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Abstract 
 
 Recently, we demonstrated that Anti Resonant Reflecting Optical Waveguide (ARROW) 

based on porous silicon (PS) material can be used as a transducer for the development of a new 

optical biosensor. Compared to a conventional biosensor waveguide based on evanescent 

waves, the ARROW structure is designed to allow a better overlap between the propagated 

optical field and the molecules infiltrated in the porous core layer and so to provide better 

molecular interactions sensitivity.  

The aim of this work is to investigate the operating mode of an optical biosensor using the 

ARROW structure. We reported here an extensive study where the antiresonance conditions 

were adjusted just before the grafting of the studied molecules for a given refractive index 

range.  

The interesting feature of the studied ARROW structure is that it is elaborated from the same 

material which is the porous silicon obtained via a single electrochemical anodization process. 

After oxidation and preparation of the inner surface of porous silicon by a chemical 

functionalization process, bovine serum albumin (BSA) molecules, were attached essentially in 

the upper layer. Simulation study indicates that the proposed sensor works at the refractive 

index values ranging from 1.3560 to 1.3655. 

The experimental optical detection of the biomolecules was obtained through the modification 

of the propagated optical field and losses. The results indicated that the optical attenuation 

decreases after biomolecules attachment, corresponding to a refractive index change ∆nc of the 

core. This reduction was of about 2 dB/cm and 3 dB/cm for Transverse Electric (TE) and 
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Transverse Magnetic (TM) polarizations respectively. Moreover, at the detection step, the 

optical field was almost located inside the core layer. This result was in good agreement with 

the simulated near field profiles. 

 
Keywords:  Anti Resonant Reflecting Optical Waveguide; Porous silicon; Functionalization; 
Optical biosensor 
 
 
 
1. Introduction 
 

Biomolecular detection is of central importance for many potential applications including 

monitoring of the environment, control of food products and their use in the pharmaceutics 

industry. Research on biosensors has experienced a noticeable development over the last 

decades especially in label free optical biosensors which attract a great interest of many 

scientists (Bier et al., 1996; Brynda et al., 1999; Lin et al., 2002). An interesting review on 

optical label free biosensors was reported by Xudong Fan et al (Fan et al., 2008) including 

Surface Plasmon Resonance (SPR) sensor with various configurations. Currently, photonic 

structures are widely used as transducer for optochemical sensing applications (Jane et al., 

2009; Pacholski et al., 2005) based on a change in the effective refractive index due to 

biomolecules attachment events. Most of them are based on an evanescent wave sensor for 

optical detection (Parriaux et al., 1995). However, this evanescent wave interacts with 

biomolecules in remote surface area through exponentially decaying field that only exists 

within a few hundred nanometers. Then the interaction between biomolecules and the 

electromagnetic field does not provide optimal result for high sensitivity. 

  Nowadays, research studies are continuously increasing to find new methods and devices 

that would provide easy, reproducible and sensitive sensing assays for bio-molecular 

reactions. PS is an attractive and promising material for biosensing applications because it is 

cheap, easy to obtain and has a porous structure with a large specific area (up to 800 m2/g) 

(Herino et al., 1987). Furthermore, this last property makes PS very sensitive to the presence 

of biochemical elements which penetrate inside the pores.  

Many label free optical biosensors based on porous silicon (PS) material have been 

developed such as waveguides (Rendina et al., 2007; Rong et al., 2008) based on evanescent 

waves, Bragg mirrors (Snow et al., 1999; Anderson et al., 2003) and microcavities (Chan et 

al., 2001; De Stefano et al., 2003; Ouyang et al., 2005) based on the shift of the reflectance 

spectrum peak. In our recent study (Haji et al. 2012), we have demonstrate the feasibility of 
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an ARROW structure based on porous silicon for sensing application even that the refractive 

index contrast is rather low. Thus it can be an interesting candidate for the development of a 

new optical biosensor in order to increase the available specific surface area and improve the 

field- biomolecules interaction. The mode of operating of ARROW biosensor  is dependent 

on antiresonance conditions for a determined step of the functionalization process  

  In this paper, we present an extensive study of a porous silicon based planar ARROW in 

which the antiresonance conditions are adjusted just before the protein attachment for both 

Transverse Electric (TE) and Transverse Magnetic (TM)  polarizations. The elaboration of the 

PS material, the functionalization process and the experimental measurements for the optical 

detection are described. Simulation study was used for the structure design and to predict the 

ARROW behaviour. Simulated and experimental results are then compared and discussed.   

