3 indices [see 68 for a thorough
discussion of them]. We expect that social ontologies that belong to different
language families are quite distinguishable by these attributes as they reflect the
specifics of the class of graphs instantiated by these ontologies, that is, GNAGs.

5.3. Quantitative Network Analysis
Using the structural information captured by topological indices of social on-

tologies, we can classify this sort of networks by means of cluster analysis. More
specifically, we apply Quantitative Network Analysis (QNA) [57, 68] in order to
learn classes of social ontologies by virtue of their structure, while disregarding
any content units (i.e., names of vertices). QNA basically integrates vector rep-
resentations of complex networks with hierarchical cluster analysis. The cluster
analysis is complemented by a subsequent partitioning, where the number of
classes is determined in advance. In this sense, QNA is semi-supervised. We ex-
periment with single, complete, average, and weighted linkage, while we use the
Mahalanobis distance, the (standardized) Euclidean distance and two distance
measures based on Pearson’s correlation coefficient and on the cosine measure,
respectively, to compute pairwise object distances.

Roughly speaking, QNA takes the space of input objects together with the
parameter space of linkage methods and distance measures to find out the pa-
rameter constellation, which best separates the data in terms of the correspond-
ing gold standard [see 57 for a thorough explanation of this approach]. Note that
we use F -measure statistics (i.e., the harmonic mean of precision and recall) to
evaluate our classification results.11 Note also that QNA integrates a genetic
search of the best performing subset of topological indices that maximizes the
F -score of the corresponding classification. As a matter of fact, this search tries
to find the optimal feature set, but may also stop at a local maximum. In order
to handle correlations between different indices and to scale down the parameter
space, we use the Mahalanobis distance whenever possible.

6. Experimentation

6.1. A Pilot Study: Network-Based Classification of Languages
In this section, we present a pilot study to automatically classify languages

into genealogical groups based on syntactic networks. We do that to get insights
into the possibilities of network-based language classification in general. This
pilot study serves as a linguistically well-motivated basis of comparison to eval-
uate the outcomes of our social-ontology-based approach. In order to provide
this basis of comparison, we use a syntactic resource to generate the networks
in this pre-test. This relates to so-called Global Syntactic Dependency Networks
(GSDN) as introduced by Ferrer i Cancho et al. [78]. In graph theoretical terms,

11Precision and recall are computed with respect to a gold standard which in our case is
the partition of the set of languages into language families. F ranges in the interval [0, 1]. 1
indicates a perfect and 0 the worst classification.
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Figure 6: Three steps in creating a GSDN by processing the first three sentences in a depen-
dency treebank.

GSDNs are undirected networks with multiple edges. Vertices of a GSDN rep-
resent word forms of a dependency treebank12, while edges represent syntactic
dependency relations. A GSDN of a particular language is constructed from
its corresponding treebank as exemplified in Figure 6. The input treebank is
parsed sentence by sentence so that word forms are added as vertices to the
target network. Vertices are inserted only once.13 If in subsequent sentences a
vertex (word) appears again as part of a new dependency relation, more edges
are added to it (e.g., book in Figure 6).

We construct GSDNs from 12 dependency treebanks as listed in Table 4. In
order to test whether GSDNs reflect genealogical differences of languages, we
represent them by means of a subset of 24 of the 109 features (see Section 5.2)
and make the resulting vectors an input to QNA (see Section 5.3). Our aim
is to classify the vectors into three genetic groups (i.e., Slavic, Germanic, and
Romanic). In addition, we apply two baseline scenarios to evaluate the goodness
of our results. Both scenarios randomly assign languages to one of the three
groups. The known-partition-scenario has knowledge about the cardinality of
each target class, whereas the equi-partition-scenario assumes an equal size of
each group. The computation of the baselines is repeated 1,000 times so that
finally their average F -scores are considered.

The results of the pilot study are presented in Table 5. Surprisingly, we get
a maximum F -score of 1, which is produced by using only 8 features as a result
of applying a genetic search for the best performing subset of features. Figure 7
shows the corresponding dendrogram. This result indicates a high potential of

12A dependency treebank is a corpus in which each sentence is annotated regarding its
syntactic dependency structure [79].

