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ABSTRACT: In this paper we consider the Variable Sized Bin Packing Problem (VSBPP), a generalization
of the classical one dimensional Bin-Packing Problem (BPP), where a set of items must be packed into a set
of heterogeneous bins characterized by different volumes and when the cost of unit size of each bin does not
increase as the bin volume increases. The objective is to minimize the total cost of bins needed to store given
items, each item with some space requirement. We develop a new continuous lower bound inspired from a
generalization of the well known continuous lower bound for the classical BPP. Then, we test the performances
of the proposed procedures by means of computational results on benchmarks instances taken from the literature.
Theses results show the relevance of our proposition.

KEYWORDS: Bin-packing problem, Continuous bound, Monotonicity constraint.

1 INTRODUCTION

The classical bin-packing problem (BPP) is a
well-studied combinatorial optimization problem
requiring the assignment of a given set of items
to a minimum number of identical bins of fixed
capacity. This combinatorial optimization problem
belongs to the class of NP-hard problems in the
strong sense (Garey & Johnson 1979). An excellent
survey of this problem can be found in Chapter 2 of
(Coffmann, Garey & Johnson 1997). The influence
and importance of this problem are witnessed by the
fact that it has spawned off various areas of research,
including the fields of algorithms and approximation
algorithms. In the natural generalization of the
BPP known as Variable Sized Bin-Packing Problem
(VSBPP), bins are grouped by category and each
one contains infinite identical bins with the same
cost and capacity, the objective function becomes
to minimize the total cost of bins used to pack all
items. This particularity arises in many practical
applications such as cutting-stock problems, loading
truck problems, assignment of process to processors,
machine and telecommunication scheduling.

In this paper, we investigate the off-line one dimen-
sional VSBPP when the monotonicity constraint
was verified (Kang & Park 2003) (the unit cost of
each bin does not increase as the bin size increases).
Each category of bins can be seeing with an infinite

number of identical bins. The objective is to mini-
mize the total cost of bins used to store given items
where each item must be assigned in at least one bin.
In other words, the greatest item cannot exceed the
largest bin.

The literature on VSBPP bounding algorithms is
quite rich. This problem was first investigated by
Friesen and Langston (Friesen & Langston 1986).
The authors gave three approximation algorithms
with worst-case performance bounds of 2, 3/2 and
4/3. Then, Murgolo (Murgolo 1987) gave a fully
polynomial time asymptotic approximation scheme
for the problem. Monaci (Monaci 2002) solved the
VSBPP by means of branch and bound algorithm
applied on instances which consider 3 to 5 bin-types
and at most 500 items. Other methods have been
used to solve this problem; we see a discretized
formulation of Correia et al (Correia, Gouveia
& da Gama 2008) where authors make tighter
the mathematic formulation of the problem using
suitable valid inequalities. Kang and Park (Kang
& Park 2003) described and analyzed two greedy
algorithms based on well-known BPP algorithms
(FFD and BFD) where authors ensure the optimal
solution if the sizes of items and bins are divisible,
respectively. For other variants of the problem, it is
worth to note that Epstein and Favrholdt (Epstein
& Favrholdt 2002) featured the VSBPP with maxi-
mizing the number of packed items in a fixed number
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of bins. Recently, Righini et al.(Righini, Bettinelli
& Ceselli 2010) solved the VSBPP with minimum
filling constraint using a branch and price algorithm,
Crainic et al.(Crainic, Perboli, Rei & Tadei 2011)
proposed a solution methodology based on upper and
lower bounds for the VCSBPP (Variable Cost and
Size Bin-Packing Problem) where the cost variation
does not depend on volume.

To our knowledge, no general continuous lower
bounds were proposed before for the VSBPP. So,
a formal definition and a basic formulation for this
problem are given in the next section (section 2). In
Section 3 we define the well known simplest continu-
ous lower bound for the classical BPP. Then, we draw-
ing it for the cases of two categories of bin. After that,
we generalize our study to the case where the num-
ber of bin categories is greater than two. The perfor-
mances of proposed lower bound are tested in Section
4 by means of computational results on benchmarks
instances taken from the literature. Finally, we close
this paper with concluding remarks.