 

2. Experimental 
 
2.1. Structure of an ARROW 
 
      SEM cross section image of the fabricated porous silica ARROW structure is illustrated in 

Fig.1a. For this kind of waveguide, the thickness and the refractive index of each porous layer 

as shown in Fig. 1b must satisfy the antiresonant conditions. The refractive index of the first 

cladding layer must be higher than those of the core and second cladding layers. Unlike 

conventional waveguides, in an ARROW structure, the light is confined in the core layer by 

total internal reflection at the upper air-core layer interface and by anti-resonant reflection due 

to the presence of the cladding layers underneath the core layer.  

For a given thickness of the core layer dc, the optimum thicknesses of the two interference 

cladding layers for the mth mode and for the Mth and Nth order of the antiresonant conditions 

satisfy the following relationships (Duguay et al., 1986): 
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  Where λ is the light propagation wavelength along the z direction, M and N = 0, 1, 2… and 
m = 0, 1, 2, ... In our case, we only have considered the fundamental mode (m = 0). 
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Fig.1 SEM cross section image of the porous silica ARROW structure (a) and refractive index 
profile (b) 
 
 
 
Most of the used methods to elaborate ARROW waveguides are based on technologies using 

SiO2/Si/SiO2 (Shruti et al., 2009), SiO2/ TiO2/SiO2 (Chen et al., 2008), Polyimide/ Ta2O5/ 

Polyimide (Chu and Chuang, 2000) and SiO2/Si3N4/SiO2 (Prieto et al., 2001; Bernini et al., 

2004). In our work, the ARROW structure is elaborated from the same material which is 

porous silicon obtained by an electrochemical anodization method by varying the current 

density and the anodizing time.  

 
2.2. Fabrication 
 
      The guiding structure was elaborated on highly P doped silicon substrate (7 mΩ.cm) by an 

electrochemical anodization method in an HF solution at room temperature. The electrolyte 

used was composed of HF (50 %)-ethanol-H2O (deionised water at 18 MΩ,) solution with the 

ratios of 2-2-1 respectively. By applying different current densities and anodization durations, 

we can control the porosity and thickness of each PS layer. It is necessary to adjust the 

electrochemical anodization parameters in order to obtain an upper porous silicon layer (core 

layer) with pores sufficiently open (mean diameter size of 30 nm) which can allow the easy 

ingress of biomolecules. On the other hand, the first cladding layer (with high refractive 

index) must have very small pore diameters in order to ensure that this layer is impermeable 

to molecules. Finally, the second cladding porous layer is made with a refractive index equal 
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or greater than the core layer. Moreover, we aimed to obtain roughly the thickness of different 

layers of the ARROW which satisfy the antiresonant conditions with tolerance on thickness.  

So a current density of 50 mA/cm2 was applied for 120 s to produce the core layer, followed 

by a current density of 2 mA/cm2 for 460 s for the first cladding layer and finally a current 

density of 19 mA/cm2 was applied for 110 s to produce the second cladding layer. After 

anodization, the structure was then completely oxidized in wet O2 using a two steps thermal 

treatment (300 °C for 1 hour  and 950 °C for 1 hour). This oxidation was necessary to obtain 

transparent porous silica in the visible range for waveguide biosensor applications.  

Characteristics of distinct PS layers are reported in table 1, where the thickness, the porosity 

and the refractive index of each PS layer after the oxidation step are given. 

These porosities and refractive indices corresponding to the core layer, the first and second 

cladding layers were calculated by the Bruggemann model (Aspnes, 1982) at a wavelength of 

1.55 µm. 