13Note that multiple edges are represented by edge weights, which denote frequencies of
co-occurrence.
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Table 4: The 12 treebanks that have been used to generate GSDNs in the pilot study.
Treebank Language ∣V ∣ ∣E∣ Reference

Alpino Treebank v.1.2 Dutch 28,475 102,184 [80]
Danish Dependency Treebank v.1.0 Danish 19,133 50,858 [81]
A sample of sentences of the

Dependency Grammar Annotator Romanian 8,867 23,901 [82]
Russian National Corpus Russian 58,283 177,942 [83]
A sample of the Slovene

Dependency Treebank v.0.4 Slovene 8,342 20,453 [84]
Talkbanken05 v.1.1 Swedish 25,097 126,526 [85]
Turin University Treebank v.0.1 Italian 7,984 24,269 [86]
Catalan Dependency Treebank (CESS) Catalan 38,882 215,308 [87]
Spanish Dependency Treebank (Cast3LB) Spanish 17,101 56,911 [88]
Prague Dependency Treebank 2.0 Czech 146,504 696,379 [89]
BulTreeBank Bulgarian 32,421 95,698 [90]
Tiger Treebank German 2,465 4,399 [91]

language classification by means of GSDNs. However, if we take all 24 features
into account, the corresponding F -score falls down to 63%, which is still above
the corresponding baseline of around 55%. Obviously, some of the features in
this set of topological indices bias the classification. On the other hand, a small
range of only 8 indices suffices to separate the languages correctly. This subset
includes, amongst others, the cluster coefficient of Watts and Strogatz [60], the
 of the power law of the corresponding degree distribution and the centrality
measures considered here.14

The dendrogram in Figure 7 shows that although languages are grouped
correctly into clusters, the similarities within the cluster do not always coincide
with their exact inner-family resemblance. Within the Germanic cluster, for
example, Swedish is more related to Dutch than to Danish, which is counterin-
tuitive. However, within the Slavic cluster languages are grouped correctly (i.e.,
Slovene-Bulgarian are both South-Slavic) – see [52] for a thorough discussion of
GSDN-based language classifications.

In any event, the results of our pilot study show that network-based language
classification is a promising approach. At the same time, an F -score of 1 is a high
barrier to be mastered by a social-ontology-based approach, which is evaluated
next.

6.2. Testing the Variant of the Sapir-Whorf Hypothesis: Language Classification
based on Social Ontologies

In regards to social ontologies, our version of the SWH contends that lan-
guage imprints on distributed cognition in such a way that related languages
of the same genealogical family are manifested by structurally similar social
ontologies (see Section 2). Conversely, our hypothesis implies that unrelated
languages, which belong to different genealogical families, result in dissimilar
topologies of the corresponding ontologies. We are now in a position to test this

14Note that we use the -coefficient only in the case of those networks that have at least
2,000 vertices as displayed in Table 4.
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Figure 7: The dendrogram of the best performing classification of 12 languages into three
classes in experiment E0 (see Table 5).

Table 5: Experiment E0 testing a version of the Sapir-Whorf Hypothesis: F -scores of classi-
fying 12 languages into 3 families based on GSDNs using 24 indices from Information Theory
and Network Theory.

procedure F -score scope source

QNA[Mahalanobis,hierarchical,complete] 1 8/24 IT & NT
QNA[Correlation,hierarchical,single] .63248 24/24 IT & NT

AVG .81624 over non-random approaches

random baseline II .553 known partition
random baseline I .54 equi-partition

hypothesis based on our model of Generalized Nearly Acyclic Graphs (GNAG),
their quantitative fingerprints and Quantitative Network Analysis (QNA) (as
described in Section 5.1–5.3).

We start with a reconstruction of the pilot study in Section 6.1. That is, we
refer to exactly the same 12 languages as in experiment E0 (see Tables 5 and
2), however, we use GNAGs (as models of social ontologies) instead of GSDNs
to obtain a representation model of these languages (see Section 5). This is
done to test the expressiveness of GNAGs as input to QNA compared to the
more classical approach based on GSDNs. A negative result would mean that
the classification based on dependency networks outperforms the one based
on social ontologies. The result would even be worse if the latter approach
performs as inefficiently as the corresponding baseline scenario. In this case,
the similarities of the topologies of social ontologies would tell us nothing about
the family resemblances of the corresponding languages.

