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Abstract. We consider radial solutions of an elliptic equation involving the p-
Laplace operator and prove by a shooting method the existence of compactly sup-
ported solutions with any prescribed number of nodes. The method is based on a
change of variables in the phase plane corresponding to an asymptotic Hamiltonian
system and provides qualitative properties of the solutions.

1. introduction

In this paper we shall consider classical radial sign-changing solutions of

∆pu+ f(u) = 0 (1)

on RN with p > 1. Radial solutions to (1) satisfy the problem(
rN−1 φp(u

′)
)′

+ rN−1 f(u) = 0 , u′(0) = 0 . (2)

Here, for any s ∈ R\{0}, φp(s) := |s|p−2 s and φp(0) = 0. Also ′ denotes the derivative
with respect to r = |x| ≥ 0, x ∈ RN and for radial functions as it is usual we shall
write u(x) = u(r). We will assume henceforth that N > p. By a (classical) solution
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of (2), we mean a function u in C1([0,∞)) such that u′(0) = 0 and |u′|p−2 u′ is
in C1(0,∞).

It is well known that equations involving quasilinear operators (p-Laplace, mean
curvature) may have positive solutions with compact support, see for example [CG02],
[GST00], and [GHMS+00]. We are interested here in qualitative properties of the
solutions to problem (2) that have a prescribed number of zeros. They satisfy the
problem (

rN−1 φp(u
′)
)′

+ rN−1 f(u) = 0 , r > 0 ,

u′(0) = 0 , lim
r→∞

u(r) = 0 .
(3)

As we shall see in Section 2, under condition (H3) below, such solutions have compact
support.

We assume the following conditions on f .

(H1) f is continuous on R, locally Lipschitz on R \ {0}, with f(0) = 0.

(H2) There exist two constants a > 0 and b < 0 such that f is strictly decreasing
on (b, a), and a (resp. b) is a local minimum (resp. local maximum) of f .

(H3) The function F (u) :=
∫ u

0
f(s) ds is such that u 7→ |F (u)|−1/p is locally in-

tegrable near 0. More generally, we will assume that the function u 7→
|F (x0) − F (u)|−1/p is locally integrable near x0 6= 0 whenever x0 is a local
maximum of F .

(H4) For any u0 such that f(u0) = 0, F (u0) < 0.

(H5) The function u 7→ f(u) is nondecreasing for large values of u and satisfies

lim inf
|u|→∞

f(u)

|u|p−2 u
=∞ .

(H6) For some θ ∈ (0, 1), we have

lim inf
|x|→∞

F (θ x)

x f(x)
>
N − p
Np

> 0 .

By the last two conditions, our problem is (p)-superlinear and subcritical. As a
consequence of the previous assumptions, there exist two constants B < 0 < A such
that

(i) F (s) < 0 for all s ∈ (B,A) \ {0}, F (B) = F (A) = 0 and f(s) > 0 for all
s > A and f(s) < 0 for all s < B,

(ii) F is strictly increasing in (A,∞) and strictly decreasing in (−∞, B),

(iii) F (s) is bounded below by − F̄ = mins∈[B,A] F (s) for some F̄ > 0,

(iv) lim
|s|→∞

F (s) =∞.

This paper is organized as follows. Our approach is based on a shooting method
and a change of variables which is convenient to count the number of nodes. In
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Section 2 we state and prove a version of the compact support principle for sign
changing solutions. In Section 3, we consider the initial value problem (4), and
establish some qualitative properties of the solutions. Most of these properties are
interesting by themselves: see for instance Theorem 3.6. Section 4 is devoted to
generalized polar coordinates that allows us to write the initial value problem (4) as
a suitable system of equations, see (19), that describes the evolution on the phase
space for the asymptotic Hamiltonian system corresponding to the limiting regime
as r → ∞. From this system we can estimate the number of rotations of solutions
around the origin, in the phase space at high levels of the energy and relate it with
the number of sign changes of the solution of (3). In Section 5 we state and prove
our existence results that essentially says that for any k ∈ N there is a solution to (3)
with k nodes that has compact support. This result differs from [BDO03] in the
sense that it holds for the p-Laplace operator for any p > 1 and the nonlinearity f is
an arbitrary superlinear and subcritical function satisfying assumptions (H1)− (H6).
It also differs from the recent results of [CGY12] in the sense that the change of
coordinates of Section 4 gives a detailed qualitative description of the dependence
of the solutions in the shooting parameter λ = u(0). When λ varies, the number of
nodes changes of at most one and we can estimate the size of the support of compactly
supported solutions: see Section 6 for more details and precise statements. Finally
we state two already known results in the Appendix, for completeness. The first one
deals with existence of solutions to the initial value problem (4) on [0,∞). The second
one shows where uniqueness of the flow defined by (19) holds on the phase space; for
a proof we refer to [CGY12].

The case p = 2 has been studied in [BDO03] for a special nonlinearity. Assump-
tion (H3) is the sharp condition for the existence of solutions with compact support;
see [PSZ99]. If u 7→ |F (u)|−1/p is not locally integrable, then Hopf’s lemma holds
according to [Váz84], and there is no solution with compact support. How to adapt
the known results on the compact support principle to solutions that change sign is
relatively easy by extending the results of [SZ99]. See [BBC75, CEF96, BDO03] in
case p = 2 and [Váz84, SZ99, PSZ99, PS00, FQ02, GHMS+00] in the general case.

We shall refer to [GHMZ97] and to [CGY12] respectively for multiplicity and ex-
istence results; earlier references can be found in these two papers. Consequences
of a possible asymmetry of F are not detailed here: see, e.g., [FM01] for such ques-
tions. There is a huge literature on sign changing solutions and we can quote [HRS11,
KLS09, KLS11, KK09, KW10, LS08, MT05, Ma07, NT04, NT08, Tan07] for results
in this direction, which are based either on shooting methods or on bifurcation theory
but do not take advantage of the representation of the equation in the generalized
polar coordinates.

Our main tool in this paper is indeed the change of variables of Section 4, which
can be seen as the canonical change of coordinates corresponding either to N = 1 and
f(u) = |u|p−2 u, or to the asymptotic Hamiltonian system in the limit r → +∞: see
[FM01, DGM01] for earlier contributions.
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We end this introduction with a piece of notation and some definitions. We shall de-
note by F and Φp the primitives of f and φp respectively, such that F (0) = Φp(0) = 0.
Thus for any u ∈ R,

F (u) =

∫ u

0

f(s) ds and Φp(u) =
1

p
|u|p .

We shall say that the function u has a double zero at a point r0 if u(r0) = 0 and
u′(r0) = 0 simultaneously. We call nodes of a solution the zeros which are contained
in the interior of the support of the solution and where the solution changes sign: for
instance, a solution with zero node is a nonnegative solution, eventually with compact
support.

2. Compact support principle

The following result is an extension to sign changing solutions of the compact sup-
port principle, which is usually stated only for nonnegative solutions. See for instance
[CEF96, PSZ99]. Our result shows a compact support property of all solutions con-
verging to 0 at infinity, without sign condition and generalizes a result for the case
p = 2 that can be found in [BDO03].

Lemma 2.1. Assume that f satisfies assumptions (H1), (H2) and (H3). Then any
bounded solution u of (3) has compact support.

Proof. Let us set

A =

∫ a

0

ds

[p′ (−F (s))]
1
p

,

where p′ = p/(p− 1). Defining ū on (0,A) implicitly by

r =

∫ a

ū(r)

ds

[p′ (−F (s))]
1
p

,

we first have that
1

p′
|ū′|p + F (ū) = 0 ,

and, by differentiation, that ū satisfies

(φp(ū
′))′ + f(ū) = 0 .

It is straightforward to check that ū(0) = a and ū(A) = 0, so that ū′(A) = 0 as well.
We may then extend ū to (A,+∞) by 0.

Let u be a bounded solution of (3) such that lim
r→∞

u(r) = 0. Then there exists R > 0

such that
b < u(r) < a ∀ r > R .

