A multipoint iterative method for semistable solutions

Abstract : This paper deals with variational inclusions of the form : $0\in \varphi(z)+F(z)$ where $\varphi$ is a single-valued function admitting a second order Fréchet derivative and $F$ is a set-valued map from $\R^q$ to the closed subsets of $\R^q$. In order to approximate a solution $\bar z$ of the previous inclusion, we use an iterative scheme based on a multipoint method. We obtain, thanks to some semistability properties of $\bar z$, local superquadratic or cubic convergent sequences
Type de document :
Article dans une revue
Applied Mathematics E - Notes, Tsing Hua University, 2012, 12, pp.44-52
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00728816
Contributeur : Célia Jean-Alexis <>
Soumis le : jeudi 6 septembre 2012 - 16:49:04
Dernière modification le : lundi 21 mars 2016 - 11:34:38

Identifiants

  • HAL Id : hal-00728816, version 1

Collections

Citation

Burnet Steeve, Célia Jean-Alexis, Alain Piétrus. A multipoint iterative method for semistable solutions. Applied Mathematics E - Notes, Tsing Hua University, 2012, 12, pp.44-52. 〈hal-00728816〉

Partager

Métriques

Consultations de la notice

108