Table 6 shows that the opposite is true: on the one hand, we obtain the
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Table 6: Experiment E1 on a version of the Sapir-Whorf Hypothesis: F -scores of classifying
12 languages into 3 families based on social ontologies by means of 4 classes of topological
indices from Sensitivity Analysis (SA), Graph Theory (GNAG), Information Theory (IT) and
Network Theory (NT).

procedure F -score scope source class

QNA[Mahalanobis,hierarchical,complete] 1.0 7/34 SA 4
QNA[std. Euclidean,hier.,complete] .52381 34/34 SA 4

QNA[std. Euclidean,hier.,complete] .6963 22/52 GNAG 3
QNA[Euclidean,hierarchical,single] .51429 52/52 GNAG 3
QNA[Euclidean,hierarchical,Ward] .67424 17/45 IT 2
QNA[std. Euclidean,hier.,average] .5812 45/45 IT 2
QNA[std. Euclidean,hier.,average] .8381 5/12 NT 1
QNA[correlation,hierarchical,complete] .4963 12/12 NT 1

QNA[correlation,hierarchical,complete] .51852 109/109 all features

AVG (over non-random approaches) .6492

random baseline II .553 known partition
random baseline I .54 equi-partition

result that the F -score of social-ontology-based classifications is on average
(.6492) nearly 10% above the corresponding baselines of .553 and .54. More-
over, all three language families are perfectly separated if a search on the best
performing subset of topological indices in Class 4 (Sensitivity Analysis – SA)
is performed by means of a genetic search algorithm. In this case, we calculate
an F -score of 1. This highest possible F -score is computed by means of 7 fea-
tures only. These are Newman’s assortativity index, the graph centrality, the
entropy of the standardized closeness centrality, the entropy (variance) of the
(cumulative) distribution of geodesic root-related distances, the spheral graph
entropy of Bonchev [92], and Dehmer’s [74] graph entropy based on linearly
decreasing weights. Figure 8 displays the dendrogram, which results from per-
forming experiment E1 by means of these indices: while the group of Romanic
languages seems to be plausibly ordered, the Germanic and the Slavic group
are not. Interestingly, this dendrogram groups Dutch and Swedish near to each
other just as the GSDN-based dendrogram in Figure 7 (although in both cases
this is counterintuitive from the point of view of genealogy). In any event, an
F -score of 1 is beyond what could be initially expected. As one cannot perform
better than by an F -score of 1, this is an argument in support of our approach.
Note that if we take all 34 indices of Class 4 into account, the F -score falls to
52% (below both baselines). Once again, there are many features in this set of
indices which negatively affect the separation of the focal classes. This observa-
tion is recurrent (in all experiments E0-E6) so that sensitivity analyses are an
indispensable ingredient of the sort of classification considered here.

Though on a lower level, the same relation (between the full range of indices
and its best performing subset) appears in case of Class 1 indices (based on
Network Theory – NT), Class 2 indices (based on Information Theory – IT),
and Class 3 indices (based on GNAGs): if we perform a genetic search of the
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Table 7: Experiment E2 on a version of the Sapir-Whorf Hypothesis: F -scores of classifying
28 languages into 3 families based on social ontologies by means of 4 classes of topological
indices from Sensitivity Analysis (SA), Graph Theory (GNAG), Information Theory (IT) and
Network Theory (NT).

procedure F -score scope source class

QNA[Mahalanobis,hierarchical,complete] .78223 26/34 SA 4
QNA[std. Euclidean,hier.,complete] .50022 34/34 SA 4

QNA[Mahalanobis,hierarchical,complete] .72801 18/52 GNAG 3
QNA[cosine,hierarchical,complete] .50866 52/52 GNAG 3
QNA[Mahalanobis,hierarchical,complete] .68052 18/45 IT 2
QNA[correlation,hierarchical,single] .50597 45/45 IT 2
QNA[correlation,hierarchical,weighted] .61267 4/12 NT 1
QNA[correlation,hierarchical,single] .50022 12/12 NT 1

