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ABSTRACT: This paper addresses the joint carrier’s selection and inventory control problem in two stage supply 
chains. To meet the random market demand and to deal with periods of unavailability of the internal transportation 
fleet, the shipper has two disparate decisions to make. At the first stage, the random lack of internal and external 
transportation capacities needs to be governed and compensated at the accurate moment by another carrier who is 
required from the spot market. At the second stage, the distribution center needs to respond to the market demand with 
minimal inventory and backlog costs. Our objective is to find joint optimal strategies for the carriers selection and the 
distribution center inventory control that minimizes the expected discounted cost of transportation, inventories and 
backlogs/late deliveries. It is shown that from a mathematical point of view, the considered problem is difficult to tackle 
and it calls upon dynamic programming and optimal control theory notions. A dynamic programming formulation of the 
problem is thus proposed. A numerical schema is then proposed to solve the obtained optimality conditions equations. 
A complete joint strategy is finally developed and analyzed. To illustrate the practical usefulness and the robust 
behavior of the developed strategy, several sensitivity analyses are carried out. 
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1 INTRODUCTION 

Nowadays, outsourcing is becoming an important com-
ponent of competitive strategy for companies. Outsourc-
ing is defined as passing a part or all of the logistics 
functions to another organization (Parashkevova, 2007). 
According to Transport Intelligence (2006), around 
US$265 billion is outsourced of the total US$972 billion 
logistics market in the world to contract logistics provid-
ers and freight forwarders. There are many factors that 
may act as driving forces behind outsourcing. Globaliza-
tion of business has been viewed by many authors as the 
most prominent one (Trunick, 1989; Sheffi, 1990; Pi-
rannejad et al., 2010). The lack of internal capacity also 
forces sometimes companies to use an external logistics 
provider. Another major factor promoting outsourcing is 
the adaptation of the just-in-time (JIT) principles in 
many firms. With the shift to JIT delivery, inventory and 
logistics control have become more crucial to manufac-
turing and distribution operations (Sheffi, 1990; MA 

Razzaque and Sheng, 1998). The main goal of outsourc-
ing is the reduction of labor costs. Elliot (2006) states 
that, “in most cases the objective of outsourcing is a 
targeted 20% cost reduction, with actual savings coming 
from direct labor and variable costs.” 
 
The most frequently outsourced service is freight trans-
portation. Compared to all outsourced logistics activities, 
the percentage of the outsourced domestic and interna-
tional transportation service reached 91% and 87% in 
Europe, 85% and 89% in Asia-Pacific and 77% and 68% 

in North America, in 2007 as reported by The State of 

Logistics Outsourcing.  
Freight transportation carriers present the physical con-
nection between shippers and their customers. Shippers 
are the beneficial owners of freight; they can be for ex-
ample manufacturers, distributors, and retailers. Carriers 
are transportation companies such as trucking, railroads, 
airlines, and ocean transport providers. When outsourc-
ing their transportation activities, companies cope with 
an important decision problem: carriers’ selection.   
Several studies pointed out that shippers generally con-
sider several criteria when selecting carriers. Premeaux 
Shane (2002), for example, reported six criteria consid-
ered as important by shippers: information access, con-
sistent performance, solid customer relations, flexible 
rates, service quality, and the availability of certain de-
sired services such as effective responses in emergency 
or unexpected situations. Hong et al. (2004) emphasize 
on four criteria which are service quality, rate level, 
service reliability, and service speed. Voss et al. (2006) 
and Liao and Rittscher (2007) reported that the reliability 
of delivery and transfer prices are the first two criteria 
for selecting carriers. The reader is referred to Meixell 
and Norbis (2008) for an extended survey on carrier’s 
selection criteria. 
 
Building on these criteria, many researchers have tackled 
the problem of carriers’ selection at a strategic level and 
proposed many approaches to solve it. Liberating and 
Miller (1995), for example, suggested the use of the 
Analytic Hierarchy Process (AHP) by incorporating 
transportation costs and service quality. Other authors 
used mathematical programming methods and heuristics 
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for carrier’s selection, in cases where demand is deter-
ministic or static (Moore et al. (1991), Bolduc et al. 
(2007), Mohammaditbar and Teimoury (2008)). Moore 
et al. (1991) studied the case of Reynolds Metal Compa-
ny for selecting and deploying truck carriers. They de-
veloped a MIP (Mixed Integer Programming) model to 
formulate the problem. The MIP has a single objective 
that minimizes the costs incurred in moving goods 
(freight costs) subject to individual carrier capacity con-
straints, equipment commitments, and other transporta-
tion-specific concerns. Bolduc et al. (2007) discussed the 
problem of simultaneously selecting customers to be 
served by external carriers and routing a heterogeneous 
internal fleet. They propose a SRI (selection, routing and 
improvement) heuristic which aims to minimize the sum 
of the external carrier cost and the variable and fixed 
costs of the internal fleet. Mohammaditbar and Teimoury 
(2008) addressed the problem of selecting carriers for 
serving specific company needs. They developed a linear 
programming model to determine the number of ship-
ments allocated to selected carriers with the objective of 
maximizing profit and minimizing the inventory and 
transportation costs. Caplice and Sheffi (2003, 2006, and 
2007) propose an auction-based trading mechanism for 
the procurement of transportation services. In such auc-
tions, the shipper submits its transportation requests, also 
called lanes, to the participating carriers. Then carriers 
compete by submitting bids on package lanes, called 
combinatorial bids, to the shipper. The latter selects 
winning bids so as to minimize the total transportation 
procurement cost. This problem is known as the winner 
determination problem (WDP). The authors developed 
mathematical models for solving the WDP problem 
under several contexts.  
 