2 Problem formulation

Consider a set I = {1,2, ...,n} of n items, a set
K = {1,2, ...,m} of m bin-types, and a set Jk =
{bk

1,b
k
2, ...,b

k
nk
} of a fixed and sufficient number nk of

identical bins for each bin-type k∈K. Let Hk,ck be the
capacity and the cost of the kth bin-type respectively.
Let hi ∈N+ be the size of item i where hi ≤maxk(Hk)
∀i ∈ I. Without loss of generality we assume that
h1 ≥ h2 ≥ ...≥ hn and H1 ≥H2 ≥ ...≥Hm. The VSBPP
consists in assigning each item i to one bin in order
to minimize the total cost of used bins. This prob-
lem is a natural generalization of BPP where only one
bin-type is considered. In this paper, we investigate
the VSBPP when the unit cost uk = ck/Hk of kth bin-
type does not increase with the size of bin-type, then
u1 ≤ u2 ≤ ...≤ um. The VSBPP can be modeled as an
integer linear program (ILP) by introducing two sets
of binary variables: xi jk equal to 1 if item i is assigned
to bin j of bin-type k, 0 otherwise; y jk taking value 1
if bin j of kth bin-type is used, 0 otherwise. Then we
have the following ILP:

min(
m

∑
k=1

nk

∑
jk=1

ck · y jk) (1)

n

∑
i=1

hi · xi jk ≤ Hk · y jk k = 1, ...,m; jk = 1, ...,nk.(2)

m

∑
k=1

nk

∑
jk=1

xi jk = 1 i = 1, ...,n. (3)

xi jk ∈ {0,1};y jk ∈ {0,1} ∀i ∈ I,∀k ∈ K (4)

The objective function to be minimized (1) represents
the cost of the bins used to pack all the items. Con-
straint (2) indicates that the amount packed in each
used bin does not exceed the capacity of this bin.
Constraint (3) ensures that each item i has to be
packed, whereas the constraint (4) represents the inte-
grality constraint. In our investigation, the following
data that correspond to the above problem are known
and available at the beginning of assignment:

• the quantity and sizes of items;

• the number of bin-types with the quantity and
capacity of each one;

• the cost or unit cost of each bin-type.

3 Continuous lower bound (CLB)

Continuous lower bound is a relaxing bound consid-
ered where items can be assigned to bins in fractional
way or where items are considered like item of unit
size. This problem is combinatorial for m > 1 where
m represents the number of bin-types, and it is also
NP-hard. The optimal solution of this problem called
in what follows ’optimal continuous solution’ can be
obtained by solving the following integer linear pro-
gramming (ILP):

min
m

∑
k=1

ck · xk (5)

m

∑
k=1

xkHk−
n

∑
i=1

hi ≥ 0 (6)

0≤ xk ≤
⌈

∑i hi

Hk

⌉
k = 1, ...,m. (7)

where xk is an integer represents the number of bins
used from category k.

3.1 CLB for the classical BPP

For the classical BPP (m = 1), the objective is to min-
imize the number of identical bins needed to store all
items. Therefore, the simplest allowed lower bound
corresponds to the so called continuous lower bound
reported by Martello et al.(Martello & Toth 1990b)
and denoted CLBBPP. This lower bound computed
as the rounding up of the sum of the item sizes di-
vided by the bin capacity, by solving the previous ILP
(5–7):

x1 = LBBPP(I) =
⌈

∑i∈I hi

H

⌉
(8)
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In terms of cost, when we have to minimize the total
cost of used bins equation (8) becomes:

LBBPP(I) = c ·
⌈

∑i∈I hi

H

⌉
(9)

3.2 CLB for the Two-VSBPP

Let’s now consider the case of only two categories
of bins with pairs (H1,u1) and (H2,u2) representing
the capacity and unit cost respectively. We called
in the sequel this cases Two-VSBPP. Without loss
of monotonicity constraint imposed in this paper
(H1 ≥H2 and u1 ≤ u2), it is obvious that, if c1 ≤ c2 the
last bin-type is dominated and should consequently
not considered. Then, we consider only the first
bin-type which represents the cheapest bins and the
lowest unit cost bin. Therefore, the corresponding
lower bound is given by formula (9), by considering
c and H as the cost and the capacity of the first
category of bins (c1 and H1).