QNA[correlation,hierarchical,complete] .49366 109/109 all features

AVG (over non-random approaches) .5902

random baseline II .47214 known partition
random baseline I .4725 equi-partition

best performing subset of topological indices, we get an F -score of around 69%
in the case of GNAG-related indices and of 67% in the case of IT-related indices.
If we do the same in the case of NT-related indices of Class 1, we get a much
higher F -score of more than 83%. That is, by exploring only five indices, we
classify up to 83% (or ten of twelve languages) correctly. These NT-related
features are not the usual suspects: once again, this is Newman’s assortativity
index [1] together with the expected geodesic distance in corresponding regular
and random graphs of equal order, the diameter, and the (weighted) cluster
coefficient [62].

Obviously, this is a very compact and space efficient representation of struc-
tures as complex as social ontologies. Thus, it is a good choice to use this
feature model if time and space are critical parameters. However, if one needs
to combine space efficiency with classification accuracy, then the 7 SA-related
indices of Class 4 are the first choice. Note that if we consider all features in
a single experiment without any sensitivity analysis, the F -score is half as high
as in case of the best classifier and even falls below the baseline.

To summarize our findings in experiment E1, we do not falsify our variant
of the SWH, but retain it until any later falsification. In other words, the
languages considered in experiment E1 (see Table 6 and 2) are distinguished
by the topologies of their corresponding social ontologies such that they are
classifiable by QNA into 3 families as predicted by our version of the SWH.

The situation is less obvious, if we enlarge the set of languages to be classified.
Table 7 and 8 report continuations of experiment E1 by experiments E2 and E3
(for the target languages see Table 2). In these cases, if we classify 28 languages
into 3 families according to the similarities of the topologies of their ontologies:
here, the highest F -score falls to 78% and, further, to 69%, if we classify 38
languages as listed in Table 2. In both cases, a genetic search of the best
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Table 8: Experiment E3 testing a version of the Sapir-Whorf Hypothesis: F -scores of classify-
ing 38 languages into 3 families based on social ontologies by means of 4 classes of topological
indices from Sensitivity Analysis (SA), Graph Theory (GNAG), Information Theory (IT) and
Network Theory (NT).

procedure F -score scope source class

QNA[Mahalanobis,hierarchical,complete] .6969 16/34 SA 4
QNA[std. Euclidean,hier.,single] .49579 34/34 SA 4

QNA[correlation,hierarchical,complete] .65439 22/52 GNAG 3
QNA[correlation,hierarchical,single] .49579 52/52 GNAG 3
QNA[Mahalanobis,hierarchical,complete] .65038 19/45 IT 2
QNA[correlation,hierarchical,single] .49421 45/45 IT 2
QNA[Mahalanobis,hierarchical,complete] .56273 2/12 NT 1
QNA[correlation,hierarchical,single] .49579 12/12 NT 1

QNA[correlation,hierarchical,single] .49421 109/109 all features

AVG (over non-random approaches) .56

random baseline II .44965 known partition
random baseline I .4511 equi-partition

performing subset of SA-related indices guarantees the highest F -scores. Tables
7 and 8 also show that IT- and GNAG-related indices perform above 70% and
65%, respectively, where GNAG-related indices perform better than IT-related
indices in experiment E2 and E3, although they are outperformed by SA-related
features. From the point of view of linguistic modeling, this supports a network
model beyond the classical approach in network theory with its focus on simple
graphs. In any event, the baseline scenarios are outperformed in experiment E2
and E3 by all approaches considered here – as well as by their average F -score.
Note that GNAG- and IT-related indices are better performing in experiment E2
compared to experiment E1, although the set of languages considered in E1 is a
subset of those classified in E2. At first glance, this result is surprising. However,
it is explained by the usage of a genetic algorithm to search the best performing
subset, which does not necessarily output the optimal subset. Thus, our finding
may indicate the existence of better performing subsets in experiment E1 than
those we found so far.