Others papers proposed approaches to select carriers in 
case where demand is dynamic. Liao and Rittscher 
(2007), for example, treated the integration of three deci-
sions: (1) supplier selection, (2) dynamic procurement 
lot sizing or replenishment and (3) carrier selection for a 
single purchasing item over multiple planning periods. A 
multi-objective programming model is developed and a 
genetic algorithm is proposed to obtain good solutions. 
The multiple objectives include the total logistics cost, 
the total quality rejected items and the total late deliver-
ies. Lin and Yeh (2010) discussed the carrier selection 
with the network reliability including air routes and land 
routes. The objectives of this study are first to find the 
optimal choice of carriers that maximizes the network 
reliability and second to determine the routes assigned to 
each selected carrier. They developed a genetic algo-
rithm to solve this problem, named OCSNR (Optimal 
Carrier Selection problem based on Network Reliabil-
ity).  
 
To the best of our knowledge, the issue of selecting 
carriers at the operational level in a dynamic stochastic 

context remains open. This paper discusses this issue in 
the case where a company should move a family of 
products from a warehouse to a distribution center. To 
ensure this shipment service, the decision maker has to 
decide whether using its internal fleet or an external fleet 
belonging to a for-hire contract carrier already selected 
at a strategic level. In addition to these two fleets, one 
can decide to go for carriers from the spot market, called 
“spot carriers” in the rest of the paper. Considering spot 
carriers becomes necessary in the case where the capaci-
ties of internal and external fleets are insufficient due to 
the uncertainty characterizing the carrier’s availabilities 
and the market demand. Indeed, Caplice (2007) reported 
that three most common contractual arrangements are 
traditionally used by shippers for truckload services: 
private fleets, for-hire contract carriers, and spot. For-
hire contracts assume a relatively long-time period (one 
year or longer) on which the shipper and the carrier en-
gage on. The main goal of this paper is to determine the 
optimal policy for selecting the internal, for-hire contract 
and spot carriers subject to their availabilities, the varia-
bility of demand and the variability of inventory in the 
distribution center so as to minimize the transportation, 
storage and backlog costs. We propose a continuous 
dynamic programming formulation of the problem. A 
numerical approach is adopted to solve the associated 
optimality equations. Several sensitivity analyses are 
carried out and show the robust behavior of the devel-
oped policy. 
 

The reminder of the paper is organized as follows. Sec-
tion 2 presents the statement of the problem. Section 3 
presents the numerical approach. Section 4 describes the 
resolution approach. The obtained results and the related 
carriers’ selection strategy are presented and developed 
in Section 5. Section 6 contains discussions and conclud-
ing remarks. 

2 PROBLEM STATEMENT 

The problem under study consists of choosing the best 
carriers selection strategy to ship a family of products P 
from a warehouse to a distribution center belonging to 
the same company. In a dynamic stochastic context, the 
decision maker has to find the best compromise regard-
ing which carrier is willing to insure the shipments given 
the real conditions under which the system dynamic 
evolves. These conditions are related to the available 
inventory in the distribution center, the availability of 
carriers and the demand status. The overall optimal deci-
sion policy is defined here as one that minimizes the 
expected long term total cost of inventory, backlog and 
transportation costs, in the presence of random availabil-
ity of carriers and random demand. Figure 1 illustrates 
the system under study, its dynamic behavior, and the 
associated costs to be minimized.  
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The following notations are used in the rest of this paper: 
i : Internal fleet index; 
e: External carrier index; 
s: Spot carrier index; �(�): Demand rate at time t; �(�) : Inventory/backlog stock levels of the distribution 

center at time t;  ��(�) : The internal fleet transportation capacity availa-
ble at time t; ��(�): The external fleet transportation capacity availa-
ble at time t; ��(�) : The spot carrier transportation capacity available 
at time t; ����� : Maximal transportation capacity of the internal 
fleet; �����  : Maximal transportation capacity of the external 
fleet; �����  : Maximal transportation capacity of the spot 
carriers; ���(�) : Continuous time and finite state Markov process 

of internal fleet i; ���(�) : Continuous time and finite state Markov process 

of external fleet e; ���(�) : Continuous time and finite state Markov process 

of demand; � : Per unit time inventory cost of one unit product P; � : Per unit time backlog cost of one unit product P; �� : Per unit product transportation cost of internal fleet; �� : Per unit product transportation cost of external fleet; �� : Per unit product transportation cost of spot carrier; 
ρ : Discounted rate of the incurred cost; 
J(.) : Expected and discounted total cost function; 
 
The state of the system at time t has three components: 

� a continuous part, measured by	�(�), which de-
scribes the cumulative surplus of product P at the 
distribution center, 

� a discrete part which describes the internal and the 
external fleet availability state. It is assumed here 
that spot carriers are always available, 

� a discrete part which describes the demand level at 
time t.   