Let
w(r) := ū(r −R) ∀ r ≥ R .

Then either u(r) ≤ w(r) for any r ≥ R, and, as a consequence, u(r) ≤ w(r) ≤ 0 for
any r ≥ R+A, or there exists r0 > R such that u(r0) > w(r0). Assume that this last
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case holds. Since (u− w)(R) ≤ 0 and limr→∞(u− w)(r) = 0, with no restriction we
may assume that

(u− w)(r0) = max
r∈[R,∞)

(u− w) > 0 .

Hence, there exists a positive ε such that

(u− w)(r) > 0 ∀ r ∈ [r0, r0 + ε) .

From the equations satisfied by u and w,

(rN−1 φp(u
′))′ + rN−1 f(u) = 0 ,

(rN−1 φp(w
′))′ + rN−1 f(w) = (N − 1) rN−2 φp(w

′) ,

by integrating from r0 to r ∈ (r0, r0 + ε), and by taking into account the fact that
(u− w)′(r0) = 0, we get

rN−1 φp(u
′(r))− rN−1 φp(w

′(r))

= −
∫ r

r0

sN−1
(
f(u(s))− f(w(s))

)
︸ ︷︷ ︸
<0 because u(s)>w(s)

ds− (N − 1)

∫ r

r0

sN−2 φp(w
′(s))︸ ︷︷ ︸

≤0 because w′≤0

ds ,

which proves that u′ > w′ on (r0, r0 + ε). This obviously contradicts the assumption
that u− w achieves its maximum at r = r0.

Summarizing, we have proved that u(r) ≤ w(r) for any r ≥ R, and, as a conse-
quence,

u(r) ≤ 0 ∀ r ≥ R +A .

Similarly, we observe that ũ(r) := −u(r) is a solution of

(rN−1 φp(ũ
′))′ + rN−1f̃(ũ) = 0 , ũ′(0) = 0 , lim

r→∞
ũ(r) = 0 ,

where

f̃(s) := −f(−s)
has the same properties as f , except that the interval (b, a) has to be replaced by the
interval (−a,−b). With obvious notations, we obtain that

ũ(r) ≤ w̃(r) ∀ r ≥ R + B ,
for a certain positive B and where w̃ is a nonnegative solution of

(φp(w
′))′ + f̃(w) = 0 on (R,R + B) ,

such that w̃(R) = −b, w̃(R + B) = w̃′(R + B) = 0, and w̃(r) = 0 for any r ≥ R + B.
This proves that

u(r) ≥ 0 ∀ r ≥ R + B ,
which completes the proof:

u ≡ 0 on (R + max{A,B},∞) .

�
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3. Properties of the solutions

To deal with problem (3), we will use a shooting method and consider the initial
value problem

(
rN−1 φp(u

′)
)′

+ rN−1 f(u) = 0 , r > 0 ,

u(0) = λ > 0 , u′(0) = 0 .
(4)

To emphasize the dependence of the solution to (4) in the shooting parameter λ, we
will denote it uλ. Solutions to (4) exist and are globally defined on [0,∞); see a proof
of this fact in Appendix A. By Proposition A.2, these solutions are uniquely defined
until they reach a double zero or a point r0 with u′(r0) = 0 and such that u(r0) is a
relative maxima of F .

To be used in our next results, to a solution uλ(r) of (2), we associate the energy
function

Eλ(r) :=
|u′λ(r)|p

p′
+ F (uλ(r)) , (5)

where p′ = p/(p − 1). The following proposition shows several properties of the
solution uλ to (4) that are needed to prove Theorem 5.1.

Proposition 3.1. Let f satisfy (H1) through (H5) and let uλ be a solution of (4).

(i) The energy Eλ is nonincreasing and bounded, hence the limit

lim
r→∞

Eλ(r) = Eλ

is finite.
(ii) There exists Cλ > 0 such that |uλ(r)|+ |u′λ(r)| ≤ Cλ for all r ≥ 0.

(iii) If uλ reaches a double zero at some point r0 > 0, then uλ does not change sign
on [r0,∞). Moreover, if uλ 6≡ 0 for r ≥ r0, then there exists r1 ≥ r0 such that
uλ(r) 6= 0, and Eλ(r) < 0 for all r > r1 and uλ ≡ 0 on [r0, r1].

(iv) If limr→∞ uλ(r) exists, then there exists a zero ` of f such that

lim
r→∞

uλ(r) = ` and lim
r→∞

u′λ(r) = 0 .

Proof. Let uλ(r) be any solution of (4). As

E ′λ(r) = − (N − 1)

r
|u′λ(r)|p ,

and N ≥ p > 1, we have that Eλ is decreasing in r. Moreover, we have that

F (λ) ≥ F (uλ(r)) ≥ − F̄
and thus (i) and (ii) follow by recalling that from (H5) we get lim|s|→∞ F (s) =∞.

Assume next that uλ reaches a double zero at some point r0 > 0. Then Eλ(r0) = 0
implying that Eλ(r) ≤ 0 for all r ≥ r0. If uλ is not constantly equal to 0 for r ≥ r0,
then Eλ(r1) < 0 for some r1 > r0 and thus, by the monotonicity of Eλ, Eλ(r) < 0
for all r ≥ r1. Moreover uλ cannot have the value 0 again (because at the zeros of uλ
we have Eλ ≥ 0). This proves (iii) by taking the infimum on all r1 with the above
properties.
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Finally, if limr→∞ uλ(r) = `, then from the equation in (4) and applying L’Hôpital’s
rule twice, we obtain that

0 = lim
r→∞

uλ(r)− `
rp′

= − lim
r→∞

r
N−1
p−1 |u′λ(r)|
p′r

N−1
p−1 rp′−1

= − 1

p′

(
lim
r→∞

rN−1 |u′λ(r)|p−1

rN

)p′−1

= − 1

p′

(
lim
r→∞

rN−1 f(uλ)

N rN−1

)p′−1

= − 1

p′

(f(`)

N

)p′−1

.

Next, from the definition in (5), it follows that limr→∞ |u′(r)| =
(
p′ (Eλ − F (`)

)1/p
.

Assume that limr→∞ |u′(r)| := m > 0. Then given 0 < ε < m there is r0 > 0 such
that u′(r) > m − ε > 0 or u′(r) < −m + ε < 0, for all r ≥ r0. Hence either
u(r) > u(r0) + (m − ε)(r − r0) or u(r) < u(r0) + (−m + ε)(r − r0), for all r > r0,
which is impossible because limr→∞Eλ(r) = Eλ is finite, and (iv) follows. �

Proposition 3.2. Let f satisfy (H1)-(H5) and let uλ be a solution of (4). Then uλ
has at most a finite number of sign changes.

Proof. The result is true if u reaches a double zero. Let us prove it by contradiction.
If {zn} is a sequence of zeros accumulating at some double zero r0, then for each
n ∈ N, there exists a unique point rn ∈ (zn, zn+1) at which uλ reaches its maximum
or minimum value. At these points, using that Eλ(rn) ≥ Eλ(zn) ≥ 0, we must have
that

|uλ(rn)| ≥ min{|B|, A}.
As we also have that uλ(rn)→ uλ(r0) = 0, we obtain a contradiction.

This proves that uλ has only a finite number of zeros on (0, r0), and by Proposi-
tion 3.1(iii), we know that uλ cannot change sign on (r0,∞). Hence, without loss
of generality we may assume that u does not have any double zero. By the above
argument, we also know that zeros cannot accumulate.

Next, we argue by contradiction and suppose that there is an infinite sequence
(tending to infinity) of simple zeros of u. Then Eλ(r) ≥ 0 for all r > 0. We denote
by {z+

n } the zeros for which u′(z+
n ) > 0 and by {z−n } the zeros for which u′(z−n ) < 0.

