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Abstract

Population balance equations (PBE) for a number density function (NDF) arise in many applications of

aerosol technology. Thus, there has been considerable interest in the development of numerical methods

to find solutions to PBE, especially in the context of spatially inhomogeneous systems where moment

realizability becomes a significant issue. Quadrature-based moment methods (QBMM) are an important

class of methods for which the accuracy of the solution can be improved in a controlled manner by increasing

the number of quadrature nodes. However, when a large number of nodes is required to achieve the desired

accuracy, the moment-inversion problem can become ill-conditioned. Moreover, oftentimes pointwise values

of the NDF are required, but are unavailable with existing QBMM. In this work, a new generation of QBMM

is introduced that provides an explicit form for the NDF. This extended quadrature method of moments

(EQMOM) approximates the NDF by a sum of non-negative weight functions, which allows unclosed source

terms to be computed with great accuracy by increasing the number of quadrature nodes independent

of the number of transported moments. Here, we use EQMOM to solve a spatially homogeneous PBE

with aggregation, breakage, condensation, and evaporation terms, and compare the results with analytical

solutions whenever possible. However, by employing realizable finite-volume methods, the extension of

EQMOM to spatially inhomogeneous systems is straightforward.

Keywords: Population balance equation, extended quadrature method of moments (EQMOM),

aggregation, breakage, condensation, evaporation

1. Introduction

Populations of discrete particles in a carrier fluid can be described by a population balance equation

(PBE) (Ramkrishna, 2000). Technologically important examples include the general dynamic equation

(Friedlander, 2000) used in aerosol reactor (Pratsinis, 1988) and atmospheric models (Seinfeld and Pandis,
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2006), and the spray equation (Sirignano, 2010) used to describe the evolution of fuel droplets in spray

combustion devices. In the simplest case where the mean particle velocity is the same as the fluid, the

PBE describes the evolution of a number density function (NDF) for the number of particles with given

set of internal coordinates (e.g., volume, chemical composition, etc.) whose values lie in a high-dimensional

phase space. The NDF depends on time t, spatial location x, and the values of the internal coordinates

⇠. A typical PBE contains terms for spatial transport (e.g., advection and di↵usion), source terms for

the formation of new particles from the surrounding fluid, loss terms due to evaporation, growth terms on

individual particles, and aggregation and breakage (Vigil et al., 2006) terms involving multiple particles. The

mathematical form of the PBE is therefore quite complex with both hyperbolic (e.g., growth) and integral

(e.g., aggregation) terms in phase space, in addition to the di↵erential terms for advection and di↵usion in

real space. The complexity of the PBE, and the high-dimensional phase space, make the direct solution of

the PBE intractable for use in time-dependent transport codes seeking to model the spatial dependence of

the NDF, such as those used in climate (Seinfeld and Pandis, 2006) and aerosol reactor (Mehta et al., 2010;

Pratsinis, 1988; Sung et al., 2011) modeling.

In order to reduce the dimensionality of the PBE, a number of di↵erent strategies have been proposed.

In classical moment methods (Barrett and Webb, 1998), the PBE is multiplied by test functions (e.g., in-

tegers powers of the internal coordinates) and integrated over phase space. Because the resulting moment

transport equations are not closed in terms of a finite set of moments, this approach leads to a moment

closure problem. Broadly speaking, there are two ways to achieve closure: (i) provide a functional depen-

dence of the unknown moments using the transported moment set (e.g., an interpolative closure such as

MOMIC (Frenklach and Harris, 1987)), or (ii) reconstruct the NDF from the transported moments (i.e., the

truncated Hausdor↵/Stieljes/Hamburger moment problem (Hausdor↵, 1923; Shohat and Tamarkin, 1943))

from which the unclosed terms can be evaluated. In either case, a very important consideration for problems

involving spatial transport is the realizability of the moment set (Wright, 2007). In other words, even if a

suitable closure can be found for the moment transport equation, numerical advection and di↵usion schemes

can lead to moment sets that do not correspond to a realizable NDF (i.e., the NDF must be non-negative

on the support of the internal coordinates). An ad hoc approach to ensuring realizability can be formulated

in terms of a moment correction algorithm using, for example, the Hankel-Hadamard determinants (Shohat

and Tamarkin, 1943). However, such approaches are di�cult to apply to multivariate moment sets, and are

generally unsatisfactory because they attempt to correct errors introduced during the numerical approxi-

mation of the moment transport equations that do not exist at the level of the PBE. In recent works (Kah

et al., 2012; Vikas et al., 2011), promising alternative approaches that guarantee realizable moments have

been introduced and make use of the reconstructed NDF to ensure realizability for high-order finite-volume

reconstruction schemes on unstructured grids.

In light of realizability, in this work we restrict our attention to moment closures that reconstruct the
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NDF from the moments. The simplest moment-inversion algorithms use a parameterized NDF where the

unknown parameters are found from a few lower-order moments (e.g., a log-normal distribution) (Hutton,

2012). However, such methods do not provide enough flexibility to describe a complex multi-modal NDF.

A more flexible formulation, introduce by Grad (Grad, 1949) in kinetic theory, consists of expanding the

NDF in a family of known orthogonal polynomials in terms of the internal coordinates. For a univariate

PBE with size or volume as the internal coordinate, the Legendre polynomials can be employed (e.g.,

FCMOM (Strumendo and Arastoopour, 2008)), or any other family defined on a subset of the real line (e.g.,

DuQMoGeM (Lage, 2011)). The principal shortcoming of the Grad approach is that because the number

of polynomials that can be determined from a finite set of moments is finite, the reconstructed NDF will

almost always be negative for some values of the internal coordinate. Thus, while small negative values

can be tolerated for approximating the integral terms in the PBE, they can lead to instabilities in the

spatial transport terms and, almost inevitably (Kah et al., 2012; Vikas et al., 2011; Wright, 2007), will yield

unrealizable moments. For this reason, only moment-inversion methods that guarantee a nonnegative NDF

are acceptable for approximating solutions to the PBE in the context of spatially inhomogeneous systems.

In aerosol science, a now widely used closure for the moment transport equation is the quadrature method

of moments (QMOM) (McGraw, 1997). Strictly speaking, QMOM does not reconstruct the NDF. However,

given the one-to-one relationship between the QMOMmoment closure and point distribution function (Dette

and Studden, 1997), it is natural to interpret QMOM with n nodes to be an n-point distribution function

(i.e., the sum of n weighted Dirac delta functions). Indeed, from the theory of moments (Dette and Studden,

1997; Shohat and Tamarkin, 1943), the QMOM closure for the moment m2n is the smallest value possible

given the moment set (m0, . . . ,m2n�1). In other words, the QMOM reconstructed NDF has moments of

order higher than 2n that lie on the boundary of moment space, and all other possible NDF with the same

moments (m0, . . . ,m2n�1) lie in the interior of moment space. Thus, QMOM uniquely chooses one of an

infinite number of NDF from the transported moment set.

The representation of the NDF as an n-point distribution is exploited in the direct quadrature method

of moments (DQMOM) (Marchisio and Fox, 2005) to formulate transport equations for the weights and

abscissas. Theoretically, an exact and regular solution to the DQMOM equations should be identical to

the solution of the moment transport equations. However, since the moments are the natural “conserved”

quantities needed to represent the PBE, and the relationship between the moments and the abscissas is

nonlinear, conservative finite-volume schemes applied to the weights and abscissas cannot guarantee con-

servation of the moments. A even more serious shortcoming associated with the n-point NDF arises in the

treatment of evaporation terms (Fox et al., 2008). The key problem here is that evaporation leads to a

zero-order moment equation containing a term corresponding to the loss of particles of zero size. In order to

evaluate this term, the value of the NDF at ⇠ = 0 is required, but not available in QMOM. A partial (but

impractical) solution would be to increase n to a large enough value (e.g., n > 100) so that phase space is
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adequately “discretized”. However, the moment-inversion algorithm used in QMOM is not accurate for n

larger than about ten (Gautschi, 2004; McGraw, 1997; Wheeler, 1974). Thus, the only feasible alternative

to capture accurately the e↵ect of evaporation is to reconstruct a continuous NDF that can be evaluated at

⇠ = 0 (Massot et al., 2010).

As mentioned above, there exists an infinite number of continuous NDF with moments in the interior

of moment space. Thus, an additional criteria is needed to choose one of them to represent the NDF. For

example, the entropy maximization (EM) method (Mead and Papanicolaou, 1984; Tagliani, 1999) chooses the

NDF that minimizes a functional subject to moment constraints. In practice, the numerical implementation

of the EMmethod requires the solution of a constrained multi-variate minimization problem whose dimension

depends on the number of transported moments. An obvious advantage of EM over the Grad method is

that the NDF is guaranteed to be non-negative. However, the extension of EM to the boundaries of moment

space is ill-conditioned (Massot et al., 2010), and the treatment of multiple internal coordinates increases

the numerical di�culties considerably. Another promising method for reconstructing a realizable NDF is the

kernel density element method (KDEM) (Athanassoulis and Gavriliadis, 2002) and related methods (Diemer

and Olson, 2002), which uses a weighted sum of known non-negative kernel density functions to represent the

NDF. As in the EM method, KDEM fixes the unknown parameters by solving a constrained minimization

problem wherein only a few of the lowest-order moments are exactly reproduced by the reconstructed NDF.