Table 1 

Characteristics of planar ARROW structure based on porous silicon layers after the oxidation.  

 

 
 
 
 
 
 
 
 
 
2.3. Functionalization 
 
       The functionalization process was performed using a protocol that we have already 

developed and tested (Hiraoui et al., 2011) on single layers of porous silicon with thickness and 

porosity very close to those of the different layers constituting the ARROW structure. The 

different steps of functionalization were adapted to this type of structure in order to ensure a 

homogeneous functionalization of the core layer and to prevent any chemical modification of 

the cladding layers. The in-depth homogeneity was performed by Raman spectroscopy. After 

the oxidation step, the ARROW structure was immersed in 2 % (v/v) of 3-

Aminopropyltriethoxysilane (APTES) in a hydro-alcoholic solution mixture of Deionised 

water and methanol (1-1) for 20 minutes at room temperature. Then, the sample was immersed 

in a 2.5 % (v/v) solution of Glutaraldehyde (GL) adjusted to pH 7 using sodium hydroxide 

 Thickness (µm) Porosity (%) Refractive index 

Core layer 

First cladding layer 

Second cladding layer 

3.8 ± 0.10 

1.4 ± 0.10 

2 ± 0.10 

32 ± 6.5 

11 ± 5.0 

21 ± 6.5 

1.298 ± 0.028 

1.396 ± 0.023 

1.35 ± 0.028 
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solution for 1 hour at room temperature. Finally, the functionalized ARROW was immersed in 

a solution of bovine serum albumin with a fixed concentration (BSA, 3 mg/ml) at room 

temperature. The dimensions of BSA molecule are 3 nm x 8 nm x 8 nm (Huang et al., 2004), 

so the BSA molecules can easily penetrate into the pores (30 nm mean diameter) after the 

functionalization process. 

 
2.4. Optical measurement 
 
      Optical losses are based on a method which consists of measuring the scattered light from 

the upper surface of the waveguide (Okamura et al., 1983). The probe laser beam (at 1.55 µm) 

of either TE or TM polarization was coupled into the core layer of the waveguide through a 

microlensed single-mode optical fiber. Scattered light on the surface was recorded with a 

digital camera (InGaAs Sensors Unlimited) placed on the top of the surface sample followed 

by digital image processing. Decreased light intensity is adjusted by an exponential function 

along the direction of propagation. The slope of this curve corresponds to the attenuation 

optical coefficient α (cm-1) from which we can calculate the optical losses given by the 

following relation:  
1/ 1010log ( ) (3)dB cm cm

eα α −=  

Moreover, the near field profile was recorded through a microscope objective (40 x) placed at 

the output of the ARROW and the obtained digital image was processed with ImageJ 

software. It is worth noting that in all the optical characterizations performed here, the 

ambient conditions (temperature and humidity) were not strictly controlled. However, we do 

not notice significant changes in the optical characteristics of the ARROW once it was 

functionalized.  

3. Results and discussion 
  
3.1. Sensor mode operation  
 
     The reflectivity coefficient (R) at the interface between the core and the first cladding 

layers is a key parameter for an ARROW structure. The reflectivity (R) expression for any 

polarization (TE or TM) is obtained by calculations based on Fresnel coefficients (Brinkmann 

et al., 2007) and is given by Eq. (4): 
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We present in Fig. 2a the calculated reflectivity for the TE mode as a function of d1 for 

several core thicknesses. From this figure, we can notice that there are some singular values of 

d1 where a minimum of reflectivity is obtained, corresponding to resonance values. Whereas, 

the region of maximum reflectivity corresponds to antiresonance values. It can be also noticed 

that the reflectivity increases when the core thickness is higher. Therefore, a thicker core layer 

is preferable to a thinner one in order to obtain a better reflectivity. However, we must always 

ensure homogeneous infiltration of molecules in the upper active core layer. 