We have
0 < z−1 < z+

1 < z−2 < · · · < z+
n < z−n+1 < z+

n+1 < · · ·
Between z−n and z+

n there is a minimum rmn where u(rmn ) < 0 and between z+
n and

z−n+1 there is a maximum rMn where u(rMn ) > 0. As Eλ(r
M
n ), Eλ(r

m
n ) ≥ 0, it must be

that u(rmn ) < B and u(rMn ) > A.

We claim that there exists T > 0 and n0 ∈ N such that the distance between two
consecutive zeros is less than T for all n ≥ n0.

Indeed, let a+ be the largest positive zero of f (b− the smallest negative zero of f).
Set

d = A− a+ , b1 = a+ +
d

4
, b2 = A− d

4
.
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Let r1,n ∈ (z+
n , r

M
n ) be the unique point where u(r1,n) = b1, and let r2,n ∈ (z+

n , r
M
n )

be the unique point where u(r2,n) = b2. Then z+
n < r1,n < r2,n. For r ∈ (z+

n , r2,n),
u(r) ∈ (0, b2) ⊂ (0, B+), hence F (u(r)) < 0 and thus

|u′|p

p′
≥ |F (u(r))|

implying that
u′(r)

|F (u(r))|1/p
≥ (p′)1/p for all r ∈ (z+

n , r2,n) ,

and thus (from (H3)) ∫ b2

0

du

|F (u)|1/p
≥ (p′)1/p (r2,n − z+

n ) (6)

Next, from the equation we have that for r ∈ [r2,n, r
M
n ],

|(φp(u′))′(r)| =
∣∣∣ (N − 1)

r
φp(u

′(r)) + f(u(r))
∣∣∣

≥ f(u(r))− (N − 1)

r
φp(Cλ)

≥ f(b2)− (N − 1)

r
φp(Cλ)

≥ 1

2
f(b2) for all r ≥ 2 (N−1)φp(Cλ)

f(b2)
.

Hence, choosing n0 such that z+
n ≥

2 (N−1)φp(Cλ)

f(b2)
for all n ≥ n0, we have that

|(φp(u′))′(r)| ≥
1

2
f(b2) for all r ∈ [r2,n, r

M
n ]

and therefore

φp(Cλ) ≥ φp(u
′(r2,n))− φp(u′(rMn )) = (φp(u

′))′(ξ)(rMn − r2,n) ≥ 1

2
f(b2)(rMn − r2,n)

implying that

(rMn − r2,n) ≤ 2φp(Cλ)

f(b2)
. (7)

From (6) and (7) we conclude that

rMn − z+
n ≤

1

(p′)1/p

∫ b2

0

du

|F (u)|1/p
+

2φp(Cλ)

f(b2)
:= T1 .

A similar argument over the interval [rMn , z
−
n+1] yields

z−n+1 − rMn ≤ T1 ,

implying

z−n+1 − z+
n ≤ 2T1
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and finally, the same complete argument over the interval [z−n , z
+
n ] yields

z+
n − z−n ≤ 2T 1

for some T 1 which will depend on b− and B only and the claim follows with T =
max{2T 1, 2T1}.

We can now prove the proposition. Observe that u(r) ∈ [b1, b2] for r ∈ [r1,n, r2,n]
and thus

|u′(r)|p ≥ p′ |F (u(r))| ≥ p′ |F (b2)| (8)

and from the mean value theorem

b2 − b1 ≤ Cλ (r2,n − r1,n) ,

hence

r2,n − r1,n ≥
b2 − b1

Cλ
. (9)

Then,

∞ > Eλ(z
+
n0

)− Eλ(∞) = (N − 1)

∫ ∞
z+n0

|u′(t)|p

t
dt (10)

≥ (N − 1)
∞∑

k=n0

∫ r2,k

r1,k

|u′(t)|p

t
dt

from (8) ≥ (N − 1)
∞∑

k=n0

p′ |F (b2)| (r2,k − r1,k)
1

r2,k

from (9) ≥ p′ |F (b2)| b2 − b1

Cλ

∞∑
k=n0

1

r2,k

.

But, setting s2k−1 = r1,n0+k−1, s2k = r2,n0+k−1, we have that s1 < s2 < s3 < · · ·
and for any i, si+1 − si ≤ 3T. Hence sn − s1 ≤ 3 (n− 1)T , implying that

sn ≤ s1 + 3 (n− 1)T

and thus
1

sn
≥ 1

s1 + 3 (n− 1)T
.

Therefore,
∞∑

k=n0

1

r2,k

=
∞∑
k=1

1

r2,n0+k−1

=
∞∑
k=1

1

r2,n0+k−1

=
∞∑
k=1

1

s2k

≥
∞∑
k=1

1

s1 + 3 (2 k − 1)T
=∞

contradicting the finiteness of the left hand side in (10) and the proposition follows.
�

Corollary 3.3. Under the assumptions of Proposition 3.2, the only solutions uλ
of (4) satisfying Eλ(r) ≥ 0 for all r ≥ 0 are those that reach a double zero at some
point r0 > 0 and uλ(r) ≡ 0 for all r ≥ r0.
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Proof. Let uλ be a solution of (4) such that Eλ(r) ≥ 0 for all r ≥ 0, and assume
that it does not reach any double zero. By Proposition 3.2, uλ has at most a finite
number of (simple) zeros. Without loss of generality we may assume that uλ(r) > 0
for r > r0, for some r0 > 0.

If uλ is eventually monotone, then limr→∞ uλ(r) = ` exists, and thus by Propo-
sition 3.1(iv), ` is a zero of f and u′λ → 0. By assumption (H3) i.e. the compact
support assumption, we know that ` 6= 0. Hence limr→∞Eλ(r) = F (`) < 0 because
of (H4), implying that Eλ(r) < 0 for r sufficiently large.

If uλ has an infinite sequence of critical points, then in particular it has a first
positive minimum at some point r1 > 0. From the equation, f(uλ(r1)) ≤ 0 and thus
0 < uλ(r1) < A, and thus Eλ(r1) = F (uλ(r1)) < 0 implying that Eλ(r) < 0 for all
r ≥ r1.

Therefore, in both cases uλ must reach a first double zero at some r0 > 0. As Eλ
decreases, it follows that Eλ(r) = 0 for all r ≥ r0, and in particular, by differentiation,(

(φp(u
′
λ))
′ + f(uλ)

)
u′λ(r) = 0 for all r ≥ r0 ,

hence

− N − 1

r
|u′λ(r)|p = 0 for all r ≥ r0 ,

implying that u′λ(r) = 0 for all r ≥ r0, thus uλ(r) = 0 for all r ≥ r0. �

Proposition 3.4. Let f satisfy (H1)-(H5) and let uλ be a solution of (4). Let {sn}
be any sequence in [0,∞) that tends to ∞ as n→∞ and define the sequence of real
functions {vn} by

vn(r) = uλ(r + sn) .

Then {vn} contains a subsequence that converges pointwise to a continuous func-
tion u∞λ , with uniform convergence on compact sets of [0,∞). Furthermore the func-
tion u∞λ is a solution to the asymptotic equation

(φp(u
′))′ + f(u) = 0 . (11)

Thus it satisfies

(φp(u
∞
λ
′(r)))′ + f(u∞λ (r)) = 0 ,

for all r ∈ [0,∞).

Proof. Let uλ be any solution to (4). We know that there exist two constants c1
λ and

c2
λ such that

uλ(r) ≤ c1
λ , u′λ(r) ≤ c2

λ , for all r ≥ 0 .

Let now {sn} be any sequence in [0,∞) that tends to ∞ as n → ∞ and define the
sequence of real functions {vn} by

vn(r) = uλ(r + sn) .

Then

vn(r) ≤ c1
λ , v′n(r) ≤ c2

λ , for all r ≥ 0 .
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Hence, for any s, t > 0, and all n ∈ N,

|vn(s)− vn(t)| ≤ c2
λ |s− t| .

Then, from Ascoli’s theorem (see [Roy88, Theorem 30]), {vn} contains a subsequence,
denoted the same, that converges pointwise to a continuous function u∞λ , with uniform
convergence on compact sets of [0,∞).