Thus, in comparison to QMOM and EM where all 2n moments are exactly reproduced, KDEM introduces

a quadrature error into the moment closures.

In this work we develop an alternative moment-inversion algorithm that combines the most desirable

properties of QMOM and KDEM, while eliminating their weaknesses. The basic idea (Chalons et al., 2010)

behind the extended quadrature method of moments (EQMOM) is to choose a kernel density function,

depending on a single parameter �, for which the QMOM moment-inversion algorithm can be applied

directly to find the weights and abscissas. The parameter � is then determined by forcing one additional

transported moment (i.e., m2n) to agree with the reconstructed NDF. Thus, in place of a multi-variate

minimization algorithm, � is determined using a one-dimensional root-finding method with relatively modest

computational cost. Moreover, in the limit � ! 0, EQMOM reduces to QMOM in a well-conditioned

manner, making it possible to easily reconstruct the NDF all the way to the boundary of moment space.

(See Appendix A for a comparison of EQMOM with EM methods.) As we shall show in Sec. 4, another

important advantage of EQMOM is the ability to construct a second Gaussian quadrature (Gautschi, 2004)

with respect to the kernel density function that is independent of the number of transported moments.

Thus, as with DuQMoGeM (Lage, 2011), the accuracy of the moment closures used for integral terms can

be greatly increased as very low computational cost.

The focus of this paper is on the formulation and validation of EQMOM in the context of a univariate

NDF for an internal coordinate (such as particle volume or size) defined on either a semi-finite or finite subset
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of the real line. In Sec. 2 we briefly describe the PBE and the moment transport equations for a spatially

homogeneous system. In Sec. 3 we introduce the mathematical formulation of EQMOM and describe the

numerically robust moment-inversion algorithm (referred to hereinafter as the first quadrature) used in later

sections. Then, in Sec. 4, we describe how moment closures are constructed using the second Gaussian

quadrature. Next, in Sec. 5, EQMOM is applied to 13 test cases, many of which have analytical solutions,

in order to investigate the accuracy of the moment closures and to illustrate how the EQMOM predictions

depend on the parameters used in the first and second quadratures. Finally, in Sec. 6 we summarize the

principal conclusions and briefly mention how EQMOM can be generalized to multiple internal coordinates

and spatially inhomogeneous systems.

2. Moment Methods for Population Balance Equations

In this work we consider a PBE with growth (i.e., evaporation and condensation), aggregation, breakage

and source terms. For clarity, we consider only spatially homogeneous systems. However, the methods

developed here can be applied to a spatially inhomogeneous PBE using realizable finite-volume schemes

(Vikas et al., 2011). In order to guarantee realizability of the moments sets, such schemes make use of

the underlying connection between the PBE and the moment equations. The same is true for the moment

method developed in this work.

2.1. Population balance equation

Consider the following PBE for the spatially homogeneous, univariate NDF f(t, ⇠):

@f(t, ⇠)

@t
+

@

@⇠
[g(t, ⇠)f(t, ⇠)] = Bagg(t, ⇠)�Dagg(t, ⇠) +Bbr(t, ⇠)�Dbr(t, ⇠) +Q(t, ⇠)f(t, ⇠) (1)

where ⇠ 2 [0, ⇠max] (with ⇠max possibly infinite) depends on what physical processes are investigated (e.g,

size, surface area, or volume of particles) and Q(t, ⇠) is a source term used in this work to obtain a known

form for f(t, ⇠). The aggregation terms are given by

Bagg(t, ⇠) =
1

2

Z ⇠

0

a(t, ⇠ � ⇠
0
, ⇠

0)f(t, ⇠ � ⇠
0)f(t, ⇠0) d⇠0 (2)

and

Dagg(t, ⇠) =

Z ⇠max

0

a(t, ⇠, ⇠0)f(t, ⇠)f(t, ⇠0) d⇠0 (3)

where a(t, ⇠, ⇠0) is the aggregation kernel. The breakage terms can be expressed as

Bbr(t, ⇠) =

Z ⇠max

⇠
#(t, ⇠0)b(t, ⇠0)P (t, ⇠|⇠0)f(t, ⇠0) d⇠0 (4)

and

Dbr(t, ⇠) = b(t, ⇠)f(t, ⇠) (5)
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where #(t, ⇠0) is the average number of particles formed by breakage of a particle of type ⇠
0 at time t,

P (t, ⇠|⇠0) is probability density function for particle type ⇠
0 at time t to produce a daughter particle with

type ⇠, and b(t, ⇠) is the breakage kernel. In the examples in Sec. 5, the source term is used to force the

exact solution of the PBE to have a chosen form for the NDF (i.e., a so-called manufactured solution). The

accuracy of the proposed moment method can then be evaluated against the moments of the known NDF.

2.2. Moment equations

The integer moments of f(t, ⇠) are defined by

mk(t) ⌘
Z ⇠max

0

⇠
k
f(t, ⇠) d⇠ (6)

with ⇠max finite or infinite. The integro-di↵erential equation for the moments can be found starting from

Eq. (1):

dmk

dt
= � g(t, ⇠)f(t, ⇠)⇠k

��⇠max

0
+

Z ⇠max

0

k⇠
k�1

g(t, ⇠)f(t, ⇠) d⇠ +

Z ⇠max

0

⇠
k [Bagg(t, ⇠)�Dagg(t, ⇠)] d⇠

+

Z ⇠max

0

⇠
k [Bbr(t, ⇠)�Dbr(t, ⇠)] d⇠ +

Z ⇠max

0

⇠
k
Q(t, ⇠)f(t, ⇠) d⇠. (7)

In general, this system of moment equations is not closed in terms of a finite set of moments due to the

nonlinear dependencies of the growth, aggregation, and breakage terms on ⇠, which introduce higher-order

(and non-integer) moments. In order to attain closure, a novel quadrature-based moment method (QBMM)

is introduced in Sec. 3. However, we should note that the mathematical forms of the unclosed terms in

Eq. (7) can make closure very challenging.

For example, the growth terms in Eq. (1) are hyperbolic in nature (i.e., solutions evolve along character-

istics in ⇠-phase space), while the aggregation and breakage terms lend themselves to QBMM. In particular,

when the growth term g(t, ⇠) is negative (i.e., evaporation (Fox et al., 2008; Massot et al., 2010) and fines

dissolution (Grosch et al., 2007)), the zero-order moment m0 requires a closure for the boundary flux term

g(t, 0)f(t, 0), i.e., a pointwise value of the NDF. In standard QMOM (McGraw, 1997), pointwise values of

the NDF are not available, and thus an important property of our proposed extension of QMOM is the

ability to accurately evaluate the functional form of f(t, ⇠) at a discrete point ⇠. A related class of problems

for which QMOM performs poorly is a PBE with selective removal of particles in a small interval of size

space (Grosch et al., 2007) (e.g., fines removal or separation of large particles). For such problems, one needs

a good estimate of the integral of f(t, ⇠) over a finite interval ⇠1  ⇠  ⇠2, which – for reasonable accuracy

– requires knowledge of f(t, ⇠) at several points in the interval.

3. Extended Quadrature Method of Moments

EQMOM is conceptually equivalent to the bi-Gaussian quadrature introduced elsewhere (Chalons et al.,

2010), and shares many similarities (but important di↵erences) with the KDEM (Athanassoulis and Gavril-
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iadis, 2002).

3.1. A non-negative approximation for the NDF

The starting point of EQMOM is to represent the distribution function by a weighted sum of non-negative

functions:

pn(⇠) =
nX

↵=1

w↵��(⇠; ⇠↵) (8)

where w↵ are non-negative weights, ⇠↵ the corresponding abscissas, and ��(⇠; ⇠↵) is a kernel density function

with a finite (or infinite) support determined by the parameter �. Recall that in QMOM, the NDF is

represented as

pn(⇠) =
nX

↵=1

w↵�(⇠ � ⇠↵). (9)

Thus, for consistency, we require that ��(⇠; ⇠↵) be chosen to satisfy the following condition:

lim
�!0

��(⇠; ⇠↵) = �(⇠ � ⇠↵), (10)

which is not di�cult to obtain for positive kernel density functions (Athanassoulis and Gavriliadis, 2002).

Notice that the same � is shared for all ↵ 2 1, . . . , n in Eq. (8).

The reader interested in the mathematical properties of Eq. (8) as an approximation of f(t, ⇠) can

consult the literature (Athanassoulis and Gavriliadis, 2002). In particular, it can be shown that Eq. (8) can

approximate any continuous density function as closely as desired with some finite n.

3.2. The moment-inversion problem

For the EQMOM approximation, 2n+ 1 moments are employed to compute the 2n+ 1 unknowns: w↵,

⇠↵ for ↵ = 1, . . . , n, and �. In fact, the key improvement of EQMOM as compared to KDEM is the ability

to compute these unknowns exactly from the moment set

M
2n = {m0,m1, . . . ,m2n}

using a robust moment-inversion algorithm based on the adaptive Wheeler algorithm (Yuan and Fox, 2011).