3.2.1 cases of c1 > c2

A more important contribution concerns the cases
of c1 > c2. Indeed we suggest a tighter continuous
lower bound. Under the assumption that items can
be split, we will consider in the sequel, a continuous
quantity S which initially represents the total size of
items I. The optimal packing is performed by using
only bins of category 1 (each bin is completely filled).
In other words, if S exactly divides the capacity of
the lowest unit cost bin-type, then, continuous lower
bound is directly given by considering only the first
category of bins. Otherwise, the remaining quantity
which is not yet considered (denoted Q in what
follows) can be assigned according to the cost and
the capacity of the second category of bins.

We consider a positive integer value α (α ∈ Z+ ) rep-
resenting the quotient of both costs. Then, we have:

α =
⌊

c1

c2

⌋
⇒ α≤ c1

c2

⇒ c1 ≥ α · c2 (10)
⇒ u1 ·H1 ≥ α ·u2 ·H2

⇒ H1 > α ·H2 (11)

In order to minimize the total cost of the used bins,
it is obvious from formula (10) and (11) that using
α bins of category2 requires a lower cost than using
one bin of category1. Consequently, if the remaining
quantity Q of the sum S is less than αH2, it is
more advantageous to restrict to the use of bins of
category2.

Moreover, from 10 we have:

c1 + c2 ≥ (α+1) · c2 (12)

Hence, we conclude from formula (12) that if the
remaining quantity Q of S exceeds the capacity of
the first category of bins and at the same time it is
less than (α + 1)H2, then it is more advantageous to
use (α + 1) bins of category 2 instead of combining
one bin of category1 and one bin of category2.

Consequently, our continuous lower bound helps in
continuously filling up bins of category1 until we get
the remaining quantity Q less or equal to max(H1;(1+
α)H2). So, continuous lower bound of remaining
quantity Q will be given according to one of the fol-
lowing cases:

CLB(Q) =





c2 · d Q
H2
e if 0 < Q≤ αH2

c1 if αH2 < Q≤ H1
(α+1) · c2 H1 < Q≤ (α+1)H2

(13)

where Q≤max(H1;(1+α)H2).

The main steps of continuous lower bound calcula-
tion for a given quantity S can be summarized in
algorithm 1.

Algorithm 1 Two-VSBPP continuous lower bound
whith c1 > c2.
Procedure CLBTwo−V SBPP(S,α)
1: CLB = 0;V = 0;
2: while S > max(H1;(1+α)H2) do
3: CLB = CLB+ c1;
4: S = S−H1;
5: end while
6: if (S≤max(H1;(1+α)H2)) and (S 6= 0) then
7: if (0≤ S≤ αH2) then
8: V = c2 · dS/H2e;
9: else

10: if αH2 ≤ S≤ H1 then
11: V = c1;
12: else
13: V = (1+α) · c2;
14: end if
15: end if
16: end if
17: CLB = CLB+V ;
18: return CLB;

For illustration, given two categories of bins with
pairs (6, 1) and (4, 1.1) respectively, so α = 1, and
given a set I of five items with sizes 5, 5, 5, 3, 2, so,
the total items size S is equal to 20. The continuous
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lower bound can be calculated progressively in three
iterations by using two bins of category1 and two
bins of category2 with a total cost of 20.8;

3.2.2 cases of c1 > c2 and H2 > 1
2 H1

A particular case can be shown when H2 > 1
2 H1. For

that, we define two subsets of mutually complemen-
tary items I

′
and I

′′
are defined such as:

I
′
= {i ∈ I : H2 < hi ≤ H1} and I

′′
= I\ I

′

Obviously, we cannot assign more than one item of
I
′
to the same bin of category1. Moreover, each item

of I
′

will be loaded to a different bin of category1.
Thus, we suppose that only items of I

′′
are used in

a continuous way in order to completely fill bins of
category1 initially occupied by items of a subset I

′
.

Then, the remaining quantity Qr of I
′′

which will be
assigned, can be defined as:

Qr = max(0;S− (|I ′ | ·H1)) (14)

So, the total cost of the used bin becomes the cost of
a single bin needed to fit each item of subset I

′
, plus

the cost obtained by application of continuous lower
bound to the remaining quantity Qr of a subset I

′′
.