 
The state of the internal fleet is described by the random 

variable 	���(�) with values in Mi = {1, 0}. This state is 
assumed to evolve according to a continuous time dis-
crete state Markov chain where: 
 

     1 if the internal fleet is available          (1) 
     0 if the internal fleet is unavailable 

 
Similarly, the state of the external fleet is represented by 
a continuous time discrete state Markov chain ���(�) with 
values in Me = {1, 0} where: 
 

      1 If the external fleet is available              (2) 
      0 If the external fleet is unavailable 

 
The operational mode of the carriers can be described by 

the random vector �� (���	,	���) taking values in M = Mi × 
Me. ��(�)	can be expressed as follows: 
 

( ) )3(

eunavailabl fleets external & internal)0,0(4

available external & eunavailablfleet  internal)1,0(3

eunavailabl external& availablefleet  internal)0,1(2

available are fleets external& internal)1,1(1













=

=

=

=

=tcζ

 
The internal and external fleet uptimes and downtimes 
are assumed to be exponentially distributed with their 
availability rate. The transportation system state evolves 
according to a continuous-time Markov process with 
states in M and with a generator matrix Q� 	such that: ��= (((( !"� )))), where q$%& 	denotes the transition rate from 

state α to β,	q$%	& ≥ 0 and	�(( = −∑ �(,	,-( ,	., 0 ∈ 2. 

The transition rate matrix Q� is expressed as follows: 
 
 �� 	=                                                          (4)    
 
 

Figure 1: System under study 
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The demand of product P to be satisfied from the distri-
bution center is random and its rate can take two values 
d1 or d2. The random process of demand is described by 
a continuous time discrete space stochastic process ��(�) 
with values in Md = {1, 2}. ��(�) takes 1 if d=d1 and 2 if 
d=d2. 

The generator matrix ��= (((( 345 )))), where q67& 	denotes the 

transition rate from state 3 to 4,	q67	8 ≥ 0 and	��33 =	−∑ ��34	9-: , ;, <	 ∈ 2�  is expressed as follows: 

 

 	��  =   =���� ��	��	�� �		� =                  (5) 

 
The dynamic of the stock levels is given by the follow-
ing differential equations: 
 �> (�) = ��(�) + ��(�) + ��(�) − 	�(�)     (6) 
 
At any given time, the available transportation capacity 
of the internal fleet, the external fleet and the spot carri-
ers have to satisfy the overall capacity constraint. These 
constraints are given by equations (7), (8) and (9) 
where	����� , �����  and �����  denote the maximal 
transportation capacities of the internal fleet, external 
fleet and spot carriers, respectively. 
 

                           0	 ≤ 	��(�) ≤ 		 �����	                      (7) 

0	 ≤ 	��(�) ≤ 		�����           (8) 

                            0	 ≤ 	��(�) ≤ 		�����                       (9) 

Without loss of generality, due to the random availability 
of the internal and the external fleet, noted ABC�  and ABC�  respectively, we assume that the expected average 
demand rate cannot be met with internal and external 
fleets. This constraint is given by the following equation: 
 ����� ×	ABC� +	����� ×	ABC� < �E(�)   (10) 
 

Where �E(�) denote the expected average demand rate 
given the stochastic process	��(�). 
One should note that ABC�  and ABC� can be easily found 
from the transitions rates expressed from the individual 
or the overall Markov chains given by equations (1) to 
(4).  
As mentioned previously, the presence of spot carriers 
makes it possible to meet the demand, constraints (10) 
becomes in this case:  
 ����� ×	ABC� +	����� ×	ABC� + ����� 	 ≥ �F(�)  (11)                                                           

 
The set of admissible capacity of all carriers is given by:  
 

A = H I��(�), ��(�), ��(�)J;		0	 ≤ 	�L(�) ≤ 		�L���; M = N, O, P; 	����� ×	ABC�	+	����� ×	ABC� + ����� 	 > �(�) R (12) 

 

Our decision variables are the per-period transportation 
capacities assigned to the internal fleet, external fleet and 
spot carrier given by (��(�),	��(�), ��(�)). Given the 
maximal available capacities of the fleets and the overall 
state of the system (i.e., random availability of internal 
and external fleets, demand rate and inventory level in 
the distribution center), admissible decisions cover the 
two boundaries of the decision space either internal fleet, 
external fleet and spot carrier are not selected (i.e, ��(�)=0, ��(�)=0, ��(�)=0), or selected and they moved 
frets under their maximum transportation rate (i.e, ��(�)=����� , ��(�)=�����, ��(�)=�����).  
The decision made by the shipper is also conditioned by 
the involved transportation costs. Let	��, �� and �� de-
note the per unit product transportation cost of internal 
fleet, external fleet and spot carrier, respectively. With-
out loss of generality, it is reasonable to assume that 
moving goods by the spot carrier is much more costly 
than using the external and internal fleets. This assump-
tion is given by:  
 �� < 	�� ≪	��              (13) 
 
The inventory, backlog costs applied in the distribution 
center and the transportation cost are expressed by the 
following instantaneous cost function g(.) : 
 

g(�, �� , �� , ��)	= 	��T + ��U +	��	��(�) +         (14) ����(�) +	����(�) 
 
Where �T =	max (0,�), �U =	max (-�, 0); � and � are 
positive constants representing the inventory /backlog 
costs due to surplus and late delivery, respectively.  
 