The reader should note that in the limit � = 0, the moment set

M
2n�1 = {m0,m1, . . . ,m2n�1}

can be used to construct the QMOM representation of the NDF in Eq. (9). Thus, in essence, the moment

m2n is used to determine the value of � in Eq. (8).

In the literature (Athanassoulis and Gavriliadis, 2002), a detailed discussion is available of the numerical

issues faced when trying to invert Eq. (8) directly to yield a prescribed set of moments (i.e., the Haus-

dor↵ truncated moment problem (Hausdor↵, 1923)). In the present work, the adaptive Wheeler algorithm
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(Wheeler, 1974; Yuan and Fox, 2011) (see also (Dette and Studden, 1997; McGraw, 1997)) is used for

moment inversion in order to minimize the numerical di�culties as much as possible (i.e., the recursion

coe�cients are computed from the moments directly instead of solving a minimization problem as done

elsewhere (Athanassoulis and Gavriliadis, 2002)). Even so, the maximum value of n that can be used with

reasonable numerical accuracy is on the order of five to ten, and hence our main focus is on accurately

predicting the moments up to order 2n+ 1, as opposed to predicting the (unknown) exact NDF.

For a Gaussian kernel density function defined for ⇠ 2 (�1,+1), the moment-inversion method used

in EQMOM is described elsewhere (Chalons et al., 2010) for n = 2. For this kernel density function, the

abscissas ⇠↵ correspond to the mean and � to the standard deviation of the Gaussian. In this work, we

consider kernel density functions that are appropriate for cases where ⇠ 2 [0,1) and ⇠ 2 [0, 1]. In these

cases, the abscissas and � no longer correspond to the mean and standard deviation of the kernel density

function and, in fact, we shall see that their definitions are critical for defining a well-posed moment-inversion

algorithm. Note that by a linear change of variables, any semi-infinite interval [a,1) or finite interval [a, b]

can be transformed to [0,1) and [0, 1], respectively. Thus, the EQMOM algorithms developed in this work

can be applied to any semi-infinite or finite interval used to define the range of ⇠.

3.3. Gamma EQMOM

For ⇠ 2 [0,1), a gamma distribution is a good choice for ��(⇠; ⇠↵):

��(⇠; ⇠↵) =
⇠
�↵�1

e
�⇠/�

�(�↵)��↵
, (11)

where �↵ = ⇠↵/�. Then f(t, ⇠) can be approximated by

pn(t, ⇠) =
nX

↵=1

w↵
⇠
�↵�1

e
�⇠/�

�(�↵)��↵
. (12)

It remains to show how the moments are related to the parameters �↵ and �.

The first step is to compute the integer moments of ��(⇠; ⇠↵) with respect to ⇠ analytically. For the

gamma EQMOM, these integer moments are

m
(↵)
k =

�(�↵ + k)

�(�↵)

✓
⇠↵

�↵

◆k

, (13)

and thus

mk =
nX

↵=1

w↵
�(�↵ + k)

�(�↵)
�
k =

nX

↵=1

w↵Gk(⇠↵,�) (14)

where

Gk(⇠↵,�) =

8
><

>:

1 if k = 0,

Qk�1

i=0
(⇠↵ + i�) if k � 1.

(15)
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Noting that Gk can be written as

Gk(⇠↵,�) = ⇠
k
↵ + Pk�1(⇠↵,�) (16)

where Pk�1(x, y) is a homogeneous polynomial of order k�1 in x and y, we can rewrite the integer moments

as

mk = m
⇤
k +

nX

↵=1

w↵Pk�1(⇠↵,�) (17)

where

m
⇤
k =

nX

↵=1

w↵⇠
k
↵. (18)

The right-hand side of Eq. (17) can therefore be expressed in terms of � and the moments m⇤
0
, . . . ,m

⇤
k. In

other words, Eq. (17) forms a lower-triangular linear system that can be inverted using forward substitutions.

As an example, up to k = 4 (which corresponds to n = 2), we have

m0 = m
⇤
0
,

m1 = m
⇤
1
,

m2 = m
⇤
2
+ �m

⇤
1
,

m3 = m
⇤
3
+ 3�m⇤

2
+ 2�2

m
⇤
1
,

m4 = m
⇤
4
+ 6�m⇤

3
+ 11�2

m
⇤
2
+ 6�3

m
⇤
1
.

(19)

These equations can be recast in matrix form:

m = A(�)m⇤
. (20)

This system of equations can be solved iteratively to find � using the methods described in Sec. 3.5 below.

It is worth mentioning that only by choosing �↵ as in Eq. (11) will A(�) be a closed lower-triangular ma-

trix. This is a key technical point because, for a given �, it allows us to find the moment set (m⇤
0
, . . . ,m

⇤
2n�1

)

from (m0, . . . ,m2n�1), and thus to find the weights w↵ and abscissas ⇠↵ using the adaptive Wheeler algo-

rithm (Yuan and Fox, 2011). In this manner, the moments set (m0, . . . ,m2n�1) is exactly recovered for any

value of �, and we are free to fix the value of � to agree with moment m2n. This is accomplished using the

scalar function

Jn(�) = m2n �m
⇤
2n �

nX

↵=1

w↵P2n�1(⇠↵,�) (21)

by finding the smallest � for which Jn(�) = 0.
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3.4. Beta EQMOM

If ⇠ is in the bounded interval [0, 1], ��(⇠; ⇠↵) can be set to a beta distribution. The NDF for ⇠ 2 [0, 1]

is then approximated by

pn(⇠) =
nX

↵=1

w↵
⇠
�↵�1(1� ⇠)µ↵�1

B(�↵, µ↵)
(22)

where the two parameters are defined by �↵ = ⇠↵/� and µ↵ = (1 � ⇠↵)/�. For the beta distribution, the

integer moments of ��(⇠; ⇠↵) can be found from a recursion formula:

m
(↵)
k =

⇠↵ + (k � 1)�

1 + (k � 1)�
m

(↵)
k�1

for k > 0, (23)

and m
(↵)
0

= 1. We can thus express the integer moments of the distribution function in Eq (22) as

mk =
nX

↵=1

w↵Gk(⇠↵,�) (24)

where

Gk(⇠↵,�) =

8
><

>:

1 if k = 0,

Qk�1

i=0
( ⇠↵+i�

1+i� ) if k � 1,
(25)

which is very similar to Eq. (15).

Because ⇠↵ appears only in the numerator in Eq. (25), the product will yield polynomials in ⇠↵ of order

k. Thus, we can express the integer moments of the distribution function in Eq. (22) as

mk = �km
⇤
k + �k�1m

⇤
k�1

+ · · ·+ �1m
⇤
1

(26)

where the non-negative coe�cients �k depend only on �.

For example, up to k = 4, we have

m0 = m
⇤
0
,

m1 = m
⇤
1
,

m2 =
1

1 + �
(m⇤

2
+ �m

⇤
1
),

m3 =
1

(1 + 2�)(1 + �)
(m⇤

3
+ 3�m⇤

2
+ 2�2

m
⇤
1
),

m4 =
1

(1 + 3�)(1 + 2�)(1 + �)
(m⇤

4
+ 6�m⇤

3
+ 11�2

m
⇤
2
+ 6�3

m
⇤
1
),

(27)

where m⇤
k has the same definition as in gamma EQMOM. Again, the system of equations in Eq. (26) can be

written as m = A(�)m⇤ where A(�) is a lower triangular matrix. For beta EQMOM, the scalar function is

Jn(�) = m2n � �2nm
⇤
2n � �2n�1m

⇤
2n�1

� · · ·� �1m
⇤
1
, (28)

and we again find the smallest � for which Jn(�) = 0. The system of moment equations is solved iteratively

to find � using the algorithm described next.
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3.5. The EQMOM moment-inversion algorithm

To solve a system of equations such as Eq. (19) or Eq. (27), we propose the following algorithm. Given

the 2n+ 1 realizable moments m = M
2n,

1. guess �, and compute the 2n moments m⇤
k for k = 0, . . . , 2n� 1 from m

⇤ = A(�)�1
m;

2. use the adaptive Wheeler algorithm with m
⇤
k for k = 0, . . . , 2n�1 to find n weights w↵ and n abscissas

⇠↵;

3. compute m
⇤
2n using w↵ and ⇠↵;

4. compute Jn(�) from m
⇤ and �;

5. if Jn(�) 6= 0, compute a new guess for � and iterate until convergence.

In this algorithm, the adaptive Wheeler algorithm introduced in Yuan and Fox (2011) is applied so that n is

chosen adaptively based on the moment error. Because of the highly nonlinear dependence of Jn on �, it is

not convenient to find an analytical expression for the derivative J
0
n. Thus, we have successfully employed

both a bounded secant method and the Ridder’s method (Press et al., 1992) to update �. For completeness,

we should note that for a Gaussian kernel with n > 2, the same algorithm is applied with Jn(�) defined in

terms of the Gaussian moments (Chalons et al., 2010).