It is clear that each function vn satisfies

((r + sn)N−1 φp(v
′
n(r)))′ + (r + sn)N−1f(vn(r)) = 0 ,

and hence

φp(v
′
n(r)) = φp(v

′
n(0))−

∫ r

0

( t+ sn
r + sn

)N−1

f(vn(r)) = 0 .

By passing to a subsequence if necessary we can assume that φp(v
′
n(0))→ a as n→∞.

Let now T > 0, then since {f(vn} converges uniformly in [0, T ] to f(u∞λ ), we find
that v′n converges uniformly to a continuous function z given by

z(r) = φp′
(
a−

∫ r

0

f(u∞λ (t)) dt
)
.

Hence z′ exists and is continuous. Furthermore from

vn(r) = vn(0) +

∫ r

0

v′n(t) dt ,

letting n→∞, we obtain that

u∞λ (r) = u∞λ (0) +

∫ r

0

z(t) dt .

Hence u∞λ is continuously differentiable and u∞λ
′(r) = z′(r), for all r ∈ [0, T ]. Com-

bining, we obtain

φp(u
∞
λ
′(r)) = a−

∫ r

0

f(u∞λ (t)) dt ,

that implies first that a = φp(u
∞
λ
′(0)), and then that

(φp(u
∞
λ
′(r)))′ + f(u∞λ (r)) = 0 .

This argument show indeed that u∞λ is a solution to (11) for all r ∈ [0,∞). �

Proposition 3.5. lim
r→∞

Eλ(r) = Eλ = F (`), where ` is a zero of f .



12 JEAN DOLBEAULT, MARTA GARCÍA-HUIDOBRO AND RAUL MANÁSEVICH

Proof. Let T > 0 be arbitrary but fixed. Then

Eλ(k0T )− Eλ = (N − 1)

∫ ∞
k0T

|u′|p

t
dt

= (N − 1)
∞∑

k=k0

∫ (k+1)T

k T

|u′(t)|p

t
dt

= (N − 1)
∞∑

k=k0

∫ T

0

|u′(s+ k T )|p

s+ k T
ds

≥ (N − 1)
∞∑

k=k0

1

(k + 1)T

∫ T

0

|u′(s+ k T )|p ds .

As the left hand side of this inequality is finite, it must be that

lim inf
k→∞

∫ T

0

|u′(s+ k T )|p ds = 0 ,

hence there is a subsequence {nk} of natural numbers such that

lim
k→∞

∫ T

0

|u′(s+ nk T )|p ds = 0 .

From Proposition 3.4,

vk(r) := u(r + nk T )

has a subsequence, still denoted the same, such that

lim
k→∞

vk(r) = v(r) and lim
k→∞

v′k(r) = v′(r)

uniformly in compact intervals, where v is a solution of

(φp(v
′))′ + f(v) = 0 .

Hence, ∫ T

0

|v′(s)|pds = 0 ,

implying that v is a constant, say v(r) ≡ v0. From the equation satisfied by v,
f(v0) = 0. On the other hand,

|v′k(r)|p

p′
+ F (vk(r)) =

|u′(r + nk T )|p

p′
+ F (u(r + nk T )) = Eλ(r + nk T )→ Eλ

as k →∞ and thus

F (v0) = Eλ .
�

Although not necessary for the proof of our existence results in Theorem 5.1 in our
next result we give sufficient conditions for the limit of uλ(r) to exists as r →∞.
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Theorem 3.6. Let f satisfy (H1) through (H5), and assume furthermore that f has
only one positive zero at a+ and only one negative zero at b−. Then either

lim
r→∞

uλ(r) exists and equals either a+ or b− ,

or uλ(r) ≡ 0 for all r ≥ r0 for some r0 > 0.
If f has more than one positive or negative zero and if we assume that∫

x0

ds

|F (s)− F (x0)|1/p
<∞ whenever x0 is a local maximum of F , (12)

then limr→∞ uλ(r) exists and it is either a nonzero zero of f or uλ(r) ≡ 0 for all
r ≥ r0, for some r0 > 0.

Proof. We first give the proof for the case f has only one positive zero at a+ and only
one negative zero at b−.

By Proposition 3.2 we can assume without loss of generality that uλ remains positive
for r > r0, for some r0 > 0. If uλ has only a finite number of critical points, then it is
eventually monotone and thus it converges as r → ∞. Then the result follows from
Proposition 3.1(iv).

Hence we are left with the case in which uλ has an infinite sequence of maxima at
{rMn } and an infinite sequence of minima at {rmn }, with both uλ(r

M
n ), uλ(r

m
n ) > 0.

From the equation, the maxima occur with f(uλ(r
M
n )) ≥ 0, hence uλ(r

M
n ) > a+

(strict inequality due to Proposition A.2 in Appendix A) and for the same reason,
the minima occur with f(uλ(r

m
n )) ≤ 0 with uλ(r

m
n ) < a+.

As Eλ is decreasing, we must have that uλ(r
m
n ) increases (thus uλ(r

m
n ) is bounded

away from 0) to a positive limit `1 ∈ (0, a+], and uλ(r
M
n ) decreases to a limit `2 ∈

[a+, A]. Moreover,

lim inf
r→∞

uλ(r) = lim
n→∞

uλ(r
m
n ) = `1 , and lim sup

r→∞
uλ(r) = lim

n→∞
uλ(r

M
n ) = `2 .

Thus Eλ(r
m
n ) = F (uλ(r

m
n )) → F (`1) and Eλ(r

M
n ) = F (uλ(r

M
n )) → F (`2), implying

0 6= F (`1) = F (`2).
From Proposition 3.5, limr→∞Eλ(r) is either F (0) = 0 or F (a+). Since 0 6= F (`1),

the limit must be F (a+), and thus F (`1) = F (`2) = F (a+), and the only possibility
is that `1 = `2 = a+ proving the first part of the theorem.

In order to prove the second part of the theorem, for simplicity we consider f with
three positive zeros u1, u2 and u3, but the arguments clearly hold for the general case.
In this case F has two minimum points at u1 and u3, and one maximum point at u2,
and the limit of the energy can be any of the three values F (u1), F (u3) or F (u2).

Claim 1: If Eλ is a relative minima of F , then the solution uλ converges as r →∞.

For the relative minima there are two cases: F (u1) = F (u3) and F (u1) > F (u3).
In the first case (shown in Figure 1), we can prove that if Eλ converges to L =

F (u1) = F (u3), then the solution uλ either converges to u1 or it converges to u3.
Indeed, we can assume that uλ(r) > 0 for r ≥ r0. If uλ has an infinite sequence of
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Figure 1. Case of f with three positive zeros and F (u1) = F (u3).

minima at {rmn } and an infinite sequence of maxima at {rMn } (tending to infinity),
then by setting

`1 = lim inf
r→∞

uλ(r) = lim
n→∞

uλ(r
m
n ) , `2 = lim sup

r→∞
uλ(r) = lim

n→∞
uλ(r

M
n ) ,

we must have that

F (`1) = F (`2) = L = F (u1) ,

so if `1 6= `2, then `1 = u1 and `2 = u3. But then the solution uλ crosses the value u2

at an infinite sequence {r2,n} tending to infinity and

F (u1) = lim
n→∞

Eλ(r2,n) = lim
n→∞

|u′λ(r2,n)|p

p′
+ F (u2) ,

implying that

lim
n→∞

|u′λ(r2,n)|p

p′
= F (u1)− F (u2) < 0 ,

which is a contradiction. Hence `1 = `2 and the claim follows.
The second case is a little more involved. The following two cases may occur:

(a) lim
r→∞

Eλ(r) = F (u3) or (b) lim
r→∞

Eλ(r) = F (u1) .

The case (a) is simple because in this case F (`1) = F (`2) = L = F (u3) and the
only possibility is that `1 = `2 = u3.