So, algorithm 1 becomes:

Step 0 Separate out subsets I
′
and I

′′
from initial set

of items I;

Step 1 Put CLB
′
= c1 · |I′ | and calculate the quantity

Qr using formula(14);

Step 2 Apply Procedure CLBTwo−V SBPP(Qr,α) to
obtain continuous lower bound CLB

′′
corre-

sponding to the remaining quantity Qr;

Step 3 Continuous lower bound CLBTwo−V SBPP(I)
will be obtained by summing the both costs CLB

′

and CLB
′′
;

For illustration we consider as well the previ-
ous example, only items of size 5 are assigned
to bins of category1. Application of procedure
CLBTwo−V SBPP(Qr,α) to remaining quantity (Qr = 2)
leads to the use of one bin of category2. Then, the
total cost (continuous lower bound) becomes 22.4 and
corresponds to the use of three bins of category1 and
one bin of category2.

3.3 CLB for the general VSBPP

We now generalize our study to the case where
the number of bin categories is greater than two.

We suppose that c1 > c2 > ... > cm and we also
suppose that α j : α j ∈ Z+ is the positive integer value
represents the cost quotient between both bins of
category j and bins of subsequent category j + 1,
with j = {1, ...,m−1}.

Starting from the two first categories of bins, we will
refer the same reasoning as in the previous case (case
of two categories of bins). In each iteration we save
the obtained cost solution. Then, we try to improve a
continuous lower bound by considering the remaining
quantity to be assigned to the second category
j + 1, as an input quantity in the next iteration
which consider the current j + 1 and the subsequent
j + 2 category. In this way, our continuous lower
bound GCLBV SBPP(I) consists of iteratively running
procedure CLBV SBPP( j, j +1,Q,α j) for two successive
categories of bins ( j, j + 1), where in each iteration
only the given quantity assigned to the last category
of bins is considered for the next iteration. In other
words, starting from a quantity S which is a sum of
size of items, our procedure attempts to find a better
assignment of remaining quantity provided in each
iteration. Continuing this procedure until either
j = m or S = 0, we have some feasible solutions at
hand and the best solution among them is selected
as the final solution.

The general GCLBV SBPP(I) can be implemented iter-
atively or recursively. An iterative implementation is
shown in Algorithm 2.

Algorithm 2 VSBPP continuous lower bound in the
general cases.
Procedure GCLBV SBPP(S)
1: GLB(0)← 0;
2: V (0)← 0;
3: j ← 1;
4: while ( j 6= m−1)or (S 6= 0) do
5: Call Procedure CLBTwo−V SBPP( j, j + 1,S,α j)

and get CLB( j) and V ( j);
6: S←Quantity assigned to category ( j +1);
7: GLB( j)← GLB( j−1)−V ( j−1)+CLB( j)
8: j ← j +1;
9: end while

10: return min(GLB( j))

In the general case where it is not necessary that
c1 > c2 > ... > cm, we initially considered the first
bin-type for the continuous lower bound calculation,
then, only the next lowest cost category compared
from the last taken will be taken into account.

For illustrates this procedure, let us take an example
with 5 bin-types with triplet capacity, unit cost and
cost are respectively (200, 1, 200); (180, 1.5, 270);
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(100, 1.7, 170); (90, 2, 180); (50, 3, 150). Hence, the
continuous lower bound will be calculated by proce-
dure of algorithm 2 with considering only the first, the
third then the fifth bin-type, because c1 > c3 > c5.