From the theory of moments (Dette and Studden, 1997), we know that m2n � m
⇤
2n, with equality

implying that the NDF is exactly represented by the sum of at most n weighted delta functions. The scalar

function has the properties Jn(0) � 0 and J
0
n(0) < 0. Thus, when Jn(0) > 0, we wish to find the smallest

value of � for which (i) Jn(�) = 0 and (ii) the moment set (m⇤
0
, . . . ,m

⇤
2n�1

) is realizable (i.e., all w↵ > 0

and ⇠↵ 2 [0,1) for gamma EQMOM or ⇠↵ 2 [0, 1] for beta EQMOM). In practice, we find that the smallest

value of � for which J(�) = 0 can sometimes yield an abscissa out of range. In such cases, we choose � to be

the largest value for which all abscissas are realizable, and redefine Jn accordingly in the iteration algorithm.

(See Appendix B for details.) Another possible case is that Jn(�) = 0 but one (or more) w↵ = 0. When

this occurs, it implies that less than n kernel density functions are needed to exactly capture the first 2n

moments (e.g., f(t, ⇠) is exactly a gamma/beta distribution so that n = 1 su�ces to reproduce it). A final

possible case is that the moment set (m⇤
0
, . . . ,m

⇤
2n�1

) is unrealizable but Jn(�) > 0, which implies that we

cannot reproduce all 2n+1 moments for a given n. In such cases, we reduce n by one and repeat the search

process using less moments.

In the literature (Athanassoulis and Gavriliadis, 2002; Diemer and Olson, 2002), the NDF has been

approximated by a kernel density function whose coe�cients are computed by solving a constrained, non-

negative, least-squares problem. In this manner, usually only one or two constraints are applied, which means

that only one or two moments are exact and the rest are approximate. In comparison, with the EQMOM

moment-inversion algorithm the moment set M2n�1 is almost always exactly reproduced and moment m2n

is as accurate as possible. Furthermore, the iterative scheme described above is one-dimensional since only

11



the value of � is unknown. We are thus guaranteed to quickly converge to an optimal solution with relatively

little computational cost, which is an important requirement for solving spatially inhomogeneous problems

(Vikas et al., 2011; Yuan and Fox, 2011).

4. Moment Closure with EQMOM

In this section, we assume that the parameters defining pn(⇠) have been successfully computed using the

algorithm in Sec. 3.5, and address the question of how to compute the moment closures in Eq. (7). For this

purpose, we follow the idea introduced elsewhere (Lage, 2011) of using a second Gaussian quadrature with

respect to the kernel density function.

4.1. Choice of kernel density function

As done above, a convenient choice for univariate EQMOM is to define the kernel density function in

terms of the weight function w(t) for a known family of orthogonal polynomials. For example, on the interval

[�1, 1] the associated Jacobi polynomials have the weight function

w(t) = (1� t)a(1 + t)b, (29)

where the parameters �1 < a,�1 < b defines a particular family of Jacobi polynomials (Gautschi, 2004).

As we can see, the beta distribution can be easily expressed in terms of this weight function by the change

of variable ⇠ = (t+ 1)/2. Likewise, for gamma EQMOM the corresponding weight function is

w(t) = t
a
e
�t
, (30)

which is used with the associated Laguerre polynomials (Gautschi, 2004), while for the Gaussian EQMOM

the weight function corresponds to the Hermite polynomials. In principle, an EQMOM could be defined for

any weight function with a corresponding set of orthogonal polynomials. As discussed in Appendix B, for

fixed n the classical weight functions do not cover all of moment space (i.e., always up to m2n�1, but not

always m2n). Nevertheless, as shown next, they allow us to accurately approximated integral terms at very

low computational expense.

4.2. EQMOM approximation of integrals

The principal advantage of using the weight function for a known family of orthogonal polynomials is

that the recursion coe�cients are known in advance (i.e., we do not need to compute them from the moments

m
(↵)
k of the kernel density function). Thus, the Jacobi matrix, which is used to find the N weights and N

abscissas of the second quadrature (Gautschi, 2004), can be computed with good accuracy for large values

of N . In contrast, if the moments m(↵)
k were used with the Wheeler algorithm to find the second quadrature,

the maximum value of N that could be employed with good accuracy would be on the order of ten.
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As an example of the second quadrature, consider the beta kernel density function, which leads to the

following quadrature formula for an arbitrary function g(⇠):

Z
1

0

g(⇠)��(⇠; ⇠↵) d⇠ =
1

B(�↵, µ↵)

Z
1

0

g(⇠)⇠�↵�1(1� ⇠)µ↵�1 d⇠

=

✓
1

2

◆�↵+µ↵�1 1

B(�↵, µ↵)

Z
1

�1

g

✓
t+ 1

2

◆
(1� t)µ↵�1(1 + t)�↵�1 dt

⇡
N↵X

�=1

w↵�g

✓
t↵� + 1

2

◆
.

(31)

In the second line, we see the weight function in Eq. (29) with a↵ = µ↵ � 1 and b↵ = �↵ � 1. In the

last line, {w↵� , t↵�} are the N↵ weights1 and N↵ abscissas computed from the Jacobi polynomial recursion

coe�cients for a given set of parameters {a↵, b↵} using an algorithm described elsewhere (Gautschi, 2004).

Using Eq. (31), we can see that the EQMOM closure defined by Eq. (8) approximates integrals with

respect to the f(t, ⇠) as

Z ⇠1

⇠0

g(⇠)pn(⇠) d⇠ =

Z ⇠1

⇠0

g(⇠)
nX

↵=1

w↵��(⇠; ⇠↵) d⇠ =
nX

↵=1

N↵X

�=1

⇢↵�g(⇠↵�)I[⇠0,⇠1] (⇠↵�) (32)

where I[a,b](x) is the indicator function for the interval [a, b], and ⇢↵� = w↵w↵� . The n weights w↵, n

abscissas ⇠↵ and � are found from the first 2n+1 integer moments of f(t, ⇠) using EQMOM (which we refer

to as the first quadrature).

Here, it is important to recognize that N↵ in Eq. (32) can be chosen independently from the value of

n. Therefore, we can choose N↵ � n to improve the accuracy of Eq. (32). As for any Gaussian quadrature

(Gautschi, 2004), the formula in Eq. (31) is exact if g(⇠) is a polynomial. For a 2n order polynomial g(⇠),

since N↵ quadrature nodes can yield an exact integration for polynomials of order 2N↵ � 1, the value of N↵

should be chosen as 2N↵ � 1 � 2n so that Eq. (31) is exact. This is one important fact for choosing N↵ in

the test cases in Sec. 5 for cases where g(⇠) is a polynomial. Otherwise, N↵ is chosen large enough to reduce

the error in the second quadrature to a level that is smaller than the error in the first quadrature, which

depends on n.

4.3. EQMOM approximation of hyperbolic terms

The approximation in Eq. (32) can be used to close the integral terms in Eq. (7). However, in order to

close the hyperbolic terms (i.e., growth), we introduce an equivalent point representation of pn(⇠):

pn(⇠) =
nX

↵=1

N↵X

�=1

⇢↵��(⇠ � ⇠↵�). (33)

1The weights w↵� are normalized such that
P

� w↵� = 1.
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When this representation is substituted into the PBE, the hyperbolic terms on the left-hand side of Eq. (1)

are described exactly by the ordinary di↵erential equations (ODE) for the characteristics:

d⇢↵�
dt

= 0 and
d⇠↵�
dt

= g (⇠↵�) . (34)

Thus, it is quite natural to employ a time-splitting method to solve the moment equations wherein the

growth terms are updated using the method of characteristics (i.e., by solving Eq. (34) over each time step).

Because N↵ can be chosen arbitrarily large, the number of characteristics can be made large enough to attain

a specified numerical error in the evaluation of the growth terms. Moreover, because ⇢↵� is constant along

a characteristic, the updated moments are guaranteed to be realizable. Finally, note that for evaporation

with g(0) < 0, characteristics can leave the realizable domain (⇠ 2 [0,1)). When this occurs during a time

step, the corresponding weights are simply set to zero. In this manner, the flux of m0 at ⇠ = 0 is captured

in a numerically robust manner and can be computed with any desired accuracy by increasing N↵.

4.4. EQMOM approximation of the moment equations

In summary, the 2n+ 1 moments M2n are updated by solving Eq. (7) in the following manner:

1. Given M
2n at time t, use EQMOM to find the first quadrature: w↵, ⇠↵ and �.

2. Given the first quadrature, find the second quadrature for each ↵: ⇢↵� and ⇠↵� .

3. For a given �t, update M
2n due to growth by solving Eq. (34). For evaporation problems, the time

step is fixed such that the two abscissas closest to the origin at time t (i.e., ⇠1(t) and ⇠2(t)) exactly

straddle the origin at t+�t (i.e., �⇠1(t+�t) = ⇠2(t+�t)).

