Skip to Main content Skip to Navigation
Conference papers

Towards delayed teleoperation with pneumatic master and slave for MRI

Abstract : Over the last 50 years, master-slave teleoperation has become a widespread and successful field of research. This discipline explores how to perform tasks using a robot on an environment with haptic feedback about robot-environment interaction being provided to the human operator. Most of the master and slave manipulators used in teleoperation are electrically actuated. However, in some particular applications such as inside an MRI for image-guided surgery, ferromagnetic materials including electrical wiring is prohibited. Thus, non-ferromagnetic actuators like pneumatic or hydraulic actuators are a solution to this problem. This specific application also requires teleoperation in the sense of "tele-actuation" because of the lack of space inside the MRI chamber to put the robot's actuators and the presence of electrical components in pneumatic servovalves. In this paper, we study the case of a teleoperation system composed of two identical pneumatic cylinders (as the master and the slave) equipped with servovalves, making a symmetric teleoperation system. This serves as a one-degree-of-freedom system to outline the design and analysis in terms of teleoperation transparency and stability. Simulation and experimental results check the validity of the theory without and with classical transmission delays.
Document type :
Conference papers
Complete list of metadatas

Cited literature [34 references]  Display  Hide  Download
Contributor : Publications Ampère <>
Submitted on : Friday, January 29, 2016 - 1:49:38 PM
Last modification on : Tuesday, January 5, 2021 - 12:32:03 PM
Long-term archiving on: : Friday, November 11, 2016 - 8:20:17 PM


Files produced by the author(s)


  • HAL Id : hal-00729081, version 1


Arnaud Lelevé, Minh Tu Pham, Mahdi Tavakoli, Richard Moreau. Towards delayed teleoperation with pneumatic master and slave for MRI. ESDA2012, Jul 2012, Nantes, France. pp.82782. ⟨hal-00729081⟩



Record views


Files downloads