Preliminary work was performed on porous silicon single layers to optimize the thickness and 

refractive index of the different layers of the ARROW structure and to control the variation of 

the effective refractive index of the active layer after each step of the functionalization 

process and attachment of protein. Then, we determined the thickness d1 for which the 

antiresonance conditions are satisfied just before the step of protein (BSA) attachment. 

 

 

 
 

 
 
 
 
 
 
 
 
Fig. 2. Calculated reflectivity as a function of d1 (a) for four different thicknesses dc in 
ARROW structure for the TE mode and  (b) for  dc = 3.8 µm for both TE and TM modes, with 
refractive index values nc = 1.356, n1 = 1.396, n2 = 1.350 and working wavelength λ = 1.55 
µm. 
 

Otherwise in Fig. 2b, we can observe that for a thickness d1 around 1.2 µm, the TE mode 

reflection coefficient is higher than the TM mode reflection coefficient. This antiresonant 

effect is also obtained for other thicknesses of d1 which is identified by a maximum 

reflectivity with differences between the two polarization modes. On the other hand, when the 

reflectivity is minimum, for example when the value of d1 is around 2 µm (or a multiple of 2 

µm), we do not note any difference in reflectivity between the TE and TM modes. In this 

case, the resonance conditions are satisfied. The distinction between the TE and TM modes is 

a feature of an ARROW structure. 
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In order to clarify why we have chosen the step just before BSA attachment for which the 

antiresonance conditions are satisfied, we have plotted (Fig. 3) the calculated reflectivity for 

the TE and TM modes as a function of the effective refractive index variation of the core layer 

defined by ∆nc = nc-nc0. This variation is used as an indication of the presence of the added 

molecules, where nc0 corresponds to the effective refractive index of the core layer just before 

grafting step. As can be seen in Fig. 3, the presence of two distinct regions with different 

behaviours can be noticed. For ∆nc ≤ 0, a weak variation of reflectivity not exceeding 0.4 can 

be seen and depends on the polarization-mode. Whereas for ∆nc ≥ 0 and after the coupling 

step, the reflectivity strongly increases reaching a value of 1 as ∆nc increases and where the 

ARROW structure acts as a sensor. In addition we notice a slight difference between the two 

polarization modes TE and TM up to ∆nc = 5.10-3 and after that the two curves are almost the 

same. Moreover, this second region is most important for the biosensor sensitivity. Indeed, the 

sensor’s sensitivity can be significantly enhanced while the slope of the curve is high. 

 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3. Calculated reflectivity as a function of the refractive index variation of the core layer 
after each step (functionalization and BSA grafting), with constant values of n1 and n2 for TE 
and TM modes, working wavelength λ = 1.55 µm, dc = 3.8 µm and d1 = 1.4 µm. 
 
 

Moreover, the attenuation α of the TE and TM fundamental (m=0) ARROW modes, related to 

the reflectivity (Baba et al., 1988) (defined as the power loss per unit propagation length), is 

provided by Eq. (6): 
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reflectivity variation which was discussed in the previous section. For ∆nc ≥ 0, the optical 

losses decrease rapidly. Such as it has been described in the previous discussion (Fig.3), this 

decrease is characterized by an insignificant variation between the two polarization modes TE 

and TM up to ∆nc = 5.10-3.  Similarly for ∆nc ≤ 0, the optical attenuation weakly decreases 

and it becomes more dependent on the polarization mode. At the oxidation step, the calculated 

optical attenuation of TE and TM modes are 2.6 dB/cm and 2.9 dB/cm respectively. After GL 

molecules attachment, these calculated attenuation slightly decreases and reaches 2.17 dB/cm 

for TE  mode and 2.3 dB/cm for TM mode. 