4. Given the updated M
2n due to growth, recompute the first and second quadratures.

5. For the same �t, update M
2n by solving

dmk

dt
=

1

2

nX

↵1=1

N↵1X

�1=1

nX

↵2=1

N↵2X

�2=1

⇢↵1�1⇢↵2�2

h
(⇠↵1�1 + ⇠↵2�2)

k � ⇠
k
↵1�1

� ⇠
k
↵2�2

i
a (t, ⇠↵1�1 , ⇠↵2�2)

+
nX

↵=1

N↵X

�=1

⇢↵�b(t, ⇠↵�)
⇥
⇠
k
↵� � #(t, ⇠↵�)

⇤
M

k
P (t, ⇠↵�) +

nX

↵=1

N↵X

�=1

⇢↵�Q(t, ⇠↵�) (35)

where M
k
P (t, ⇠) =

R ⇠
0
⇠
0k
P (t, ⇠|⇠0) d⇠0 can usually be found analytically. Note that the right-hand side

of Eq. (35) was evaluated assuming that ⇠ is the particle volume.

For cases without growth, only Eq. (35) is solved using a realizable ODE solver (Vikas et al., 2011).

In Sec. 5, we use a suite of test problems to assess the accuracy of the predicted moments as a function

of the quadrature parameters. The reader should note that when functions such as a(t, ⇠, ⇠0) and b(t, ⇠)

appearing in Eq. (35) are polynomials in ⇠, the value of N↵ can be chosen large enough to make the

summations over � exact. We will return to this point in the specific examples given below.
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5. Results and Discussion

In this section, we apply the EQMOM to a series of test cases taken from the literature (Ernst et al., 1984;

Lage, 2011; Massot et al., 2010; Strumendo and Arastoopour, 2008). These test cases were chosen either

because they have analytical solutions or because they are known to be challenging to standard QMOM.

5.1. Evaporation

As mentioned earlier, problems with evaporation are particularly di�cult to treat accurately with stan-

dard QMOM due to the lack of information concerning the pointwise flux (Fox et al., 2008). Thus, in

our opinion, any successful extension of QMOM must be able to accurately reproduce the behavior of the

zero-order moment (m0) for arbitrary functional forms for g(t, ⇠). In pure evaporation problems, ⇠ is usually

chosen to be the droplet surface area, and then, assuming that the evaporation rate is proportional to the

droplet surface area (i.e., the d
2-evaporation law (Massot et al., 2010)), g(t, ⇠) is a negative constant. More

general evaporation expressions have a dependence on ⇠, but have g(t, 0) < 0, which implies that m0 will

decrease due to the loss of droplets at ⇠ = 0.

In this section, the following evaporation test cases, taken the literature (Lage, 2011; Massot et al.,

2010)2, are analyzed:

• Case 1: g(t, ⇠) = �1/2 with initial condition f(0, ⇠) = 60⇠2(1� ⇠)3 for ⇠ 2 [0, 1].

• Case 2: g(t, ⇠) = �1/2 with initial condition f(0, ⇠) = 1 for ⇠ 2 [0, 1].

• Case 3: g(t, ⇠) = �(⇠ + 1/2) with initial condition f(0, ⇠) = (1 + 8⇠)(1� ⇠)2 exp
h
0.001

⇣
1� 1

(1�⇠)2

⌘i

for ⇠ 2 [0, 1].

For the two cases with constant g, the analytical solution simply shifts the initial NDF to the left. For

example, the analytical solution in Case 1 is f(t, ⇠) = max[60(⇠ + t/2)2[1� (⇠ + t/2)]3, 0]. The evaporation

test cases are simulated using beta EQMOM on the interval [0, b(t)], where b(t) is found by solving the ODE

db

dt
= g(t, b) with b(0) = 1.

The quadrature parameters n and N↵ are varied to investigate the dependence of the moment errors on the

quadrature reconstruction. Recall from Sec. 4.4 that the time step is determined by the value of N↵, as this

parameter fixes the location of the two abscissas closest to the origin. Hence, by increasing N↵, the accuracy

of the evaporative flux prediction should improve. Unless stated otherwise, the relative moment errors are

defined by

mk,error(t) =
|mk,EQMOM(t)�mk,exact(t)|

mk,exact(t)
for k = 0, . . . , 2n+ 1

2In the literature (Lage, 2011) a case with initial conditions given by the sum of two delta functions is also considered. With

EQMOM, this case is trivial since it can be solved exactly with n = 2.
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where mk,EQMOM is the kth-order moment predicted by EQMOM and mk,exact is the corresponding exact

moment.

Case 1. For this case, the NDF predicted using beta EQMOM with n = 4 at di↵erent times is shown in

Fig. 1. In Fig. 1(a), it can be seen that the EQMOM results found with n = 4 and N↵ = 8 match quite well

with the exact NDF. However, there are small deviations from the exact NDF close to the lower boundary

at t = 0.4 and t = 0.8. The reason for these deviations is that N1 and N2 are too small. As discussed in

Sec. 4.4, the time step is determined by the second quadrature nodes and N↵ = 8 leads to a relatively large

time step. Therefore, in Fig. 1(b), N1 and N2 are increased to 50, while leaving N3 and N4 set to 5. It can

be observed that the resulting NDF falls almost exactly on the exact NDF. The reason why N3 and N4 can

be set to 5 without incurring any errors is that as long as N↵ � n+1, the second quadrature will not a↵ect

the accuracy of the moment predictions.

[Figure 1 about here.]

The relative errors in the moments for Case 1 are shown in Fig. 2 for n = 4. From Fig. 2(a), the higher-

order moment errors (k = 5, 6, 7, 8) start with smaller values as compared to m0, but gradually increase

with time. However, at t = 1.2, they surpass m0,error. This occurs mainly because for large times, the

NDF tends to zero, leading to very small values of the higher-order moments mk,exact. Thus, the absolute

moment errors remain very small as t ! 2 (i.e., complete evaporation). Similar to the NDF, the relative

moment errors improve by increasing N1 and N2. For this case, Lage (2011) uses an ODE solver with a fixed

time step to solve the moment transport equations. Since the value of NDF at the origin (f(t, 0)), which is

used to compute the mass flux out of domain, only depends on the first quadrature, increasing N↵ cannot

improve the accuracy of the flux. Therefore, if we compare our results for N1,2 = 50 with Fig. 3(a) in Lage

(2011), we see that EQMOM has similar accuracy for m0. For higher-order moments (k � 1), EQMOM

gives better predictions of the moments than DuQMoGeM by at least one-half order of magnitude.

[Figure 2 about here.]

Finally, the e↵ect of n on the relative moment errors is shown in Fig. 3. Figure 3(a) for n = 1 shows

abnormal behavior compared with larger values of n. Indeed, the relative moment error reaches unity at

about t = 1.3 for n = 1. The reason is that only one beta function does not approximate the NDF well

enough, and leads to faster evaporation than expected. This example shows that using a simple NDF

may not be a good choice to simulate evaporation. Comparing the other three figures, we observe that all

relative moment errors decrease by about one order of magnitude by increasing the node number from 2 to 3.

Increasing n from 3 to 4, the relative moment errors show about one-half order of magnitude improvement.

As expected, these comparisons show that the error in the first quadrature dominates when n is small, but

with three or four nodes the beta EQMOM can capture accurately the moments of the NDF for evaporation.
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[Figure 3 about here.]

Case 2. Figure 4 compares the predicted to the exact NDF at t = 1 for Case 2 with n = 4 and di↵erent

values of N↵. We should note that for Case 2, the exact NDF corresponds to a beta EQMOM with n = 1

(� = ⇠1), and thus our focus here is on the errors incurred by choosing n > 1. As can be seen from Fig. 4,

a significant improvement in the predicted NDF is obtained by increasing N1 and N2 from 8 to 80. As in

Case 1, N3 and N4 can be set as small as 5 without changing the accuracy of the predicted moments. If we

compare Fig. 4(b) in Lage (2011) to Fig. 4, we can clearly see that DuQMoGeM yields a negative NDF in the

interval [0.5, 1] at t = 1, which is due to the polynomial approximation used in DuQMoGeM. In comparison,

EQMOM always yields a realizable NDF. For this reason, the relative moment errors with DuQMoGeM are

significantly larger than with EQMOM, as is obvious by comparing Fig. 5 with Fig. 4(a) in Lage (2011). For

example, EQMOM with the same parameters (i.e. Fig. 5(a)) as DuQMoGeM gives one order of magnitude

smaller error for m0, and more than two orders of magnitude smaller errors for the higher-order moments.

Comparing Fig. 5(a) to Fig. 5(b), it is interesting to note that the errors in the predicted NDF in Fig. 4 do

not cause large relative moment errors.

[Figure 4 about here.]

[Figure 5 about here.]

Case 2 was also considered in Massot et al. (2010) using the EM method to reconstruct f(t, ⇠) on the finite

interval [0, 1]. Although the EM method always guarantees positivity of the NDF, from Fig. 6 (t = 0.5) in

Massot et al. (2010), it can be seen that the predicted NDF does not agree very well with the exact NDF. For

this reason, the relative moment errors found with EM methods are significantly larger than with EQMOM.

For this case, the EM method could be improved by reconstructing the NDF on the interval [0, b(t)].

Case 3. Figure 6 presents results for the NDF predicted using beta EQMOM with n = 4. In this case, the

larger surface area droplets evaporate faster than smaller droplets, which yields the higher values of f(t, 0)

at intermediate times as compared to the NDF found with constant g. From Fig. 6, it can be observed that

the EQMOM solution matches very well with the exact NDF until very few droplets remain, such as at time

t = 1 in Fig. 6. Nevertheless, the predicted NDF always remains realizable as t ! 1.