4 Computational results

Proposed continuous lower bound procedure was
coded in C++ and ran on an Intel Xeon 2.0 GHz
with 2GB of RAM under a Windows XP operating
system. We consider two data-sets called in what
follows DS1 and DS2 respectively. Theses data-sets
are inspired from the VSBPP literature, generated
by Monaci (Monaci 2002) and involves instances
with up to 500 items and 5 categories of bins. These
data-sets involve instances with n = 25,50,100,200
and 500 items, which are split into six groups
according to the number of bin-types (3 or 5) and
the intervals in which the item sizes vary ([0− 100],
[20− 100], [50− 100]). Each combination: number
of items, number of bin-types and item size dis-
tribution, contains 10 instances. Consequently, we
get a total of 300 instances for each data-set (DS1
and DS2). Moreover, we fixed the unit cost in such
that we verify the condition c1 > c2 > ... > cm and
we assume that ui+1 = ui + 1/10 with u1 = 1. The
difference between data-sets DS1 and DS2 lies in the
considered bin-type capacities (H j). For the first
data-set, we considered 3 bin-types with capacities
150,120,100 respectively; or 5 bin-types with ca-
pacities 150,120,100,80,60 respectively. Whilst, in
the DS2 instances, in addition to the monotonicity
criterion, we also assume that at least there is
an α j > 1. Then, we consider 3 bin-types with
capacities 250,110,60 respectively; or 5 bin-types
with capacities 300,250,100,80 and 20 respectively.

We summarized the computational results of the
CLB in tables 1 and 2 using data-sets DS1 and DS2
respectively. These results are given as averages
of every three intervals of items size, i.e. each
line contains average values over 30 instances and
evaluated up to the optimal continuous solution ob-
tained by solving the ILP (5- 7) using an exhaustive
enumeration to test all possible combinations. A
limiting time of ten seconds is imposed on calculation
of the optimal continuous solution of any instance
and drawn characters refer to cases where this time
limit was reached.

Both tables 1 and 2 contain three blocks. The first
contains the number of items and the number of
bin-types respectively. The two others give the
results referred to both the simplest lower bound
SLB calculated with formula (9) and our continuous
lower bound CLB. Each block contains three columns
showing: 1)-the average deviation dev% computed

Table 1: Computational results of continuous lower bound
using data-set DS1.
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B
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Table 2: Computational results of continuous lower bound
using data-set DS2.
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as ((C∗ −CLB)/C∗) · 100, where C∗ is the optimal
continuous solution obtained by solving the ILP and
CLB is the solution obtained by the corresponding
lower bound; 2)-the number opt. which gives the
number of times where the optimal solution has been
reached; 3)-the average computing time ct. of the
corresponding solution, in microseconds.

Computational results indicate that the same per-
formances are provided for both DS1 and DS2. In
the two features, the CLB is more powerful than
the SLB and a very close solution to optimality
can be found in very reasonable time. For the DS1
instances, the deviation of solutions is less than 0.7%
in the worst case and of 0.3% in average, while, for
the DS2 instances it is less than 0.5% in the worst
case and of 0.13% in average. In addition, CLB
ensures that more than 60% of the DS1 instances
and more than 76% of the DS2 instances lead to the
optimal solution. Computing time (in microseconds)
indicates the speed performance of both CLB and
SLB which increases with the number of bin-types.
Results for m = 5 and n = 200,n = 500 are not shown
because the time limit was attained in the calculation
of the optimal solution, but this limit wasn’t attained
in the CLB and SLB solution calculation.

Results of comparison between SLB and CLB are
obviously awaited, insofar as contrary to CLB, the
SLB takes into account only the lowest bin-types unit
cost with infinite capacity. Then, optimal solutions
are given when the sum of items size is divisible by the
capacity of the taken bin-type. This is why optimal
solutions are given for only two instances over 240 we
have tested. Finally, from these results it should be
noted that overall, with CLB we were able to find an
adequate continuous lower bound for the VSBPP in
a lower computing time and consequently the CLB
can substitute the optimal solution to evaluate any
resolution methods.

5 Conclusion

The VSBPP is a hard combinatorial optimization
problem of practical interest. It is a generalization of
the well-known one dimensional BPP where we con-
sider more than one category of bins. In this paper
we have discussed a particular case of the VSBPP
where sizes and costs of bin-types satisfy monotonic-
ity constraints (Kang & Park 2003). For this prob-
lem, we have described a new continuous lower bound
based on generalization of the well known continuous
lower bound for the BPP; used as a basis to com-
pare different algorithms. Numerical experiments on
VSBPP-instances show the relevance of our contin-
uous lower bound and its relatively low computing
time, in particular when the quotient between both

costs of bin-types is important and when items are
small than possible.
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