The discounted total cost J(.) can be defined by the fol-
lowing equation: 
 J(x, α, ;, ��, �� , ��) = EZ[ OU\]	^(�, �� , �� , ��). ��à b	    (15) 

 
Where ρ denotes the discounted rate of the incurred cost 
and cd. |�a.a;af	is the expectation operator conditional 
to the initial overall system state conditions. 
 
The considered problem consists in finding an admissi-
ble decision or control policy that minimizes the dis-
counted total cost J(.) (15), subject to the system dynam-
ic and constraints (3) to (14). Such a feedback control 
policy, as illustrated in Figure 1, determines the per 
period transportation volume to affect to the available 
carriers function of the surplus level x, the state of the 
system α and the state of demand 3.  
 
The value function of the transportation problem is de-
scribed as follows:  
 g	(�, ., ;) = 	min(kl,km,kn)∈o p(�, ., ;, �� , �� , ��)		      (16) ∀	. ∈ 2, ;	 ∈ 2�  
 
Hamilton Jacobi Bellman (HJB) equations associated 
with the value function (16) are a hyperbolic system of 
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partial differential equations. These equations describe 
the optimal control strategy of the carrier's selection and 
inventory control problem and are given by: 
 r. g	(�, ., ;) = 	min(kl,km,kn)∈s t(�� + �� +	�� −�) uu� g	(�, ., ;) + 	^(�, �� , �� , ��) +	∑ �,(g	(�, 0, ;) +,∑ �9:g	(�, ., <)9 v               (17) 

 
One can show that the value function (16) is locally 
Lipschitz and is the unique viscosity solution to the HJB 
equations (17). We refer the reader to Hajji et al. (2009), 
Sethi and Zhang (1994) and the references given therein 
for more details.  
 
The carrier‘s selection policy that we are seeking for is 
obtained when the value function is known. While it’s 
very complex if not impossible to analytically solve the 
HJB equations (17), the next section proposes a numeri-
cal method to obtain the approximation of the value 
function and the associated control policy. 

3 NUMERICAL APPROACH 

Numerical approaches are used to discretize and reduce 
the infinite space state associated to the problem. Thus, 
the unlimited domain, which is associated with broad 
control horizon, is replaced by a limited area including 
proper boundary conditions of the borders. The solution 
of this system must converge to the solution of the initial 
problem when the discretization step tends to zero.  
 
In order to approximate the solution of the HJB 
equations (17) corresponding to the stochastic optimal 
control problem, and to solve the corresponding 
optimality conditions, a numerical method based on 
Kushner and Dupuis (1992) approach is adopted. The 
basic idea consists in using an approximation scheme for 
the gradient of the value function	g	(�, ., ;). Let h 
denotes the length of the finite difference interval of the 
variable x. Using the finite difference approximation, w(�, ., ;) is given by	gx 	(�, ., ;). The gradient of the 
value function w�(�, ., ;) is approximated by:  









<−++−−

≥−++−+
=

0))()((
1

0))()((
1

),,()(

duuuifhxvxv
h

duuuifxvhxv
hxv

sei
hh

sei
hh

h
x γα

 (18)

 

                 
Also, we could see that: 

(	��	 + ��	 + ��	 − �) uu� g	(�, ., ;) = 

	y		kl	Tkm	Tkn	–�	yx{ 	.  	gx(� + ℎ�) }�T 	+	 
|		kl	Tkm	Tkn	–�	|	x{ 	. gx(� − ℎ�)}�U	 −	 y		kl	Tkm	Tkn	–�	yx{ 	. gx(�) 
 

Where  }�T =  t1		N�		��	 + ��	 + ��	 − 	�	 ≥ 00		��ℎO��NPO v        (19) 

}�U  =				t	1		N�	��	 + ��	 + ��	 − 	� < 00				��ℎO��NPO v        (20) 

Using this approximation, the HJB equations (17) can be 

expressed in terms of	ν�	�x, α, γ), as shown in equation 
(21). 
 gx 	��, ., ;) = 

		min�kl,km,kn)	�s �	 ����\T���� . ��x(:�gx 	�� + ℎ, ., ;)}�T +
gx 	�� − ℎ, ., ;)}�U) +	���)���� + ∑ �x(�gx	��, 0, ;)	�,��,-(

+
∑ �x:�	gx	��, ., <)		9��9-: �	�                (21) 

 
Where 

�x(: = 	 |	�((| + y	�::y +	 |	kl	Tkm	Tkn	U�|x{                    (22) 

�x(: =		 |	kl	Tkm	Tkn	U�|ℎ1	����                                              (23) 

�x(� =	 �.0�ℎ.;                 (24) 

�x:� =	 �;<�ℎ.;                  (25) 

 �x(:, �x(�  and �x:�  denote transition probability of Markov 

chain controlled in a discrete state space	2 × �x, where �x represents a description of the numerical grid. For 
more details, we refer reader to see Boukas and Haurie 
(1990). 

4 IMPLEMENTATION OF SUCCESSIVE 

APPROXIMATION TECHNIQUE 

The implementation of the approximation technique 
needs the use of a finite grid denoted herein	�x. Thus, 
some boundary conditions are needed to describe the 
behaviour of the system at the border of	�x . These 
boundary conditions are realistic and their influence will 
be negligible since the value function is Lipschitz. In 
addition, if we consider that the optimal policy changes 
rarely when |x| is very large i.e. go over the boundary of 
our grid, then the optimal solution will never be at the 
boundaries of the domain. For the numerical implemen-
tation, the set of constraints presented in Yan and Zhang 
(1997) were used as boundary conditions and given by 
(26). 
 