 

3.1. Protein detection 
 

We also carried out near-field measurements to study changes in the modal characteristics of 

the light propagation in the ARROW structure before and after protein binding. In order to 

verify the feasibility of this oxidized porous silicon based ARROW structure as an optical bio 

transducer, several simulations were conducted by changing the refractive index of the core 

layer. The profiles of near field experiments were then compared with those simulated using 

the Finite Difference-Beam Propagation Method (FD-BPM) and have shown a good 

agreement.  Fig. 4a and Fig. 4c illustrate respectively the simulated and experimental TE field 

distribution observed at the propagation distance z = 1 cm. We notice that after oxidation, the 

light is propagated only in the first cladding layer which has the highest refractive index and 

this light propagation is similar to the one observed in the case of standard resonant 

waveguide. We notice that the relatively weak field intensity is due to the fact that light was 

coupled in that case in the upper sensing layer. We have also attested that if the light is only 

coupled in the first cladding layer, the maximum field is confined in this layer indicating the 

resonant behaviour of the waveguide. After GL molecule attachment, we noticed a decrease in 

the field propagated in the first cladding layer and an appearance of the light guided in the 

core layer indicating an antiresonant effect. Finally, after BSA attachment, the light is guided 

almost completely in the core layer. This can be attributed to the increment in the reflection 

coefficient R at the interface between the core layer and the first cladding layer. This suggests 

that BSA molecules were infiltrated into the pores and generated a change in the effective 

refractive index of the core layer. These results are in good agreement with the simulated 

reflectivity discussed in the previous section and shown in Fig. 3. As in the case of TE- 

polarization, it can be noticed that simulated and experimental profiles present an almost 

similar behaviour for TM-polarization as shown in Fig. 4b,d. However, we observe a 
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difference after the GL coupling step which shows the proportionality between the light 

guided in the core layer and the first cladding layer. This can be explained by the fact that the 

TM mode has a lower reflection coefficient R compared to the one of the TE mode and then 

confirms the difference in the propagation light as a function of the mode polarization unlike 

the case of conventional resonant waveguide.    

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Near-field profiles:  BPM simulated for TE (a) and for TM (b) and experimental for 
TE (c) and for TM (d). 
 

In addition to near-field measurements, we have also performed optical loss measurements by 

the method mentioned in section 2.4. In table 2, we have reported the loss values for the 

ARROW structure before and after protein binding for both TE and TM polarizations. 

 
Table 2 
Optical loss measurements of planar ARROW structure after each step: oxidation, 
functionalization processes (APTES and GL) and BSA attachment for TE and TM 
polarizations. 
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These results indicate that attenuation decreases when ∆nc increases for the two polarizations. 

Except for the BSA attachment step, we can also notice clearly that the TM mode attenuation 

is higher compared to that of the TE mode, which is in concordance with the ARROW 

features. All these results are in good agreement with the attenuation calculated from 

simulations but there are differences between the theoretical and experimental values. This 

discrepancy can be explained by the fact that our calculations do not take into account all the 

optical losses such as those related to roughness at the interface between the core layer and 

the first cladding layer. 

 
5. Conclusion 
 
     In this study, peculiar and interesting properties of a planar ARROW structure based on 

functionalized porous silica material have been studied. This structure is suitable, in terms of 

thickness and refractive index of distinct PS layers, to realize label free optical biosensors. 

The main advantage of using this kind of waveguide based on PS is that it allows a better 

overlap between the optical field and the molecules attached on the modified porous silica 

surface since the propagation light is confined inside the upper core layer having the highest 

porosity therefore the lowest refractive index. Indeed, we have demonstrated the application 

of the ARROW structure for the detection of biomolecules. In our case, this is obtained 

through the modification of light propagation modal characteristics and the loss variation in 

the ARROW structure before and after biomolecules grafting. After proving the feasibility of 

biosensing using a planar ARROW, the future work consists of integrating this structure in a 

Mach-Zehnder interferometer for biosensing applications. Furthermore, we will study the 

analytical performance of the Mach-Zehnder interferometer biosensor by testing different 

concentration of the analyte. 

 

 Oxidation (Ox) Ox/APTES/GL Ox/APTES/GL/BSA 

α (dB/cm) TE 

α (dB/cm) TM 

7.5 ± 0.6  

10 ± 1 

5 ± 0.4  

7 ± 0.8 

3 ± 0.3  

3.7 ± 0.6 
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