[Figure 6 about here.]

Figure 7 presents the relative moment errors for Case 3. However, in order to compare with Fig. 4(left)

in Massot et al. (2010), the relative moment errors in Fig. 7 are defined as

mk,error =
|mk,EQMOM �mk,exact|

mk(0)
for k = 0, . . . , 2n+ 1; (36)
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where mk(0) are the initial moments. From Fig. 7(a) we can observe that, using the same number of nodes

as in Massot et al. (2010), the relative moment errors found with EQMOM are one order of magnitude

smaller than with the EM method before t = 0.6. For larger t, the higher-order moments become very

small, and a beta kernel density function may not be the optimal choice for approximating the NDF (see

Fig. 6). Nevertheless, beta EQMOM still achieves the same order of accuracy as the EM method. By using

four nodes, as shown in Fig. 7(b), beta EQMOM achieves more than one and half orders of magnitude better

accuracy as compared with the EM results in Massot et al. (2010) for all t.

[Figure 7 about here.]

In summary, the results for Cases 1–3 with pure evaporation clearly illustrate the favorable properties

of EQMOM to handle purely hyperbolic problems with negative flux terms at the boundary of phase space.

Not only is the predicted NDF guaranteed to be realizable for all choices of the quadrature parameters, but

we have also seen that by suitably choosing n and N↵ the errors due to the first and second quadratures can

be reduced to levels that ensure accurate predictions for the moments of the NDF. In fact, in comparison to

Lagrangian droplet tracking methods that treat evaporation by simulating an ensemble of droplets, EQMOM

should be able to attain equivalent or better accuracy simply by increasing N1 and N2 (which represent

“notional droplets” in the discretized NDF given in Eq. (33)).

5.2. Condensation problems

For condensation (positive g(t, ⇠)), the phase-space variable ⇠ is chosen to be particle volume. As in the

literature (Lage, 2011; Strumendo and Arastoopour, 2008), we consider the following two cases with known

analytical solutions.

• Case 4: g(t, ⇠) = ⇠/2 with initial condition f(0, ⇠) = 6⇠3e�⇠ for ⇠ 2 [0,1) (Lage, 2011).

• Case 5: g(t, ⇠) = K/⇠ with initial condition f(0, ⇠) = (2p/7q) (⇠ � 1)q (15� ⇠)q for ⇠ 2 [1, 15] where

p = 2, q = 8, and K = 0.78 (Strumendo and Arastoopour, 2008).

For Case 4, gamma EQMOM is used to approximate the NDF, while beta EQMOM is used for the bounded

interval in Case 5. As with pure evaporation, the boundaries of the interval [a(t), b(t)] are found using the

ODEs a
0 = g(t, a) and b

0 = g(t, b). The reader can note that the initial NDF in Case 4 can be exactly

represented by gamma EQMOM with n = 1 (� = 1 and ⇠1 = 4). Likewise, in Case 5, the initial NDF is a

transformed beta distribution with parameters � = µ = p� 1.

Case 4. The exact NDF for Case 4 (Lage, 2011) is

f(t, ⇠) =
(⇠e�t/2)3e�⇠e�t/2

6et/2
,
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which again can be represented exactly using gamma EQMOM with n = 1, � = e
t/2, and �↵ = 4. We fix

n = 4, which means N↵ = 5, and set the quadrature parameters in the adaptive Wheeler algorithm (Yuan

and Fox, 2011) to rmax(1) = 0, rmax(2) = 10�6, rmax(3) = 10�5, and rmax(4) = 10�4. Thus, only one

quadrature node will be used if the NDF approximate is exact. As shown in Fig. 8 for t = 10, the gamma

EQMOM algorithm correctly reduces to n = 1 and sets w↵ = 0 for ↵ = 2, 3, 4. In fact, for Case 4, gamma

EQMOM yields the exact NDF for all times.

[Figure 8 about here.]

Case 5. For Case 5, the growth rate corresponds to di↵usion-controlled growth (Strumendo and Aras-

toopour, 2008) and the exact NDF is

f(t, ⇠) = f

⇣
0,
p
⇠2 � 2Kt

⌘
⇠p

⇠2 � 2Kt
.

Note that the boundaries on the exact NDF are a(t) =
p
1 + 2Kt and b(t) =

p
152 + 2Kt. Figure 9 shows

the predicted NDF using beta EQMOM with 7 moments (n = 3) as compared with the exact solution at

t = 20. The agreement is excellent and the two solutions coincide within machine precision with each other.

Next, we can compare the beta EQMOM result with Fig. 1 in Strumendo and Arastoopour (2008), which

uses the FCMOM method to reconstruct the NDF. With almost the same number of moments controlled (7

in EQMOM, 8 in FCMOM), beta EQMOM predicts the NDF much better. In fact, since FCMOM is just

a special case of DuQMoGeM, unavoidably, it gives negative values in the tail of the NDF. In contrast, the

NDF reconstructed with EQMOM is always nonnegative.

[Figure 9 about here.]

In summary, for pure growth problems EQMOM provides a very accurate closure for the NDF. In

fact, since the growth is hyperbolic in phase space, the EQMOM solution method using characteristics is

essentially exact. Thus, the error in the NDF is associated mainly with the first quadrature representation in

terms of n kernel density functions. Obviously, for very complex shapes, larger values of n will be needed to

accurately capture the NDF. Nevertheless, the EQMOM algorithm provides an accurate and robust method

for advancing the moments in time for hyperbolic problems with complex growth rates.

5.3. Breakage problems

For pure breakage problems, by convention, the phase variable is chosen to be the particle volume. The

moments evolve according to Eq. (35), which is solved numerically using the second-order Runge-Kutta

method with fixed time step �t = 0.001. For convenience, we assume that the NDF is nonzero for ⇠ 2 [0, 1]

and use beta EQMOM to reconstruct the NDF. The following three cases with analytical solutions (Lage,

2011; Zi↵ and McGrady, 1985) are analyzed:
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• Case 6: #(t, ⇠) = 2 (binary breakage), P (t, ⇠|⇠0) = H(⇠0 � ⇠)/⇠0 where H is the Heavyside function,

b(t, ⇠) = ⇠
2 and Q(t, ⇠) = [2⇠2(2� e

�t)� 2(1� e
�t)]/f(t, ⇠) with initial condition f(0, ⇠) = 6⇠3e�⇠.

• Case 7: #(t, ⇠) = 2, P (t, ⇠|⇠0) = H(⇠0 � ⇠)/⇠0, b(t, ⇠) = ⇠
1/3 and Q(t, ⇠) = [7e�t � 12 + 7(2 �

e
�t)⇠1/3]/f(t, ⇠) with initial condition f(0, ⇠) = 6⇠3e�⇠.

• Case 8: #(t, ⇠) = 2, P (t, ⇠|⇠0) = H(⇠0 � ⇠)/⇠0, b(t, ⇠) = ⇠
2 and Q(t, ⇠) = 0 with initial condition

f(0, ⇠) = �(⇠ � 1).

Note that the source term Q(t, ⇠) in Cases 6 and 7 is chosen to yield a known form for f(t, ⇠), and thus

Q(t, ⇠) is a known function of t and ⇠.

Case 6. For this case, the analytical solution (Lage, 2011) is f(t, ⇠) = 2�e
�t, which is constant for ⇠ 2 [0, 1].

Here, the breakage kernel involves only integer powers of ⇠ and the highest-order is 2n + 2. Therefore, N↵

must satisfy 2N↵ � 2n+ 3, and we set n = 2 and N↵ = 4. Sample results for Case 6 are shown in Fig. 10.

In Fig. 10(a), the reconstructed NDF is on top of the exact NDF. As shown in Lage (2011), the abscissas

must be constant for all time, but standard QMOM cannot preserve this property, even though the moments

are predicted quite well. As can be seen from Fig. 10(b), having constant abscissas is not a problem for

EQMOM.

[Figure 10 about here.]

Case 7. For this case, the analytical solution (Lage, 2011) is f(t, ⇠) = 2�e
�t, which is constant for ⇠ 2 [0, 1].

Here, the breakage kernel b(⇠) = ⇠
1/3 cannot be represented by integer moments, so larger N↵ has to be used

to reduce the integration error. Figure 11 shows the e↵ect of N↵ on the reconstructed NDF, and it can be

observed that a much better prediction is obtained by increasing N↵ from 25 to 100. The same dependence

on N↵ is found for the relative moment errors. From Fig. 12, we can see that the first-order moment error

decreases as N↵ becomes larger. Comparing this figure with Fig. 12(a) in Lage (2011) for the same values

of n and N↵, we observe that EQMOM gives more then one and a half order of magnitude smaller moment

errors as compared to DuQMoGeM.

[Figure 11 about here.]

[Figure 12 about here.]

Case 8. For this case, the analytical solution (Zi↵ and McGrady, 1985) is f(t, ⇠) = e
�t⇠2 [�(⇠�1)+2tH(1�⇠)]

for ⇠ 2 [0, 1]. The principal di↵erence with Case 6 is the initial condition, so N↵ is again set to n + 2.