The area of the grid �x is defined by the following set: �x = �	�; 	−�	 ≤ �	 ≤ ��	; 	�	NP	�	��PN�NwO	N��O^O� 
 

         gx	�−� − ℎ, ., ;) =  gx	�−�, ., ;) + 
�
\ 	ℎ         (26)  

										gx	�� + ℎ, ., ;) =  gx 	��, ., ;) + 
�
\ 	ℎ 

 

Recall that h is the discretization step and let Igx	��, ., ;)J� 
the value function at the nth iteration of the point � at 
state . and ; such as: 
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�gx 	��, ., ;)�� = 

		min�kl,km,kn)	�s �	 ����\T���� .  �x(: �Igx	�� + ℎ, ., ;)J�U�}�T +
Igx	�� − ℎ, ., ;)J�U�}�U� +	���)���� + ∑ �x(�Igx	��, 0, ;)J�U�	�,��,-(

+
∑ �x:�	Igx	��, ., <)J�U�		9��9-: ¡	�                    (27)      

     

where Igx	�� + ℎ, ., ;)J�U� denote the value function at (n-
1)th iteration of the upstream of point �(� + ℎ) at state . 

and ; and Igx	�� − ℎ, ., ;)J�U�denote the function at (n-1)th 

iteration of the downstream of point � (� − ℎ) at state . 

and ;. 
 
The algorithm of successive approximation technique 
runs as follows: 
 
Step1: Initialisation: take ¢	 ∈ 	£T a great error, n=1 and 

  Igx 	��, ., ;)J� = 0	 ∀	�	 ∈ ¤, ∀	.	 ∈ 2, ;	 ∈ 	2� 

 

Step 2:	Igx 	��, .)J�U� = Igx	��, .)J�; 	∀	� ∈ ¤,            													.	 ∈ 2, ;	 ∈ 	2�  
 

Step 3: Calculate value function expressed in equation 
(27);	∀	� ∈ ¤,	.	 ∈ 2, ;	 ∈ 	2� . And the corresponding ��∗, ��∗ , ��∗. 
 
Step 4: Convergence test  
 

 ¦�̅ = ¨©ª«	∈¬[	 Igx 	��, ., ;)J� − Igx 	��, ., ;)J�U�], 

                       ∀	.	 ∈ 2, 	;	 ∈ 	2� . 
 

 ¦	 = ¨­®«	∈¬[	 Igx	��, ., ;)J� − Igx	��, ., ;)J�U�],  

                       ∀	.	 ∈ 2, ;	 ∈ 	2� . 
  	���� = 

\
�U\ 				¨­®						!	∈¯ 	� ¦�̅)   et   	���� = 

\
�U\ 				¨©ª						!	∈¯ 	� ¦	̅) 

 

           °�	|	���� −	����| ≤ ¢		�ℎO�	±���,			�� =	��∗,  �� =	��∗ And	�� = 	��∗ 
    								c²PO	� = � + 1, £O����	��	P�O�	2		 
 
The successive approximation algorithm is used to solve 
equation (27) which defines the optimum conditions for 
the stochastic optimal control problem. The algorithm 
was developed on Matlab R2009b. The obtained results 
are analysed and discussed in the next section. 

5 NUMERICAL RESULTS AND SENSITIVITY 

ANALYSIS  

The numerical results used to characterize the optimal 
selection carriers’ policy are analyzed in this section in 
two steps. First a basic case study is considered to illus-
trate the overall structure and the dynamic behavior of 
the obtained control policy. Then, a sensitivity analysis 
is conducted to insure the robust behavior of the results.  

5.1 Numerical results 

As mentioned previously, the implementation of the 
successive approximation technique requires the defini-
tion of a computation domain which is given by:  
 �x = �	�; 	−10	 ≤ �	 ≤ 20, ℎ = 0.1� 
 
Table 1 shows the operational and cost parameters of the 
considered case study. 
 
Parameters H B ´µ ´¶ ´· ¸µ¹º« ¸¶¹º« ¸·¹º« 

Values 4 20 5 8 14 12 5 3 

Table 1: Data parameters 
 
Demand levels d1 and d2 are equal to 10 and 18, 
respectively. The discounted rate of the incurred cost ρ is 

0.8 and the transition matrixes Q� and Q� 	are expressed 
as follows: 
 

�� = 	 »−0.50.30.250
0.4−0.400.45

0.10−0.550.25 		 00.10.3−0.7À 
 �� = Á−0.4 0.40.6 −0.6Ã 
 
From the Q� transition matrix, one can calculate the 
availability rates of the internal and external fleets. They 
are equal in the considered case study to 71% and 42% 

respectively. It follows from Q�  that demand level d1 and 
d2 occur in average 60% and 40% of the time, 
respectively.   
 
To ensure a clear characterization of the optimal control 
policy in the whole system space, we should solve 
numerically the optimality conditions in the 
computational domain and the other 8 discrete states 
defining the stochastic processes governing the 
availability of the internal and external fleets as well as 
the applied demand levels.  
 