From the point of view of experiment E2 and E3, we obtain a positive and
a negative result: On the one hand, we still have reasonably large F -scores
above the baselines. However, if we compare these findings with experiment E1
(see Table 6), we notice a large loss in F -score due to an enlargement of the
set of languages being classified. Thus, our approach is still informative about
genealogical resemblances of the languages under consideration, but to a lesser
degree than expected according to experiment E1 and the results reported by
Table 6. In any event, our findings are still higher than what is expected by
chance. Note also that it is reasonable to expect better results if we continue to
study more expressive and separable topological indices. Again, the values in
Table 7 and 8 do not falsify our variant of the SWH. At this point, we are in a
position to examine the social ontology-related variant of Nisbett’s Hypothesis.
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Figure 8: The dendrogram of the best performing classification of 12 languages into three
classes in experiment E1 (see Table 6).

6.3. Testing Nisbett’s Hypothesis
Our findings regarding the variant of the SWH do not tell us anything about

the validity of Nisbett’s Hypothesis (see Section 5.3), quite simply as experi-
ments E1–E3 only consider Western languages. However, it is more likely that
Nisbett’s Hypothesis stands up to falsification, if this also holds for our variant
of the SWH. Basically, this expectation is supported by three experiments on
Nisbett’s Hypothesis as summarized in Tables 9, 10 and 11.

Table 9 starts by separating 3 Sinitic languages and 1 Japonic language
from all 38 Western languages that have been considered in experiment E3 (see
Table 2). First, we observe a good classification with an F -score of nearly 95%,
if we select, once more, a subset of SA-related features by a genetic search.15
Secondly, we observe an F -score of nearly 90% corresponding to approximately
38 correctly classified languages, if we consider only 6 indices from network
theory (feature class 1). As before, this set includes the diameter, the (weighted)
cluster coefficient and the expected geodesic distance in corresponding regular
and random graphs of equal order, but now supported by the cluster coefficient
of [60] and the expected cluster value in a regular graph of equal order.

Furthermore, we see that the baseline scenario that assumes an equi-parti-
tion among both target classes is clearly outperformed. However, the random
scenario that is informed about the cardinalities of the target classes performs at
a high level of nearly 82% – this high random value is due to the largely different
sizes of the classes. In any event, experiment E4 does not contradict our variant
of Nisbett’s Hypothesis. This also holds for Experiment 5 (as summarized in

15Note that we consider now a set of 87 indices as elements of Class 4. These are indices,
which are degenerated by at most 5% (see Section 5.2).
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Table 9: Experiment E4 testing a version of Nisbett’s Hypothesis: F -scores of classifying
42 languages into Western and Eastern languages based on their social ontologies by means
of 4 classes of topological indices from Sensitivity Analysis (SA), Graph Theory (GNAG),
Information Theory (IT) and Network Theory (NT). The Eastern class includes 3 Sinitic and
1 Japonic language.

procedure F -score scope source class

QNA[Mahalanobis,hierarchical,Ward] .94505 41/87 SA 4
QNA[correlation,hierarchical,single] .9085 34/87 SA 4

QNA[cosine,hierarchical,single] .9085 26/52 GNAG 3
QNA[correlation,hierarchical,average] .87322 52/52 GNAG 3
QNA[Euclidean,hierarchical,average] .92393 18/45 IT 2
QNA[correlation,hierarchical,single] .86443 45/45 IT 2
QNA[Mahalanobis,hierarchical,complete] .9085 6/12 NT 1
QNA[correlation,hierarchical,single] .9085 12/12 NT 1

QNA[correlation,hierarchical,single] .9085 109/109 all features

AVG (over non-random approaches) .9055

random baseline II .81954 known partition
random baseline I .64368 equi-partition

Table 10), which additionally considers Korean as an Eastern language – in
accordance with Nisbett [28]. We even observe a small gain in F -score, which
means that both target classes are better separable if Korean is considered too.
The F -scores are much higher than the corresponding random baselines so that
we still view our variant of Nisbett’s Hypothesis as being not falsified.