In the second case we claim that `1 = `2 = u1. If this is not true, then there are
two possibilities: (i) `1 = u1 and `2 as in Figure 2, or (ii) `1 and `2 are as in the
same figure. The first case is simple because again the solution uλ must cross the
value u2 at an infinite sequence {r2,n} tending to infinity and we arrive to the same
contradiction as above.
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Figure 2. Case of f with three positive zeros and F (u1) > F (u3).

For the second case, we proceed as in the proof of Proposition 3.2 and prove that
the distance between any two consecutive critical points is bounded above. We set

b1 =
`1 + u3

2
, b2 =

`2 + u3

2
,

and let r1,n ∈ (rmn , r
M
n ) be the unique point where uλ(r1,n) = b1, and r2,n ∈ (rmn , r

M
n )

be the unique point where uλ(r2,n) = b2. See Figure 3.

Figure 3. Definition of the points r1,n, r2,n.

As the sequence {uλ(rmn )} increases to `1, we may assume that uλ(r
m
n ) ≥ (u2+`1)/2,

and thus, |f(uλ(r))| is bounded below by some positive constant c1 for all r ∈ [rmn , r1,n].
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From the equation we have that for r ∈ [rmn , r1,n],

|(φp(u′λ))′(r)| =
∣∣∣ (N − 1)

r
φp(u

′
λ(r)) + f(uλ(r))

∣∣∣
≥ |f(uλ(r))| −

(N − 1)

r
φp(Cλ)

≥ c1 −
(N − 1)

r
φp(Cλ)

≥ c1

2
for all r ≥ 2 (N − 1)φp(Cλ)

c1

.

Hence, choosing n0 such that rmn ≥
2 (N−1)φp(Cλ)

c1
for all n ≥ n0, we have that

|(φp(u′λ))′(r)| ≥
c1

2
for all r ∈ [rmn , r1,n]

and therefore

φp(Cλ) ≥ φp(u
′
λ(r1,n))− φp(u′λ(rmn )) = (φp(u

′
λ))
′(ξ)(r1,n − rmn ) ≥ c1

2
(r1,n − rmn )

implying that

r1,n − rmn ≤
2φp(Cλ)

c1

. (13)

Similarly, for r ∈ [r2,n, r
M
n ], using now that in this interval f(uλ(r)) is bounded from

below by a positive constant c2, we conclude that there is n1 ≥ n0 such that

rMn − r2,n ≤
2φp(Cλ)

c2

(14)

for all n ≥ n1.
Finally we estimate r2,n − r1,n. In the interval [r1,n, r2,n], uλ(r) ∈ [b1, b2] and

F (uλ(r)) ≤ max{F (b1), F (b2)} < F (u1), hence there exists a positive constant c3

such that

F (u1)− F (uλ(r)) ≥ c3 ,

hence, using that Eλ decreases to F (u1), we have that

|u′λ(r)| ≥ (p′ c3)1/p .

Integrating this last inequality over [r1,n, r2,n], we obtain that

r2,n − r1,n ≤
b2 − b1

(p′ c3)1/p
. (15)

Hence, from (13), (14) and (15), we conclude that for all n ≥ n1

rMn − rmn ≤ T

where

T =
2φp(Cλ)

c2

+
b2 − b1

(p′ c3)1/p
+

2φp(Cλ)

c1

.
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Again, from the mean value theorem

b2 − b1 ≤ Cλ (r2,n − r1,n) ,

hence, as before, we obtain the contradiction

F (λ)− F (u1) > Eλ(r
m
n1

)− Eλ(∞) = (N − 1)

∫ ∞
rmn1

|u′λ(t)|p

t
dt

≥ (N − 1)
∞∑

k=n1

∫ r2,k

r1,k

|u′λ(t)|p

t
dt

≥ (N − 1)
∞∑

k=n1

p′ c3 (r2,k − r1,k)
1

r2,k

≥ p′ c3
b2 − b1

Cλ

∞∑
k=n1

1

r2,k

=∞ .

Therefore, case (ii) cannot happen and Claim 1 follows.

Claim 2: If Eλ is a relative maxima of F , then the solution uλ converges as r →∞.

See Figure 4.

Figure 4. If `1 6= `2, then 0 < `1 < u1 and u3 < `2 < A.

From (12), ∫
u2

du

|F (u2)− F (u)|1/p
is convergent . (16)
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Then the same arguments used in the proof above can be used to establish the con-
vergence of uλ. Indeed, we let

r1,n : uλ(r1,n) =
`2 + u3

2
, r2,n : uλ(r2,n) =

u2 + u3

2
,

and for r ∈ [r1,n, r2,n], we have uλ(r) ∈ [u2+u3
2

, `2+u3
2

] and thus

|u′λ(r)| ≥ (p′)1/p (F (u2)− F (uλ(r)) ≥ c0 > 0

for some positive constant c0 implying that

`2 − u2

2
≥ c0 (r2,n − r1,n)

and similarly, by setting

r̄1,n : uλ(r̄1,n) =
u1 + u2

2
, r̄2,n : uλ(r̄2,n) =

u2 + `1

2
,

we have that

u2 − `1

2
≥ c0 (r̄2,n − r̄1,n) .

For r ∈ [r1,n, r̄1,n] we use (16) to obtain that

(p′)1/p (r̄1,n − r1,n) ≤
∫ u3+u2

2

u1+u2
2

du

|F (u2)− F (u)|1/p
.

The bounds for r2,n − rMn and rmn+1 − r̄2,n is obtained as above using that |f(u)| is
bounded below in those intervals and using the equation to obtain

φp(Cλ) ≥ c0 (r2,n − rMn ) and φp(Cλ) ≥ c0 (rmn+1 − r̄2,n)

for some positive constant c0.
We conclude that the distance between two consecutive critical points is bounded

and we end the argument as we did at the end of Proposition 3.2. �

4. A change of coordinates and a lower bound on the angular
velocity in the phase space

In this section, we reformulate the problem in the phase space associated to the
Hamiltonian system obtained in the (p)-linear case (that is, for f(u) = |u|p−2 u) in
the asymptotic regime corresponding to r → ∞. By computing a lower bound on
the angular velocity around the origin, this will allow us to estimate the number
of sign changes of the solutions, see Section 5. First, let us explain how to change
coordinates.
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Setting v = φp(u
′), or equivalently u′ = φp′(v), problem (4) is equivalent to the

following first order system. 
u′ = φq(v) ,

v′ = −N−1
r
v − f(u) ,

u(0) = λ , v(0) = 0 .

(17)

Here q = p′ stands for the Hölder conjugate of p. We consider also the auxiliary
problem



dx

dt
= −φq(y) ,

dy

dt
= φp(x) ,

x(0) = 1 , y(0) = 0 .

The auxiliary problem describes the asymptotics of (17) as r → ∞, that is, when
the N−1

r
v term is neglected in case of a (p)-linear function f(u) = |u|p−2 u. It is well

known, see [dPEM89], that solutions to this last systems are 2 πp = 2 πq periodic.
Furthermore, with the notation of [dPEM89], we can define

sinq(t) := y(t) and cosq(t) := x(t) = φq

(
d

dt
sinq(t)

)
.

It is immediate to check that

Φp(cosq(t)) + Φq(sinq(t)) =
1

p
for all t ∈ R .

To the (u, v) coordinates of the phase plane, we assign generalized polar coordinates
(ρ, θ) by writing  u = ρ

1
p cosq(θ)

v = ρ
1
q sinq(θ)

(18)

where

ρ = p [Φp(u) + Φq(v)] .

Notice that in case p = q = 2, (
√
ρ, θ) are the usual polar coordinates of (u, v), and

cosq and sinq are the usual cos and sin functions.

Now, if (u(r), v(r)) denotes a solution to (17) and if we define the corresponding
polar functions r 7→ ρ(r) and r 7→ θ(r), then it turns out by direct computation that
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(ρ, θ) satisfies the following system of equations :
ρ′ = p φq(v)

[
φp(u)− f(u)− N−1

r
v
]
,

θ′ = −1
ρ

[
pΦq(v) + u f(u) + N−1

r
u v
]
,

ρ(0) = λp , θ(0) = 0 .