Figure 13(a) shows the reconstructed NDF at t = 10 for n = 3. The overall agreement between EQMOM

and the exact NDF is very good for n = 3, except near the lower bound. By increasing n to 4 (Fig. 13(b)),
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EQMOM yields a much better NDF as compared to the exact solution. The relative moment errors for

n = 3 are plotted in Fig. 14. Comparing this result with the DuQMoGeM result in Fig. 14(a) in Lage

(2011), it is clear that EQMOM gives much better predictions for the higher-order moments in Case 8.

[Figure 13 about here.]

[Figure 14 about here.]

In summary, the results for pure breakage confirm the excellent predictive capability of EQMOM for

solving moment equations with linear integro-di↵erential terms. When the breakage kernel is a polynomial

of finite order, N↵ can be chosen large enough to exactly evaluate the second quadrature. Otherwise, N↵

can be used as a parameter to reduce the error in the second quadrature to a level that is smaller than the

error in the first quadrature (which is controlled by n).

5.4. Aggregation/coalescence problems

For aggregation and coalescence problems, the size variable is volume. The following three cases are

analyzed (Ernst et al., 1984; Gelbard and Seinfeld, 1978; Lage, 2011; Vemury and Pratsinis, 1995):

• Case 9: a(t, ⇠, ⇠0) = ⇠ + ⇠
0 (sum kernel) with initial condition f(0, ⇠) = e

�⇠.

• Case 10: a(t, ⇠, ⇠0) = ⇠⇠
0 (product kernel) with initial condition f(0, ⇠) = 4e�2⇠.

• Case 11: a(t, ⇠, ⇠0) =
�
⇠
1/3 + ⇠

01/3� �1/⇠1/3 + 1/⇠01/3
�
(Brownian kernel) with initial condition f(0, ⇠) =

e
�⇠.

Gamma EQMOM is employed to solve Eq. (35).

Case 9. The analytical solution (Gelbard and Seinfeld, 1978) for this case is

f(t, ⇠) =
e
�t�2⇠+⇠e�t

⇠
p
1� e�t

I1

⇣
2⇠
p
1� e�t

⌘

where I1 is a modified Bessel function. For Case 9, the aggregation kernel involves only integer powers of

⇠ and the highest order is 2n + 1, so N↵ is chosen such that N↵ � n + 1. The distribution profile at t = 3

is shown in Fig. 15 and EQMOM gives a reasonable approximation of this complex distribution function.

Table 1 shows the relative moment errors at t = 3. For aggregation, the first-order moment is constant, and

m1,error is zero to machine precision. The relative moment errors of the higher-order moments are slightly

larger than for the lower-order ones, but all moment errors are quite small (⇡ 10�5).

[Figure 15 about here.]

[Table 1 about here.]
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Case 10. For this case, to our knowledge, no analytical solution for the NDF exists, but an analytical

solution can be found for the first three moments (Ernst et al., 1984):

m0,exact(t) = m0(0)� t/2, m1,exact(t) = 1, m2,exact(t) =
m2(0)

1�m2(0)t
,

where mk(0) is kth-order initial moment. Because the aggregation kernel is a polynomial, N↵ is set to

N↵ = n+ 1. For the initial condition f(0, ⇠) = 4e�2⇠, m2(0) = 1, and the critical time is t = 1. Therefore,

the simulation time is set as t = 0.99. Due to conservation of the first-order moment, the error for m1(t) is

zero. For this reason, only two moment errors are plotted in Fig. 16. It can be seen that EQMOM gives very

accurate predictions for the product kernel up to very close to the critical time, where m2 reaches infinity.

[Figure 16 about here.]

Case 11. For the Brownian aggregation kernel, no analytical solution for the NDF exists, but a self-

preserving solution is found for large t. In order to get this solution, a dimensionless volume ⌘ and a

dimensionless NDF � are defined as

⌘ =
m0

m1

⇠, � =
m1

m
2
0

f.

The aggregation kernel a(t, ⇠, ⇠0) cannot be represented by integer moments, so N↵ = 100 is set to reduce

the integration error. Figure 17 shows the EQMOM result compared with the self-preserving solution from

Vemury and Pratsinis (1995). It can be observed that the EQMOM result matches very well with the

literature solution.

[Figure 17 about here.]

5.5. Coupled phenomena

The last cases involve either simultaneous breakage and aggregation (Lage, 2011; McCoy and Madras,

2003), or simultaneous evaporation and coalescence:

• Case 12: Breakage and aggregation with �(t, ⇠) = 2, P (t, ⇠|⇠0) = H(⇠0 � ⇠)/⇠0, b(t, ⇠) = �2(1)⇠/2,

a(t, ⇠, ⇠0) = 1, Q(t, ⇠) = 0 and �(1) = 2 with initial condition f(0, ⇠) = e
�⇠.

• Case 13: Evaporation and coalescence with g(t, ⇠) = �ke⇠
1/3, a(t, ⇠, ⇠0) = kc

�
⇠
1/3 + ⇠

01/3� �1/⇠1/3 + 1/⇠01/3
�

with initial condition f(0, ⇠) = ⇠
2
e
�⇠.

Gamma EQMOM can be used to simulate these cases with ⇠ equal to particle volume.
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Case 12. The analytical solution (McCoy and Madras, 2003) for this case is f(t, ⇠) = �2(t)e��(t)⇠ where

�(t) = �(1)
1 + �(1) tanh(�(1)t/2)

�(1) + tanh(�(1)t/2)
.

This solution is just a gamma distribution with the parameter depending on t. Thus, it can be expected

that one-node gamma EQMOM su�ces to capture the exact NDF and, because the kernel is a polynomial,

we set n = 1 and N1 = 2. The EQMOM results for this case are shown in Fig. 18. As we can see, the first

quadrature finds the correct parameters (i.e., ⇠↵, w↵ and �) so that the EQMOM solution is almost on top

of the exact NDF for all t.

[Figure 18 about here.]

Case 13. In the final case, a simultaneous evaporation and coalescence case is used to illustrate that EQMOM

also works well with strongly coupled phenomena. To our knowledge, no analytical solution exists for this

case. The parameter for the second quadrature is set to N1,2 = 200 in order to get a relatively small time step

for evaporation using the methods introduced in Sec. 4.4. The same time step is adopted for the coalescence

term. Figure 19 shows how evaporation and coalescence a↵ect the NDF at t = 10. It can be observed that

the NDF for kc = 0.05 and ke = 1 lies mostly on the left-hand side of the initial NDF because evaporation is

stronger than coalescence. Increasing kc to 0.25, the coalescence dominates and moves the NDF toward the

pure coalescence NDF. Overall, the coupling between growth and coalescence poses no particular problems

for EQMOM.

[Figure 19 about here.]

6. Conclusions

The extended quadrature method of moments (EQMOM) presented in this work represents a significant

improvement over existing methods for solving population balances equations (PBE) in the context of

moment methods. The proposed NDF reconstruction algorithm is robust, computationally e�cient, and

results in a continuous, non-negative NDF that always reproduces 2n moments, and in many cases 2n +

1. By choosing a kernel density function that is equivalent to the weight function of a known family

of orthogonal polynomials, we have demonstrated that EQMOM leads to a second Gaussian quadrature

that can be employed to greatly improve the accuracy with which the source terms in the PBE can be

estimated. Furthermore, by using operator splitting, the second quadrature can be used as a point-particle

representation to e�ciently and accurately solve hyperbolic terms in the PBE (such as evaporation and

condensation). Using thirteen test cases, we demonstrate unequivocally the applicability and accuracy of

EQMOM for approximating the moments of the PBE for cases of interest in aerosol science, as well as its

relative strengths and shortcomings vis-a-vis other methods.
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Our current research is aimed at generalizing EQMOM in two directions: (i) a multi-variate version

of EQMOM based on an extension of the CQMOM algorithm described in Yuan and Fox (2011), and (ii)

the application of EQMOM to evaluate the spatial fluxes (i.e., advection and di↵usion) for cases where

the advection velocity and di↵usion coe�cient depend on the internal coordinates (⇠). For the latter, the

realizable high-order finite-volume schemes described in Vikas et al. (2011) can be applied with the point-

particle representation from EQMOM to guarantee that the transported moment set is always realizable.
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Appendix A. Comparison of EQMOM with EM method

Unlike EQMOM, the entropy maximization (EM) method (Mead and Papanicolaou, 1984) can always

reconstruct the NDF using the entire moment set (m0,m1, . . . ,m2n) when it is realizable. In Fig. 20 we

compare two example NDF reconstructed with beta EQMOM and EM, and it is evident that both methods

generate similar shapes. In terms of computational e�ciency, our reconstruction algorithm for EQMOM is

approximately 100 times faster than EM for the same value of n. However, even if the computational times

for both methods were similar, the evaluation of integrals using the second quadrature with EQMOM will

be many times faster and more accurate than attempting to construct a Gaussian quadrature from the NDF

found using EM.

[Figure 20 about here.]