Next we consider experiment E6 as summarized in Table 11. It continues
experiment E5 by additionally viewing 3 Sundic languages as representatives of
the group of Eastern languages in the sense of Nisbett. Actually, this extension
is excluded by Nisbett, since these Sundic languages have not been influenced
in the same ways as the Sinitic, Japonic and Korean languages considered here.
Thus, we expect a larger loss in F -score that questions this extension of the
class of Eastern languages. This is, in fact, reported by Table 11. In experiment
E6, the difference between the best performing classification, on the one hand,
and the best performing baseline, on the other, is less then 10%. If we look back
at Table 8, we see that in this worst performing experiment on the SWH, the
corresponding difference is more than 20% and, thus, much larger. Therefore,
we conclude that there is a higher loss in F -score, if we make the questionable
extension of the group of Eastern languages (in the sense of Nisbett) by Sundic
languages – in accordance to what is predicted by Nisbett’s Hypothesis.

All in all, the experiments E4-E6 do not falsify our variant of Nisbett’s Hy-
pothesis, and thus we retain it. This means that Western and Eastern languages
are distinguishable by topological dissimilarities of their Wikipedia-based social
ontologies. This is a new and certainly unexpected result from the point of
view of language classification, which – together with the experiments on our
variant of the SWH – demonstrates the power of network-theoretical analyses
of linguistic systems.
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Table 10: Experiment E5 testing a version of Nisbett’s Hypothesis, which extends experiment
4 by additionally considering Korean as an Eastern language.

procedure F -score scope source class

QNA[Mahalanobis,hierarchical,weighted] .94827 42/87 SA 4
QNA[correlation,hierarchical,single] .87829 34/87 SA 4

QNA[Mahalanobis,hierarchical,single] .87829 27/52 GNAG 3
QNA[correlation,hierarchical,average] .84481 52/52 GNAG 3
QNA[Mahalanobis,hierarchical,Ward] .89654 20/45 IT 2
QNA[correlation,hierarchical,single] .84218 45/45 IT 2
QNA[Mahalanobis,hierarchical,single] .87829 5/12 NT 1
QNA[correlation,hierarchical,single] .87829 12/12 NT 1

QNA[correlation,hierarchical,single] .87829 109/109 all features

AVG (over non-random approaches) .8804

random baseline II .80422 known partition
random baseline I .63383 equi-partition

Table 11: Experiment E6 testing a version of Nisbett’s Hypothesis, which extends experiment
5 by additionally considering 3 Sundic languages as Eastern languages.

procedure F -score scope source class

QNA[Euclidean,hierarchical,average] .85109 39/87 SA 4
QNA[correlation,hierarchical,single] .80236 34/87 SA 4

QNA[Mahalanobis,hierarchical,Ward] .81794 26/52 GNAG 3
QNA[correlation,hierarchical,single] .78901 52/52 GNAG 3
QNA[Euclidean,hierarchical,average] .85109 20/45 IT 2
QNA[correlation,hierarchical,single] .78901 45/45 IT 2
QNA[correlation,hierarchical,single] .80236 6/12 NT 1
QNA[correlation,hierarchical,single] .80236 12/12 NT 1
QNA[correlation,hierarchical,single] .80236 109/109 all features

AVG (over non-random approaches) .8120

random baseline II .75304 known partition
random baseline I .62477 equi-partition

6.4. Discussion
Before we start a more general discussion of our findings, we hint at two

characteristics of our numerical results. Firstly, if we compare the feature classes
1, 2 and 3 and disregard Class 4 of SA-related features for a while, we see
that GNAG-related features mostly perform best in our experiments on the
SWH, while IT-related features perform better in our experiments on Nisbett’s
Hypothesis. At least from the point of view of experiment E2-E3 this means that
social ontologies are better separated by means of indices, which reflect their
characteristics in terms of generalized acyclic graphs. This is an argument in
favor of more informative graph models beyond the simple graphs traditionally
analyzed in complex network theory [71].

Secondly, our results show that selections of indices according to Konstanti-
nova’s index of degeneration (see Section 5.2) perform best if being combined
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with a sensitivity analysis. This selection is deterministic as it selects all indices
with a sensitivity of at least 95% or even of 100% as in the case of experiments
on the SWH. That is, only indices, which in a reference corpus of 160 ontologies
separate at least 152 graphs correctly, are collected in Class 4 of SA-related
features. Because of this determinism, the selection can be automatized. This
is a strong argument to look for more expressive sensitivity analyses, which may
help to improve network-based structural classification.

