J. Seferis, Polyetheretherketone (PEEK): Processing-structure and properties studies for a matrix in high performance composites, Polymer Composites, vol.21, issue.3, pp.158-69, 1986.
DOI : 10.1002/pc.750070305

J. Markarian, Increased demands in electronics drive additive developments in conductivity, Plastics, Additives and Compounding, vol.7, issue.1, pp.26-30, 2005.
DOI : 10.1016/S1464-391X(05)00331-4

N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites, Nano Letters, vol.6, issue.6, pp.1141-1146, 2006.
DOI : 10.1021/nl0602589

A. D?ez-pascual, M. Naffakh, J. Gonzalez-dom?nguez, A. Anson, Y. Mart?nez-rubi et al., High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties, Carbon, vol.48, issue.12, pp.3485-99, 2010.
DOI : 10.1016/j.carbon.2010.05.046

A. D?ez-pascual, M. Naffakh, M. Gomez, C. Marco, C. Ellis et al., Development and characterization of PEEK/carbon nanotube composites, Carbon, vol.47, issue.13, pp.3079-90, 2009.
DOI : 10.1016/j.carbon.2009.07.020

A. D?ez-pascual, M. Naffakh, J. Gonzalez-dom?nguez, A. Anson, Y. Mart?nez-rubi et al., High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties, Carbon, vol.48, issue.12, pp.3500-3511, 2010.
DOI : 10.1016/j.carbon.2010.05.050

D. Bangarusampath, H. Ruckdäschel, V. Altstädt, J. Sandler, D. Garray et al., Rheological and electrical percolation in melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites, Chemical Physics Letters, vol.482, issue.1-3, pp.1-3105, 2009.
DOI : 10.1016/j.cplett.2009.09.064

T. Ezquerra, M. Connor, M. Kulescza, J. Fernandes-nascimento, and F. Balta-calleja, Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites, Composites Science and Technology, vol.61, issue.6, pp.903-912, 2001.
DOI : 10.1016/S0266-3538(00)00176-7

W. Bauhofer and J. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology, vol.69, issue.10, pp.1486-98, 2009.
DOI : 10.1016/j.compscitech.2008.06.018

J. Kovacs, B. Velagala, K. Schulte, and W. Bauhofer, Two percolation thresholds in carbon nanotube epoxy composites, Composites Science and Technology, vol.67, issue.5, pp.922-930, 2007.
DOI : 10.1016/j.compscitech.2006.02.037

Q. Zhao and H. Wagner, Raman spectroscopy of carbon-nanotube-based composites, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1824, pp.2407-2431, 2004.
DOI : 10.1098/rsta.2004.1447

S. Wang, R. Liang, B. Wang, and C. Zhang, Load-transfer in functionalized carbon nanotubes/polymer composites, Chemical Physics Letters, vol.457, issue.4-6, pp.4-6371, 2008.
DOI : 10.1016/j.cplett.2008.04.037

C. Filiou and C. Galiotis, In situ monitoring of the fibre strain distribution in carbon-fibre thermoplastic composites1. Application of a tensile stress field, Composites Science and Technology, vol.59, issue.14, pp.2149-61, 1999.
DOI : 10.1016/S0266-3538(99)00072-X

O. Lourie and H. Wagner, Evaluation of Young's Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy, Journal of Materials Research, vol.4, issue.09, pp.2418-2440, 1998.
DOI : 10.1103/PhysRevB.51.10048

P. Puech, H. Hubel, D. Dunstan, A. Bassil, R. Bacsa et al., Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes, physica status solidi (b), vol.319, issue.14, pp.3360-3366, 2004.
DOI : 10.1002/pssb.200405227

P. Puech, E. Flahaut, A. Sapelkin, H. Hubel, D. Dunstan et al., Nanoscale pressure effects in individual double-wall carbon nanotubes, Physical Review B, vol.73, issue.23, p.233408, 2006.
DOI : 10.1103/PhysRevB.73.233408

URL : https://hal.archives-ouvertes.fr/hal-01481822

P. Puech, S. Nanot, B. Raquet, J. Broto, M. Millot et al., Comparative Raman spectroscopy of individual and bundled double wall carbon nanotubes, physica status solidi (b), vol.109, issue.1, pp.1-6, 20094554.
DOI : 10.1002/pssb.200945548

URL : https://hal.archives-ouvertes.fr/hal-00568150

E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Gram-scale CCVD synthesis of doublewalled carbon nanotubes, Chem Commun, vol.12, pp.1442-1445, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00926035

C. Laurent, G. Chevallier, A. Weibel, A. Peigney, and C. Estournes, Spark plasma sintering of double-walled carbon nanotubes, Carbon, vol.46, issue.13, pp.1792-828, 2008.
DOI : 10.1016/j.carbon.2008.08.020

URL : https://hal.archives-ouvertes.fr/hal-00464452

E. Larendo, M. Grimau, A. Bello, D. Wu, Y. Zhang et al., AC Conductivity of Selectively Located Carbon Nanotubes in Poly(??-caprolactone)/Polylactide Blend Nanocomposites, Biomacromolecules, vol.11, issue.5, pp.1339-1386, 2010.
DOI : 10.1021/bm100135n

A. Almasri, Z. Ounaies, Y. Kim, and J. Grunlan, Characterization of Solution-Processed Double-Walled Carbon Nanotube/Poly(vinylidene fluoride) Nanocomposites, Macromolecular Materials and Engineering, vol.44, issue.2, pp.123-154, 2008.
DOI : 10.1002/mame.200700229

G. Chen, S. Bandow, E. Margine, C. Nisoli, A. Kolmogorov et al., Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors, Physical Review Letters, vol.90, issue.25, 2003.
DOI : 10.1103/PhysRevLett.90.257403

P. Puech, A. Ghandour, A. Sapelkin, C. Tinguely, E. Flahaut et al., doping and high pressure, Physical Review B, vol.78, issue.4, p.45413, 2008.
DOI : 10.1103/PhysRevB.78.045413

URL : https://hal.archives-ouvertes.fr/hal-00806029

M. Kalbac, L. Kavan, and L. Dunsch, Controlled doping of double walled carbon nanotubes and conducting polymers in a composite: An in situ Raman spectroelectrochemical study, Composites Science and Technology, vol.69, issue.10, pp.1553-1560, 2009.
DOI : 10.1016/j.compscitech.2008.06.020