As explained in section 2, these states are defined by (α, 3) where α is the couple (α1, α2) defining the availabil-
ity state of the internal and external fleets and 3 defines 
the demand sate. Thus, states 1 to 8 are a given combina-
tion of the triplet (α1, α2,	3). As given by equation (1) 
and (2) α1 takes values in Mi = {1, 0}, α2 takes values in 
Me = {1, 0} and 3	takes	values	in Md = {1, 2}. For ex-

ample, the overall state 1 = (1, 1,	1) implies that internal 
and external fleets are available and demand rate is equal 
to d1. The overall state is called ψ= {1,..,8}  in the rest of 
the paper. 
 
It follows from the numerical results that the optimal 
carriers’ selection policy has a multiple base stock 
(MBS) structure, which we call the “State Dependent 
Multiple Base Stock Policy” SDMBSP. Within this 
policy, three thresholds of the available inventory in the 
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distribution center are governing the carriers’ selection 

strategy. Let ( )ψ1Z , ( )ψ2Z  and ( )ψ3Z define these 

thresholds. Their values are function of the whole 
discrete state of the system ψ. The structure of the policy 
is illustrated in figure 2. 
 

x

iu eu su

max
Us

max
Ue

max
U

i

( )ψ1Z( )ψ2Z( )ψ3Z
 

Figure 2: Carriers’ selection policy 
 
According to this carriers’ selection strategy, the internal 
fleet must insure the transfer of the products at its 

maximum available capacity 
max
iU as long as the 

inventory level in the distribution center is lower than

( )ψ1Z . This level defines the maximum security stock 

level to keep in the distribution center in the real state of 
the system ψ and one should stop the shipment of the 

product (i.e., iu is fixed to zero) above ( )ψ1Z . The 

external fleet is also governed by a base stock policy but 

according to a different threshold ( )ψ2Z . Thus, the 

external fleet is requested to insure the shipment of 
products, in addition to internal fleet, up to the inventory 

level ( )ψ2Z .  Finally, the spot carriers are requested in 

addition to the two other fleets up to the inventory level

( )ψ3Z . As mentioned previously, the values of the three 

stock levels governing the selection carriers’ policy are 
dependent of the whole discrete state of the system ψ. 
Thus, if the system is in a state where the internal, 

respectively, the external carriers are unavailable, ( )ψ2Z

, respectively, ( )ψ1Z will disappear. This issue will be 

illustrated later. 
 
Figure 3 shows the obtained policy in the system state 1 
(i.e., internal and external fleet are available to insure the 
transportation with their maximum capacity and demand 

rate is equal to d1). In this case, ( )11Z , ( )12Z  and ( )13Z

are equals to -3, 0 and 1 respectively. The obtained 
results make sense since the transportation cost of the 
sport carriers and the external fleets are higher than that 
of the internal fleet. Therefore, they are used in support 
to the internal fleet. Moreover, one should note that in 
the negative area of the distribution center stock (i.e., 
shortage of stock), the contribution of the spot carriers 
and the external fleet is necessary but according to 
different degrees (up to -3 for the spot carriers and up to 
0 for the external fleet). In fact, in the presence of 
shortages, using only the available capacity of the 
internal fleet makes it impossible to respond to the 

demand and build a safety stock to hedge against future 
periods of transportation service unavailability.  
To insure an accurate analysis of the obtained results and 
to propose a robust general structure of the carriers’ 
selection strategy to be applied in a stochastic dynamic 
context, one should observe carefully the obtained 
results in the other states of the system.  
 

 
Figure 3: Selection policy of carriers at state 1 

 
Figure 4 shows the obtained policy in the system state 5 
(i.e., internal and external fleet are available and demand 
rate is equal to d2). In this case, the demand is in its 
highest rate. Therefore, the spot carriers and the external 
fleet are requested more than it was the case in the 

previous situation (state 1) which leads to higher ( )52Z

and ( )53Z . Moreover, the three fleets must contribute to 

build a higher security stock in the distribution center to 

hedge against future unavailability (i.e.,
 

( )51Z =4 

compared to 1 in the system state 1). This result also 
makes sense since with a higher demand rate the 
distribution center needs a higher security stock to hedge 
against possible future shortage during the period of 
unavailability. 
 

 

Figure 4: Selection policy of carriers at state 5 
 
Let’s look to the results when the external fleet is 
unavailable (state 6). Figure 5 shows the obtained policy 
and the corresponding thresholds. This result confirms 
our expectations and the previous analysis.  In fact, the 
spot carriers are requested not only in the negative area 
of the distribution center stock but also to build with the 
internal fleet a security stock level.  
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The analysis of the other states was done and all the 
obtained results are in coherence with the analysis 
developed in this section.  Table 2, presents the values of

( )ψ1Z , ( )ψ2Z  and ( )ψ3Z  for the 8 states. When the 

fleet is not available, N/A means that the corresponding 
threshold is not applicable. 
  

 

Figure 5: Selection policy of carriers at state 5 
 
 

State 1 2 3 4 5 6 7 8 

( )ψ1Z  1 1 N/A N/A 4 6 N/A N/A 

( )ψ2Z  0 N/A 5 N/A 1 N/A 10 N/A 

( )ψ3Z  -3 -1 2 3 0 1 5 6 

Table 2: selection policy thresholds 
 
To interpret these results, figure 6 illustrates the dynamic 
behavior of the carriers’ selection strategy to adopt over 
time. As explained previously four areas can be defined: 
 

• Area 1: under the hedging level ( )ψ3Z , the three 

fleets must insure the transportation according to 

their maximum capacities	(����� +	����� + �����). 
• Area 2: between the hedging levels ( )ψ2Z and ( )ψ3Z  

the spot carriers are no longer needed and only the 
internal and external fleets insure the transportation 

according to their maximum capacities	(����� +	�����). 
 