(19)

We will denote by (ρλ, θλ) the solution of (19).

The following lemma is a key step for our main result. We establish a lower bound
on the angular velocity |θ′| around the origin, which will later allow us to estimate
the number of sign changes of u by counting the number of rotations of the solutions
around the origin, in the phase plane. In order to formulate the lemma, we begin by
noticing that from (H5), given ω ∈ (0, 1/8) there is s0 > 0 such that

|f(s)| ≥ 4ω |s|p−1 for all |s| ≥ s0 .

Lemma 4.1 (Rotation Lemma). With the previous notation, let assumptions (H1)
through (H5) be satisfied and let (ρλ, θλ) be the generalized polar coordinates of a
solution (uλ, vλ) to (17). Set

r0 :=
2 (N − 1)

ω (p− 1)1/q
, σ0 ≥ max

{
21/ps0 ,

(
4 sup
x∈[−s0,s0]

|f(x)|
)1/(p−1)

}
.

Then, if r ≥ r0 and ρλ ≥ σp0, it holds that

θ′λ(r) < −ω .

Proof. We start by observing that with the above notation, i.e. x = cosq(θ),

− θ′ =
(

1− |x|p +
x f(σ x)

σp−1

)
+
N − 1

r

u v

σp

≥
(

1− |x|p +
x f(σ x)

σp−1

)
− N − 1

r
|x|
(1− |x|p

p− 1

)1/q

≥
(

1− |x|p +
x f(σ x)

σp−1

)
− N − 1

r

1

(p− 1)1/q

where σ = ρ1/p. It is clear that

− N − 1

r

1

(p− 1)1/q
> −ω

for any r > r0. Hence in order to prove our result we need to estimate the minimum

min
|x|≤1

[
1− |x|p +

x f(σ x)

σp−1

]
.
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First assume that |x|p ≤ 1/2. If σ |x| ≥ s0, then

1− |x|p +
x f(σ x)

σp−1
= 1− |x|p +

|x|p f(σ x)

σp−1 |x|p−2 x

≥ 1− |x|p + 4ω |x|p

= 1 + (4ω − 1) |x|p ≥ 1

2
+ 2ω ≥ 2ω .

Otherwise, if σ |x| ≤ s0, then we have

1− |x|p +
x f(σ x)

σp−1
≥ 1− |x|p − |x|

σp−1
sup

s∈[−s0,s0]

|f(s)| > 1

2
− 1

σp−1
sup

s∈[−s0,s0]

|f(s)| > 1

4

if σ ≥ σ0 and we already know that 1
4
> 2ω.

On the other hand, if |x|p ≥ 1/2, then σ |x| ≥ 2−1/p σ, hence for σ ≥ σ0, we have
σ |x| ≥ s0 and

1− |x|p +
x f(σ x)

σp−1
= 1− |x|p +

|x|p f(σ x)

σp−1 |x|p−2 x

≥ 1− |x|p + 4ω |x|p ≥ 2ω .

This concludes the proof. �

In preparation for Section 5 we finally relate the energy associated to the flow with
the quantity ρ.

Proposition 4.2. Consider E(u, v) = F (u)+Φp′(v) and ρ(u, v) = p [Φp(u) + Φp′(v)].
Under assumptions (H1) through (H5), it holds that

E(u, v)→∞ if and only if ρ(u, v)→∞ ,

for each (u, v) in R2.

Proof. The properties E(u, v)→∞, sup(|u|, |v|)→∞, and ρ(u, v)→∞ are equiva-
lent. �

5. Existence result

We may now state our main result.

Theorem 5.1. Let N >, p > 1 and suppose that assumptions (H1)-(H6) are satisfied.
Then there exists an unbounded increasing sequence {λk} of initial data such that for
any k ∈ N, (4) with λ = λk, has a compactly supported solution with exactly k nodes.

The proof is based upon some preliminary results that we state and prove next.

For given λ > A, let (uλ, vλ) be a solution to (17). Recall that the energy func-
tion Eλ has been defined by (5). For any a ∈ [0, F (λ)], let us set

rλ(a) := inf{r ≥ 0 : Eλ(r) = a} .
We first observe that rλ(0) is finite. Indeed, if for some λ ≥ A (as defined in

Section 1) we have that rλ(0) = ∞, then Eλ(r) ≥ 0 for all r ≥ 0, and thus, from
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Corollary 3.3, there exists r0 > 0 such that r0 is a double zero of uλ implying by the
definition that rλ(0) ≤ r0 <∞.

We will denote by N[0,R)(λ) the number of nodes of uλ in [0, R). For simplicity of
notation, we will denote

N(λ) := N[0,rλ(0))(λ) .

Notice that all the possible zeros of uλ in [0, rλ(0)) must be simple zeros.

The following proposition was proved in [GHMZ97].

Proposition 5.2. Under assumptions (H1) through (H6), given R > 0,

lim
λ→∞

Eλ(r) =∞

uniformly for r ∈ [0, R].

Now we start to make use of the variables introduced in Section 4.

Proposition 5.3. If N(λ) > 1, then for any r ∈ (0, rλ(0)), the number of nodes of uλ
in (0, r) is given by [(πp

2
− θλ(r)

) 1

πp

]
where [x] denotes the integer part of x.

Proof. Follows directly from the change of variables (18). �

Propositions 5.2 and 5.3 combined with the Rotation Lemma 4.1 on the angular
velocity, yields the following result.

Lemma 5.4. Under assumptions (H1) through (H6),

lim
λ→+∞

N(λ) = +∞ .

Proof. Let M > 0. We will show that there exists λM > 0 such that for λ > λM , we
have N(λ) > M . We prove this by finding an interval [0, R] with R = R(M), such
that the number of nodes in [0, R] is greater than M . To do this we set

R =
πp
ω

(
M +

1

2

)
+ r0 .

Using Propositions 4.2 and 5.2, we know that there exists λM such that for any
λ ≥ λM , ρλ(r) > ρ0 := σp0 in [0, R]. Next we apply the rotation Lemma 4.1 which
ensures that

− θλ(R) ≥ ωR− ω r0 − θλ(r0) ≥ ωR− ω r0 =

(
M +

1

2

)
πp ,

by the choice of R. Applying Corollary 5.3, it follows that

N(λ) ≥ [M + 1] > M .

�
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Lemma 5.5. Under assumptions (H1) through (H5), when λ > 0 varies, the number
of nodes of the solution uλ can locally change by at most one. Moreover, to the
value of λ at which the number of nodes changes corresponds a solution with compact
support.

Proof. This lemma is proved by defining for any k ∈ N0 := N ∪ {0} the sets

Ak := {λ ≥ A : (uλ(r), vλ(r)) 6= (0, 0) for all r ≥ 0 , and N(λ) = k} ,

Ik := {λ ≥ A : (uλ(rλ(0)), vλ(rλ(0))) = (0, 0) and N[0,rλ(0))(λ) = k} .
Recall that rλ(a) := inf{r ≥ 0 : Eλ(r) = a}, and Eλ has been defined by (5). Notice
that we have

[A,∞) =
(
∪k∈N0 Ik

)
∪
(
∪k∈N0 Ak

)
.

Indeed, let λ ≥ A. Then N(λ) = j for some j ∈ N0. If uλ(rλ(0)) 6= 0, then uλ does
not have any double zero in [0,∞). Indeed, assume by contradiction that r1 > rλ(0)
is a double zero of uλ. Then by the monotonicity of Eλ, Eλ(r) ≡ 0 in [rλ(0), r1].
But then also E ′λ(r) ≡ 0 in (rλ(0), r1) implying that u′λ(r) ≡ 0 in (rλ(0), r1) and thus
uλ(rλ(0)) = uλ(r1) = 0, a contradiction. Hence λ ∈ Aj. If uλ(rλ(0)) = 0, then by the
definition of rλ(0) we also have u′λ(rλ(0)) = 0 hence λ ∈ Ij. Also, observe that the
sets Ai, Ij are disjoint for any i, j, and for i 6= j, Ai ∩ Aj = ∅ and Ii ∩ Ij = ∅.