Generally speaking, our reasons to apply network theory in the area of lan-
guage classification can be summarized as follows:

1. Firstly, our aim is to model linguistic structures beyond tree-like graphs.
We aim to explore systems, which recently evolved in web-based commu-
nication. These systems are characterized by the networking of hundreds
and thousands of vertices beyond tree-like models to which linguistics tra-
ditionally pertains. In this sense, the networking of web-based units relates
to a rapidly emerging field of linguistic manifestation. The present article
has shown that this networking is even indicative of family resemblances
of languages. So network models of the sort presented here are interesting
for general linguistics – at least as comparative studies.

2. Secondly, we stress the expressiveness of structural models in classifying
linguistic units beyond content-based models traditionally used in com-
putational linguistics [93]. This accentuation of structure modeling is in
line with Dimter’s [25] experiment on text typology and its algorithmic
reconstruction [26]. Dimter shows that, obviously, structure is an under-
estimated source of identifying linguistics types. We extend this approach
to linguistic networks and show that purely structure-based classifications
are successful in this area too. This raises the question about the expres-
siveness of structure-based classifications in computational linguistics in
general to which our article contributes.

3. Thirdly, our experiment complements recent approaches to use web-based
resources in NLP. These approaches have in common that they explore
the structure of Wikipedia and related resources to derive representation
models in text categorization [94], to compute semantic relatedness [95],
or to induce topic labels [96]. Based on our findings, we get a first in-
sight into the context-sensitivity of such approaches. That is, we observe
that networks of different language families vary to an extent that makes
them automatically separable. If this finding is continuously confirmed,
algorithms for NLP, which structurally explore such resources, become
context-dependent – at least on the level of the underlying language fam-
ily. In such a case, the average geodesic distance, for example, would mean
something else, say, in Sundic vs. Slavic linguistic networks. Following this
line of research, network-theoretical research as the one presented here can
contribute to NLP.

Generally speaking, our findings indicate the reliability of a novel source
of language classification based on human computation as manifested by wiki
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media. Other than the (e.g., graphemical, morphological, lexical, or syntactic)
representation models traditionally used for genealogical classification, we suc-
cessfully classify languages by means of resources of the social web. One might
object that our approach is lexical as it starts with exploring conceptual systems
manifested by lexemes. However, this is not true as we only explore structural
characteristics of these resources, while we disregard any content units. To the
best of our knowledge this is the first such approach to language classification.

7. Conclusion

In this article, we presented a network-theoretical approach to language clas-
sification. Our study is a first attempt to classify languages by means of the
topological characteristics of social ontologies generated in these languages. We
have tested two related hypotheses: a variant of the Sapir-Whorf Hypothesis
and a variant of Nisbett’s Hypothesis on differences in Western and Eastern cul-
tures. In this way, we gained access to structural analyses of linguistic networks
by example of Wikipedia-based social ontologies as a new resource of language
classification.

In support of the SWH, we successfully classified languages into three ge-
nealogical groups. We also outperformed corresponding baselines of random
classification. Concerning Nisbett’s variant of the SWH, we obtained a similar
result by separating Western and Eastern languages. As predicted by Nisbett,
the classification worsened by extending the corpus of Eastern languages by
Sundic languages. In any event, enlarging the number of classes may worsen
our results as well as we observed in our experiments. Obviously, the results ob-
tained could have been biased by the number of classes and related factors such
as the size of the language families, the validity of the underlying corpora and
the independence of the data sources. Thus, we aim to examine these factors in
further studies to undermine our findings. Additionally, future work will address
the construction of more elaborate baselines, and checking the extensibility of
our approach to other kinds of social ontologies. Further, we plan to build more
expressive graph models in conjunction with topological indices that are more
separable to get better classification results. We also want to extend sensitiv-
ity analyses as the one based on Konstantinova’s index of degeneration to get
classifiers that can be reliably transferred to other areas of linguistic networks.
Finally, we will make larger classification experiments to extend the range of
language families covered by our approach.
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