• Area 3: between the hedging levels ( )ψ2Z and ( )ψ1Z  

the external fleet is no longer needed and only the in-
ternal fleet insure the transportation according to its 

maximum capacity	(�����). 
 

• Area 4: when the stock level reaches ( )1Z ψ , internal 

fleet must move freights according to the demand 

rate. 
 
These areas are not static over time, they move accord-
ing to the state of the system and the corresponding 
thresholds given in table 2 for the considered case study. 
This issue is illustrated in figure 6 by points A, B and C. 
 
In fact, since unavailability periods occur randomly over 
time, figure 6 illustrates at point A the situation where 
the internal and external fleets become unavailable. In 
this case, the state of the system changes from 1 to 4 and 
the contribution of the spot carriers is needed since 

( )43Z
 
is equal to 3. At point B, the internal fleet be-

comes available and takes the place of the spot carriers.  
 
Point C illustrates the situation where the internal fleet is 
still unavailable but the external fleet becomes available. 
In this case, the external fleet will take the place of the 
spot carriers or they will insure together the transporta-
tion according to the distribution stock level at that time. 
 
In the next section, sensitivity analyses are conducted to 
ensure that the structure of the obtained SDMBSP policy 
is maintained and can be considered as a generalized 
policy for the general problem under study. 
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Figure 6: Dynamic behavior of the distribution center stock over time and the corresponding carriers’ selection policy 
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5.2 Sensitivity analysis 

To illustrate the effect of system parameters changing on 
the proposed SDMBSP policy, a sensitivity analysis has 
been performed (Table 3). Three sets of parameter 
variations have been conducted: 
 

• Set I consists in 3 cases with backlog cost variation. 

• Set II consists in 3 cases with external fleet 
transportation costs variation. 

• Set III consists in 3 cases with spot carrier 
transportation costs variation. 

 
Note that the given thresholds are those of the system 
state 1. For the other states the outlines of the analysis 
remain the same. 
  

 Cases B Ce Cs (Z3,Z2,Z1) 

       
Set 
I 

Basic 20 8 14 (-3; 0; 1) 

1 50 8 14 (0; 0; 1) 

2 80 8 14 (0; 0; 2) 

 
Set 
II 

Basic 20 8 14 (-3; 0; 1) 

1 20 10 14 (-2; 0; 1) 

2 
3 

20 
20 

12 

14 

14 
14 

(-2; -1; 1) 
(-1; -2; 1) 

 
Set 
III 

Basic 20 10 14 (-3; 0; 1) 

1 20 10 18 (-5; 0; 1) 

2 20 10 30 (-<<0; 5; 9) 

Table 2 : Data parameters for the sensitivity analysis 
cases 

 
Set I shows that when the backlog cost raises, the values 
of stock levels Z1, Z2 and Z3 increase accordingly to 
ensure the availability of enough stocks to hedge against 
future backlogs. Moving from the basic case of Set I to 
the cases 1 and 2 of the same set, the three fleets are 
requested more often. Since backlog costs are higher 
than the transportation costs, it is more profitable for the 
shipper to call the spot carrier.  
 
It is also interesting to observe the results of set II where 
the external fleet transportation costs increase. In this 
case, the value of stocks levels Z2 decrease. This result 
makes sense since transportation cost of external fleet 
draw near the transportation cost of spot carrier, thus 
shipper has interest to call the spot carrier due to his 
constant availability. 
 
Set III results show that when the transportation cost of 
the spot carrier increases, the stocks level Z1 and Z2 
increase, but the stock level Z3 decreases to reach values 
much lower than zero. This result makes sense since a 
very costly spot carrier should be called in support only 
for critical situations. Moreover, the security stock level 
in the distribution center is higher to hedge against future 
shortage and to avoid the situation where the shipper will 
be forced to call the sport carrier. 

From the above analysis, it clearly appears that the 
results obtained make sense, and that the structure of the 
policy defined by the 3 parameters Z1, Z2 and Z3 is 
always maintained. This allows the development of a 
parameterized selection policy of carriers defined by the 
following equation: 
 

�±� = ÌÍ
ÎdN, O, Pf N� �(�) ≤ Ï
(Ð)dN, Of N� �(�) ≤ Ï	(Ð)&	�(�) > Ï
(Ð)dNf N� �(�) ≤ Ï�(Ð)&	�(�) > Ï	(Ð)∅ N� �(�) > Ï�(Ð)

 

 
 
Where CSP denote the Carrier’s Selection Policy; i, e 
and s designate internal fleet, external fleet and spot 
carrier respectively.  

6 CONCLUSION 

In this paper, we studied the carrier selection problem in 
the presence of three fleets, internal, external and spot 
carriers. Availability periods of internal and external 
fleets evolve according to a random process and this fact 
makes impossible to meet the random demand. In order 
to respond to the demand, shipper should call in support 
spot carriers. The carrier selection problem was formu-
lated as a continuous time dynamic programming prob-
lem and HJB equations were derived. Numerical ap-
proach was also proposed to solve the HJB equations of 
the problem and to obtain near-optimal carriers selection 
policy that minimizes the expected discounted cost of 
transportation, inventories and backlogs/late deliveries. 
 