We also observe that if λ ∈ Aj, then necessarily limr→∞Eλ(r) < 0 (see Corol-
lary 3.3), and if λ ∈ Ij, then two cases may occur:

either lim
r→∞

Eλ(r) < 0 or lim
r→∞

Eλ(r) = 0 .

This due to the possible non-uniqueness of solutions to the initial value problem (4),
a solution could reach a double zero but not remain identically zero after that.

The proof of Lemma 5.5 is a consequence of the following technical result.

Proposition 5.6. With the above notation, we have:

(i) Ak is open in [A,∞),
(ii) Ak ∪ Ik is bounded,

(iii) if λ0 ∈ Ik, then there exists δ > 0 such that (λ0 − δ, λ0 + δ) ⊂ Ak ∪Ak+1 ∪ Ik,
(iv) supAk ∈ Ik−1 ∪ Ik, where we set I−1 = ∅ and,
(v) sup Ik ∈ Ik.

Proof. (i) Ak is open in [A,∞): Indeed, if λ̄ ∈ Ak, then in particular (uλ̄(r̄), vλ̄(r̄)) 6=
(0, 0), where r̄ = rλ̄(0). Then there exists ε0 > 0 such that the solution of (4) is
unique in [0, rλ̄(0) + ε] and Eλ̄(rλ̄(0) + ε/2) < 0 for all ε ∈ (0, ε0], and thus there
exists δ > 0 such that

Eλ(rλ̄(0) + ε/2) < 0

for all λ ∈ (λ̄ − δ, λ̄ + δ) implying that rλ(0) ≤ rλ̄(0) + ε/2. On the other hand, for
the same reason, there exists δ′ > 0 such that

Eλ(rλ̄(0)− ε/2) > 0
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for all λ ∈ (λ̄− δ′, λ̄+ δ′) implying that rλ(0) ≥ rλ̄(0)− ε/2. We conclude then that
rλ(0)→ rλ̄(0). Hence the openness of Ak follows from the continuous dependence of
solutions in the initial value λ.

(ii) The boundedness of Ak ∪ Ik is a consequence of Lemma 5.4.

(iii) The proof of this statement follows that of [CGY12, Lemma 2.3].

Figure 5. Situation for (iii).

Let λ0 ∈ Ik, set r0 = rλ0(0) and let

0 < z1,0 < z2,0 < . . . < zk,0 < r0

denote the k zeros of uλ0 in (0, r0).
Assume first that uλ0 is decreasing in (r0 − 2 ε0, r0) for some ε0 > 0, so that it

reaches a last maximum point at some sk,0 ∈ (zk,0, r0). Let

Hλ(r) := rp
′(N−1)Eλ(r) . (20)

As uλ0(r0) = 0 and Hλ0(r0) = 0, given ε > 0, there exists r̄ < r0 such that

0 < uλ0(r̄) <
A

2
, and Hλ0(r̄) < ε .

Hence by continuous dependence of solutions to (4) in the initial data in any compact
subset of [0, r0), there exists δ0 > 0 such that for λ ∈ (λ0−δ0, λ0 +δ0), the solution uλ
satisfies

0 < uλ(r̄) < A , Hλ(r̄) < 2 ε and uλ has at least k simple zeros in [0, r0) , (21)
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that is,

(λ0 − δ0, λ0 + δ0) ⊂
(
∪j≥k Aj

)
∪
(
∪j≥k Ij

)
. (22)

Now we argue by contradiction and assume that there is a sequence {λn} converging
to λ0 as n→∞ such that

λn 6∈ Ak ∪ Ak+1 ∪ Ik .
From (22),

λn ∈
(
∪j≥k+2 Aj

)
∪
(
∪j≥k+1 Ij

)
,

that is, the solution uλn has at least k + 2 zeros and at least the first k + 1 zeros are
simple. Let us denote these zeros by

0 < z1,n < z2,n < . . . < zk,n < zk+1,n < zk+2,n .

See Figure 5. By the choice of r̄ and (21), uλn decreases in [r̄, zk+1,n]. Let us de-
note by sk+1,n the point in (zk+1,n, zk+2,n) where uλn reaches its minimum value. As
Eλn(zk+2,n) ≥ 0, we must have that

uλn(sk+1,n) < B .

Let us denote by r1,n < r2,n the unique points in (zk+1,n, sk+1,n) where

uλn(r1,n) =
B

4
, uλn(r2,n) =

B

2
.

From (20), we have that

H ′λn(r) = p′ (N − 1) rp
′(N−1)−1 F (uλn(r)) . (23)

Therefore, using the first estimate in (21), we have that for n large enough, H ′λn(r) < 0
for r ∈ [r̄, zk+1,n] and thus by the second in (21), Hλn(zk+1,n) < 2 ε .

Integrating now (23) over [zk+1,n, r2,n], and using that F (uλn(t)) < 0 in this range
and p′(N − 1)− 1 = p

p−1
(N − 1)− 1 ≥ p− 1 > 0, we find that

Hλn(r2,n)−Hλn(zk+1,n) = − p′ (N − 1)

∫ r2,n

zk+1,n

tp
′(N−1)−1|F (uλn(t))| dt

≤ − p′ (N − 1)(zk+1,n)p
′(N−1)−1

∫ r2,n

zk+1,n

|F (uλn(t))| dt

≤ − p′ (N − 1)(zk+1,n)p
′(N−1)−1

∫ r2,n

r1,n

|F (uλn(t))| dt

≤ −C p′ (N − 1)(zk+1,n)p
′(N−1)−1(r2,n − r1,n) ,

where

C := inf
s∈[B

2
,B
4

]
|F (s)| .

But from the mean value theorem, and for n large enough, we have that

|B|
4

= |uλn(r2,n)− uλn(r1,n)| ≤ Cλ0+1 (r2,n − r1,n) ,
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and
λ0

2
≤ λn = |uλn(0)− uλn(z1,n)| ≤ Cλ0+1 z1,n ≤ Cλ0+1 zk+1,n ,

hence

Hλn(r2,n) ≤ 2 ε− C p′ (N − 1) (zk+1,n)p
′(N−1)−1 |B|

4Cλ0+1

≤ 2 ε− C p′ (N − 1)
( λ0

2Cλ0+1

)p′(N−1)−1 |B|
4Cλ0+1

.

By choosing from the beginning ε ∈
(

0, C p′ (N − 1)
(

λ0
2Cλ0+1

)p′(N−1)−1 |B|
8Cλ0+1

)
we

obtain that

Hλn(r2,n) = r
p′(N−1)
2,n Eλn(r2,n) < 0 ,

contradicting the fact that

Eλn(r2,n) ≥ Eλn(zk+2,n) ≥ 0 .

A similar computation provides a contradiction if we assume that uλ0 is increasing
in (r0 − 2 ε0, r0) for some ε0 > 0. Altogether (iii) is established.

(iv) Assume next that Ak 6= ∅, let λ0 = supAk and set r0 = rλ0(0). As Aj is open
for every j ∈ N0, λ0 6∈ Aj for any j hence λ0 ∈ Ij for some j, and by continuous
dependence of the solutions in the initial data in [0, r0 − ε] for ε > 0 small enough,
j ≤ k. By (iii), there is δ > 0 such that (λ0 − δ, λ0] ⊂ Aj ∪ Aj+1 ∪ Ij, and since
Ak ∩ (λ0 − δ, λ0] 6= ∅, it must be that

Ak ∩ (Aj ∪ Aj+1 ∪ Ij) 6= ∅ ,
hence j = k or j = k − 1.

(v) sup Ik ∈ Ik: It follows directly from (iii). �

Proof of Theorem 5.1. With the notation of the previous lemma one shows by induc-
tion that there exists an increasing sequence {λk}, λk → +∞, such that λk ∈ Ik.