Appendix B. Realizability for beta and gamma EQMOM

For fixed n, the moment set (m0,m1, . . . ,m2n) is used by EQMOM to reconstruct the NDF. In this

appendix, we briefly describe how the moment-inversion algorithm in EQMOM treats cases for which the

chosen kernel density function can not recover the highest-order moment m2n by varying � with fixed n. By

construction, all moments up to m2n�1 are always reproduced by EQMOM and thus the ability to capture

m2n depends on the shape of the kernel density function. This is most easily understood by considering the

canonical moments.
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Appendix B.1. Canonical moments

Consider the set of moments (m0,m1, . . . ,m4) found from a realizable NDF on the interval [0, 1]. The

4-dimensional moment space associated with this moment set is convex, but its boundaries are not easily

expressed in terms of the moments. However, a set of canonical moments (p1, . . . , p4) can be defined (Dette

and Studden, 1997) to map the moment space into the 4-dimensional hypercube [0, 1]4. Thus, every point

in the hypercube corresponds to a realizable NDF.

With beta EQMOM, the moments (m⇤
0
,m

⇤
1
, . . . ,m

⇤
3
) depend on � and can be expressed in terms of the

canonical moments:

p
⇤
1
(�) = p1,

p
⇤
2
(�) = p2 � (1� p2)�,

p
⇤
3
(�) =

p2p3 + (2p2p3 � p2 � p1 + p1p2)�

p2 � (1� p2)�
.

(B.1)

Using the bounds of the canonical moments, the expression for p⇤
2
places an upper bound on �: �  �max =

p2/(1� p2). Likewise, the bounds on p
⇤
3
introduce additional constraints:

�max =

8
>>>><

>>>>:

p2(1�p3)

1�p1�2p2+p1p2+2p2p3
, if p3 >

p1+p2�p1p2

1+p2
,

p2

1�p2
, if p3 = p1+p2�p1p2

1+p2
,

p2p3

p1+p2�p1p2�2p2p3
, if p3 <

p1+p2�p1p2

1+p2
.

(B.2)

Note that as the value of n in EQMOM is increased, the upper bound on � becomes tighter.

By definition (Dette and Studden, 1997), the QMOM reconstruction has p
⇤
2n = 0. Thus, the EQMOM

reconstruction attempts to increase � until p2n(�) equals the value of the 2nth canonical moment found with

the true m2n, which we denote by p2n. Theoretically, any value 0  p2n  1 corresponds to a realizable NDF.

However, max�2[0,�max]
p2n(�) is often less than unity, implying that there exists realizable moment sets for

which beta EQMOM can not be made to match m2n (even though all lower-order moments are exactly

reproduced). One possible remedy to this problem would be to use a more general kernel density function

for which 0  p2n(�)  1. However, it would then be necessary to find explicit formulas for the family of

orthogonal polynomials corresponding to this new weight function, and it is likely that the computational

cost would dramatically increase. Alternatively, we can simply adapt the moment-inversion algorithm to

minimize the di↵erence between p2n and p2n(�), and increase n when more moments are needed to improve

the accuracy of the reconstructed NDF.

Appendix B.2. Treatment of realizability with EQMOM

From the discussion above, it is inevitable that some values of � will generate unrealizable moments.

Indeed, when we implement the EQMOM moment-inversion algorithm described in Sec. 3.5, we find that the
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smallest � for which Jn(�) = 0 can sometimes yield an abscissa out of range. In such cases, we choose � to

be the largest value for which the Hankel determinants (defined below) of the moment set (m⇤
0
, . . . ,m

⇤
2n�1

)

are nonnegative (Dette and Studden, 1997; Wright, 2007). In this manner, the moment set (m⇤
0
, . . . ,m

⇤
2n�1

)

is always realizable (i.e., all w↵ > 0 and ⇠↵ 2 [0, 1] (beta) or ⇠↵ 2 [0,1) (gamma)).

Hankel determinants for beta EQMOM. The Hankel determinants for beta EQMOM are defined by

H
2i =

���������

m
⇤
0

. . . m
⇤
i

...
...

m
⇤
i . . . m

⇤
2i

���������

, H2i+1 =

���������

m
⇤
0
�m

⇤
1

. . . m
⇤
i �m

⇤
i+1

...
...

m
⇤
i �m

⇤
i+1

. . . m
⇤
2i �m

⇤
2i+1

���������

,

H
2i+1

=

���������

m
⇤
1

. . . m
⇤
i+1

...
...

m
⇤
i+1

. . . m
⇤
2i+1

���������

, H2i =

���������

m
⇤
1
� i

⇤
2

. . . m
⇤
i �m

⇤
i+1

...
...

m
⇤
i �m

⇤
i+1

. . . m
⇤
2i�1

�m
⇤
2i

���������

.

(B.3)

In practice, H andH are computed for i = 0, . . . , n�1; and Jn(�) is equal to the smallest Hankel determinant

(such that all determinants are non-negative). We then choose � to be the largest value for which Jn(�) = 0.

Hankel determinants for gamma EQMOM. The Hankel determinants for gamma EQMOM are defined

(Wright, 2007) by

�i,j =

������������

m
⇤
i m

⇤
i+1

. . . m
⇤
i+j

m
⇤
i+1

m
⇤
i+2

. . . m
⇤
i+j+1

...
...

...
...

m
⇤
i+j m

⇤
i+j+1

. . . m
⇤
i+2j

������������

. (B.4)

In practice, the �i,j for i = 0, 1 and j = 0, . . . , n � 1 have to be non-negative; and Jn(�) is equal to the

smallest Hankel determinant.
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(b) N1,2 = 50, N3,4 = 5

Figure 1: Beta EQMOM results for the time evolution of the NDF in Case 1 at selected times t with n = 4. Symbols: beta
EQMOM. Lines: exact NDF.
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(b) N1,2 = 50, N3,4 = 5

Figure 2: Beta EQMOM results for the relative moment errors mk,error in Case 1 with n = 4 and di↵erent N↵.
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(d) n = 4

Figure 3: Beta EQMOM results for the relative moment errors mk,error in Case 1 for di↵erent n and N↵ = 80.
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Figure 4: Beta EQMOM results for the NDF in Case 2 at t = 1 with n = 4. Symbols: beta EQMOM. Lines: exact NDF.
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(b) N1 = N2 = 80, N3 = N4 = 5

Figure 5: Beta EQMOM results for the relative moment errors mk,error in Case 2 with n = 4 and di↵erent N↵.
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Figure 6: Beta EQMOM results for the time evolution of the NDF in Case 3 at selected times t with n = 4 and N1 = N2 = 80,
N3 = N4 = 5. Symbols: beta EQMOM. Line: exact NDF.

35



0 0.2 0.4 0.6 0.8 110−12

10−10

10−8

10−6

10−4

10−2

100

t

R
el

at
iv

e 
m

om
en

t e
rro

r

 

 

0 1 2 3 4k

(a) n = 2, N1,2 = 80
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(b) n = 4, N1,2 = 80, N3,4 = 5

Figure 7: Beta EQMOM results for the relative moment errors mk,error in Case 3 with di↵erent n and N↵.
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Figure 8: Gamma EQMOM results for the NDF in Case 4 at t = 10 with n = 4 and N↵ = 5. Symbols: gamma EQMOM.
Line: exact NDF.
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Figure 9: Beta EQMOM results for the NDF in Case 5 at t = 20 with n = 3 and N↵ = 5. Beta EQMOM (symbols). Exact
NDF (line).
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Figure 10: EQMOM results at t = 10 for Case 6 with n = 2 and N↵ = 4.
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Figure 11: Reconstructed NDF at t = 10 for Case 7 with n = 1 and di↵erent N1. Symbols: beta EQMOM. Line: exact NDF.
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Figure 12: Time evolution of m0,error for Case 7 with n = 1 and N↵ = 100 (solid), 500 (dashed), 2000 (dash-dot).
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Figure 13: Reconstructed NDF for Case 8 at t = 10. Symbols: gamma EQMOM. Line: exact NDF.
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Figure 14: Time evolution of relative moment errors for Case 8 with n = 3 and N↵ = 5.
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Figure 15: Reconstructed NDF at t = 3 for Case 9. Symbols: gamma EQMOM with n = 4 and N↵ = 5. Line: exact NDF.
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Figure 16: Relative moment errors for Case 10 found using gamma EQMOM with n = 1 and N1 = 2. m0: solid. m2: dashed.
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Figure 17: Gamma EQMOM predictions with n = 4 and N↵ = 100 for Case 11. Line: gamma EQMOM at t = 1000. Symbols:
self-preserving NDF from Vemury and Pratsinis (1995).
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Figure 18: Gamma EQMOM predictions with n = 1 for Case 12 at selected times. Symbols: gamma EQMOM. Lines: exact
NDF.
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Figure 19: Gamma EQMOM predictions for Case 13 with n = 3 and selected values of kc and ke at t = 10.
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Figure 20: Beta EQMOM and EM reconstructed distribution functions for n = 2 and selected sets of canonical moments.
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Table 1: Relative moment errors at t = 3 for Case 9.
k 0 2 3 4 5 6 7 8

mk,error 5⇥ 10�7 4⇥ 10�6 2⇥ 10�5 3⇥ 10�5 6⇥ 10�5 9⇥ 10�5 1⇥ 10�5 2⇥ 10�5
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