The optimal control policy has been shown to be de-
scribed by a State Dependent Multiple Base Stock Poli-
cy” SDMBSP. Within this policy and according to the 
carriers’ availabilities, three thresholds of the available 
inventory in the distribution center are governing the 
carriers’ selection strategy.   
 
In conclusion, this paper makes an important contribu-
tion to the carriers’ selection problem in the dynamic 
stochastic context of supply chains. As it may interest 
the reader to know, extensions to cover more complex 
situations including more actors and products are under 
study. 
 

REFERENCES 

 

Boukas, E. K. and Haurie, A., 1990. Manufacturing flow 
control and preventing maintenance: a stochastic 
control approach. Automatic Control, IEEE 

Transactions on, vol. 35, p. 1024-1031. 
Bolduc,M.C., Renaud, J. and Boctor, F., 2007. A 

heuristic for the routing and carrier selection 
problem. International Journal of Production 

Economics, vol. 183, p. 926–932. 

Caplice, C., 2007. Electronic Markets for Truckload 

Transportation. Production and Operations 

Management, vol. 16, p. 423-436. 



MOSIM’12 - June 06-08, 2012 - Bordeaux - France 

Caplice, C., Sheffi, Y., 2003. Optimization-based 

procurement for transportation services. Journal of 

Business Logistic, 24 (2), p. 109–128. 

Caplice, C., Sheffi, Y., 2006. Combinatorial Auctions for 

Truckload Transportation. In: Combinatorial 

Auctions. MIT Press, p. 539-571. 

Elliott, G. C, 2006. International outsourcing: Values vs. 

economics. Quality Progress, 39(8), p. 20-25. 

Hajji, A, Gharbi A. and Kenne J. P, 2009, « Joint 

replenishment and manufacturing activities control in 

two stages unreliable supply chain », International 

Journal of Production Research, 47(12), 3231-3251. 

Hong, J, 2004. Logistics outsourcing by manufacturers 

in China: A survey of the industry. Transportation 

Journal, vol. 43, p. 17-25. 

Liao and Rittscher, 2007. Integration of supplier 

selection, procurement lot sizing and carrier selection 

under dynamic demand conditions. International 

Journal of Production Economics, vol. 107, p. 502-

510. 

Liberatore, M.J. and Miller, T., 1995. A decision support 

approach for transport carrier and mode selection. 

Journal of Business Logistics, vol. 16, p. 85-115. 

Lin, Y.K. and Yeh, C.T., 2010. A Decision Method for 

Disruption Management Problems in Intermodal 

Freight Transport. International Journal of 

Production Economics, vol. 128, p. 510-517. 

Kushner, H.J and Dupuis, P.G., 1992. Numerical 

methods for stochastic control problems in 

continuous time. New York : springer-verlag. 

M.A Razzaque and Sheng, 1998. Outsourcing of 

logistics functions: a literature survey. International 

Journal of Physical Distribution & Logistics 

Management, vol. 28, p. 89-107. 

Meixell, M.J and Norbis, M., 2008. A review of the 

transportation mode choice and carrier selection 

literature. International Journal of Logistics 

Management, vol. 19, p. 183-211. 

Mohammaditbar, D. and Teimoury, E.,2008. Integrated 

freight Transportation carrier selection and network 

flow assignment: methodology and case study. 

Journal of Applied Sciences, vol. 8, p. 2928–2938. 

Moore, E.W., Warmke, J.M. and Gorban, L.R., 1991. 

The indispensable role of management science in 

centralizing freight operations at Reynolds metal 

company.  Interfaces (USA), vol. 21, p. 107-29. 

Parashkevova Loretta, 2007. Logistic outsourcing- A 

means assuring the competitive advantage for an 

organization.  Vadyba/Management, 2(15), p. 29-38. 

Pirannejad et al., 2010. Outsourcing priorities of 

government functions: Analytic network process 

approach. African Journal of Business Management, 

vol. 4(9), p. 1723-1735. 

Premeaux, S.R, 2002. Motor carrier selection criteria: 

perceptual differences between shippers and motor 

carriers. Transportation Journal, vol. 42, p. 28-38. 

Sethi, S.P and Zhang, Q, 1994. Hierarchical decision 

making in a stochastic manufacturing systems. 

Boston : Birkhauser. 

Sheffi, Y, 1990. Third party logistics: present and future 

prospects. Journal of Business Logistics, vol. 10, p. 

163-189. 

The State of Logistics Outsourcing 2007 Third-Party 

Logistics, Results and findings of the 12th annual 

study. 

Trunick, P.A, 1989. Outsourcing a single source for 

many talents. Transportation  & Distribution, p. 20-

23. 
Voss, M.D., Page, T.J., Keller, S.B. and Ozment, J., 

2006. Determining important carrier attributes: a 
fresh perspective using the theory of reasoned action. 
Transportation Journal, vol. 45, p. 7-19. 

Yan, H. and Zhang, Q., 1997. A numerical method in 

optimal production and setup scheduling of stochastic 

manufacturing systems. Automatic Control, IEEE 

Transactions on, vol. 42, p. 1452-1455. 

 