As A ∈ A0, by (ii) we can set λ0 = supA0, and by (iv) and (v), λ0 ∈ I0 and
λ0 ≤ sup I0 ∈ I0. We use now (iii) and find δ > 0 such that

(sup I0 − δ, sup I0 + δ) ⊂ A0 ∪ A1 ∪ I0 .

Since (sup I0, sup I0+δ)∩A0 = ∅ by the definition of λ0 and (sup I0, sup I0+δ)∩I0 = ∅
by the definition of sup I0, it must be that

(sup I0, sup I0 + δ) ⊂ A1

implying that

A1 6= ∅ and λ0 ≤ sup I0 < λ1 := supA1 .

By (iv), λ1 ∈ I0 ∪ I1, but as sup I0 < λ1, it must be that supA1 ∈ I1. Then

I1 is not empty and λ1 ≤ sup I1 .
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We use again (iii) to find δ > 0 such that

(sup I1 − δ, sup I1 + δ) ⊂ A1 ∪ A2 ∪ I1 ,

and again deduce that
(sup I1, sup I1 + δ) ⊂ A2 ,

hence A2 6= ∅ and thanks to (ii) we can set λ2 = supA2, λ0 < λ1 ≤ sup I1 < λ2 and
λ2 ∈ I2. We continue this procedure to obtain the infinite strictly increasing sequence
{λk}, defined by λk = supAk with λk ∈ Ik. �

6. Qualitative properties of the solutions

Several qualitative properties can be deduced from our intermediate results and
from their proofs. Without entering the details let us summarize the most striking
ones.

When λ varies, the number of nodes changes of at most one. The energy of any
solution decreases as r increases and converges to a finite limit as r → ∞. More
precisely, solutions are of two types: either the limit of their energy is negative or the
limit of the energy is zero, and the corresponding solutions are compactly supported.

Solutions which have a double zero can be compactly supported or not, as in this
case uniqueness may be lost.

For solutions with compact support, the size of the support increases with the
number of nodes, and diverges as the number of nodes goes to infinity. This is a
consequence of Lemma 4.1 and Proposition 5.2, as can be easily proved arguing by
contradiction. With the generality of Theorem 5.1, it is not easy to give quantitative
results but one can estimate the size of the support of the solutions and the number
of nodes for large values of λ, as the following proposition shows.

Proposition 6.1. Let 1 < p < N . Under the assumptions of Theorem 5.1, we have
that rλ(0) and N(λ) are bounded below by

C
(λN(p−1)

N−p

f(λ)

) N−p
p(N−1)

where C is a positive constant independent of λ.

In particular, if lim
λ→∞

λ
N(p−1)
N−p

f(λ)
=∞, then rλ(0)→∞ and N(λ)→∞ as λ→∞.

Proof. Let θ ∈ (0, 1) be as in (H6), and for λ > 0, let Sθ,λ := inf{r > 0 : uλ(r) = θ λ}.
It can be easily shown that a solution of (4) satisfies

(1− θ)λ = λ− uλ(Sθ,λ) =

∫ Sθ,λ

0

(
1

rN−1

∫ r

0

sN−1f(uλ(s)) ds

)1/(p−1)

dr .

As a consequence of the monotonicity of uλ in [0, Sθ,λ] and (H5), for θλ large enough
we obtain

N1/(p−1) p′
(1− θ)λ

[f(λ)]1/(p−1)
≤ (Sθ,λ)

p′ ≤ N1/(p−1) p′
(1− θ)λ

[f(θ λ)]1/(p−1)
. (24)



28 JEAN DOLBEAULT, MARTA GARCÍA-HUIDOBRO AND RAUL MANÁSEVICH

On the other hand, since

d

dr
(Eλ + F̄ ) = −N − 1

r
|v|p′ ≥ −N − 1

r
p′ (Eλ + F̄ ) ,

for Sθ,λ ≤ r ≤ rλ(0), we obtain

Eλ(r) + F̄

F (θ λ) + F̄
≥
(
Sθ,λ
r

)(N−1) p′

.

Hence

rλ(0)p
′ ≥ Sp

′

θ,λ

(
F (θ λ)

F̄

) 1
N−1

≥ 1

F̄ 1/(N−1)
Sp
′

θ,λ

(
F (θ λ)

λf(λ)

) 1
N−1

(λf(λ))
1

N−1

from (H6) ≥ CSp
′

θ,λ(λf(λ))
1

N−1

from the first in (24) ≥ C
(λN(p−1)

N−p

f(λ)

) N−p
(p−1)(N−1)

.

Hence,

rλ(0) ≥ C
(λN(p−1)

N−p

f(λ)

) N−p
p(N−1)

.

This proves the assertion on the size of the support. The conclusion on the number
of nodes follows from Lemma 4.1. �

Appendix A.

In this Appendix, for sake of completeness, we state some basic results concerning
the initial value problem (4). We begin with a result on the existence of solutions.

Proposition A.1. Suppose that assumption (H1) holds. If limu→±∞ f(u) = ±∞, for
any fixed λ ∈ R, then (4) has a solution defined in [0,∞).

Proof. As before let F (u) =
∫ u

0
f(s)ds, then F (u)→∞ as u→ ±∞. Recall that

− F̄ = inf
u∈R

F (u) ,

and suppose that u is a solution to (3) such that u(0) = λ. Then u satisfies

|u′(r)|p

p′
≤ |u

′(r)|p

p′
+ F (u(r)) + F̄ ≤ F (λ) + F̄ .

Hence |u′| ≤ (p′Cλ)
1/p with Cλ = F (λ) + F̄ and |u| ≤ |λ| + (p′Cλ)

1/p r for r > 0 in
the domain of definition of u. These estimates tell us that if u can be defined in an
interval of the form [0, δ] for δ > 0 and small, then this solution can be extended to
[0,∞).
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Consider therefore the Banach space C := C([0, δ];R) of continuous functions on
[0, δ], endowed with the sup norm ‖ · ‖∞. A solution in C will exist if and only if the
operator T defined on C by

T (u)(r) := λ−
∫ r

0

φp′

(∫ τ

0

sN−1

τN−1
f(u(s)) ds

)
dτ (25)

has a fixed point. For ε > 0 given, let B(λ, ε) be the ball in C with center λ and

radius ε. Then if u ∈ B(λ, ε) we have that for all r ∈ [0, δ] it holds that −ε + λ ≤
u(r) ≤ ε+ λ. Let us set m := max

|u−λ|≤ε
|f(u)|. Then from (25), we find the estimate

|T (u)(r)− λ| ≤ δp
′
mp′−1

p′Np′−1
.

If δ is small so that δp
′
mp
′−1

p′Np′−1 ≤ ε, we have that T (B(λ, ε)) ⊂ B(λ, ε).

To show that T is completely continuous, let {uk} be a sequence in B(λ, ε) and
consider s, t ∈ [0, δ]. Then

|T (uk)(t)− T (uk)(s)| ≤
δp
′−1mp′−1

Np′−1
|t− s| .

From Ascoli-Arzela theorem it follow that T is compact on B(λ, ε). To show that T is

continuous let {uk} be a sequence in B(λ, ε) such that uk → u ∈ B(λ, ε), as k →∞.
An application of Lebesgue’s dominated theorem to

T (uk)(r) := λ−
∫ r

0

φp′

(∫ τ

0

sN−1

τN−1
f(uk(s)) ds

)
dτ ,

shows that T (uk)→ T (u) in C as k →∞.
Then by the Schauder fixed point theorem, T possesses a fixed point in B(λ, ε)

which is what we wanted to prove. �

The last proposition states a unique extendibility result for solutions to the initial
value problem (4); this result has been proved in [CGY12].

Proposition A.2. Let f satisfy (H1)-(H2). Then solutions to (4) are unique at least
until they reach a double zero or a point u0 = uλ(r0), where u′λ(r0) = 0 and u0 is a
local maximum of F .
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