M. Adimy, F. Crauste, and A. Abdllaoui, DISCRETE-MATURITY STRUCTURED MODEL OF CELL DIFFERENTIATION WITH APPLICATIONS TO ACUTE MYELOGENOUS LEUKEMIA, Journal of Biological Systems, vol.16, issue.03, pp.395-424, 2008.
DOI : 10.1142/S0218339008002599

URL : https://hal.archives-ouvertes.fr/hal-00750276

M. Adimy, F. Crauste, and C. Marquet, Asymptotic behavior and stability switch for a mature???immature model of cell differentiation, Nonlinear Analysis: Real World Applications, vol.11, issue.4, pp.2913-2929, 2010.
DOI : 10.1016/j.nonrwa.2009.11.001

URL : https://hal.archives-ouvertes.fr/hal-00542644

Z. Agur, R. Hassin, and S. Levy, Optimizing Chemotherapy Scheduling Using Local Search Heuristics, Operations Research, vol.54, issue.5, pp.829-846, 2006.
DOI : 10.1287/opre.1060.0320

C. A. Aktipis, V. S. Kwan, K. A. Johnson, S. L. Neuberg, and C. C. Maley, Overlooking Evolution: A Systematic Analysis of Cancer Relapse and Therapeutic Resistance Research, PLoS ONE, vol.32, issue.30, p.26100, 2011.
DOI : 10.1371/journal.pone.0026100.t002

T. Alarcón, H. M. Byrne, and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, vol.225, issue.2, pp.257-274, 2003.
DOI : 10.1016/S0022-5193(03)00244-3

T. Alarcón, H. Byrne, and P. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells, Journal of Theoretical Biology, vol.229, issue.3, pp.395-411, 2004.
DOI : 10.1016/j.jtbi.2004.04.016

T. Alarcón, H. Byrne, and P. Maini, A Multiple Scale Model for Tumor Growth, Multiscale Modeling & Simulation, vol.3, issue.2, pp.440-475, 2005.
DOI : 10.1137/040603760

A. Altinok, D. Gonze, F. Lévi, and A. Goldbeter, An automaton model for the cell cycle, Interface Focus, vol.47, issue.3, pp.36-47, 2011.
DOI : 10.1006/jtbi.2001.2474

A. Altinok, F. Lévi, and A. Goldbeter, A cell cycle automaton model for probing circadian patterns of anticancer drug delivery, Advanced Drug Delivery Reviews, vol.59, issue.9-10, pp.9-101036, 2007.
DOI : 10.1016/j.addr.2006.09.022

A. Altinok, F. Lévi, and A. Goldbeter, Optimizing Temporal Patterns of Anticancer Drug Delivery by Simulations of a Cell Cycle Automaton, Biosimulation in Drug Development, pp.275-297, 2008.
DOI : 10.1002/9783527622672.ch10

A. Altinok, F. Lévi, and A. Goldbeter, Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling, European Journal of Pharmaceutical Sciences, vol.36, issue.1, pp.20-38, 2009.
DOI : 10.1016/j.ejps.2008.10.024

O. Arino, A survey of structured cell population dynamics, Acta Biotheoretica, vol.18, issue.1-2, pp.3-25, 1995.
DOI : 10.1007/BF00709430

O. Arino and M. Kimmel, Comparison of Approaches to Modeling of Cell Population Dynamics, SIAM Journal on Applied Mathematics, vol.53, issue.5, pp.1480-1504, 1993.
DOI : 10.1137/0153069

O. Arino and E. Sanchez, A Survey of Cell Population Dynamics, Journal of Theoretical Medicine, vol.1, issue.1, pp.35-51, 1997.
DOI : 10.1080/10273669708833005

D. Barbolosi, A. Benabdallah, F. Hubert, and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumors, Mathematical Biosciences, vol.218, issue.1, pp.1-14, 2009.
DOI : 10.1016/j.mbs.2008.11.008

URL : https://hal.archives-ouvertes.fr/hal-00262335

D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK???PD model, Computers in Biology and Medicine, vol.31, issue.3, pp.157-172, 2001.
DOI : 10.1016/S0010-4825(00)00032-9

C. Basdevant, J. Clairambault, and F. Lévi, Optimisation of time-scheduled regimen for anti-cancer drug infusion, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.6, pp.1069-1086, 2006.
DOI : 10.1051/m2an:2005052

B. Basse, B. C. Baguley, E. S. Marshall, W. R. Joseph, B. Van-brunt et al., A mathematical model for analysis of the cell cycle in cell lines derived from human tumors, Journal of Mathematical Biology, vol.47, issue.4, pp.295-312, 2003.
DOI : 10.1007/s00285-003-0203-0

B. Basse, B. C. Baguley, E. S. Marshall, W. R. Joseph, B. Van-brunt et al., Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel, Journal of Mathematical Biology, vol.13, issue.4, pp.329-357, 2004.
DOI : 10.1007/s00285-003-0254-2

B. Basse, B. C. Baguley, E. S. Marshall, G. C. Wake, and D. J. Wall, Modelling cell population growth with applications to cancer therapy in human tumour cell lines, Progress in Biophysics and Molecular Biology, vol.85, issue.2-3, pp.353-368, 2004.
DOI : 10.1016/j.pbiomolbio.2004.01.017

B. Basse, B. C. Baguley, E. S. Marshall, G. C. Wake, and D. J. Wall, Modelling the flow of cytometric data obtained from unperturbed human tumour cell lines: parameter fitting and comparison, Bulletin of Mathematical Biology, vol.67, issue.4, pp.815-830, 2005.
DOI : 10.1016/j.bulm.2004.10.003

B. Basse and P. Ubezio, A Generalised Age- and Phase-Structured Model of Human Tumour Cell Populations Both Unperturbed and Exposed to a Range of Cancer Therapies, Bulletin of Mathematical Biology, vol.44, issue.1, pp.1673-1690, 2007.
DOI : 10.1007/s11538-006-9185-6

F. Brikci, J. Clairambault, and B. Perthame, Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle, Mathematical and Computer Modelling, vol.47, issue.7-8, pp.699-713, 2008.
DOI : 10.1016/j.mcm.2007.06.008

F. Brikci, J. Clairambault, B. Ribba, and B. Perthame, An age-and-cyclin-structured cell population model for healthy and tumoral tissues, Journal of Mathematical Biology, vol.16, issue.6, pp.91-110, 2008.
DOI : 10.1007/s00285-007-0147-x

URL : https://hal.archives-ouvertes.fr/inria-00081301

N. Bellomo, Modelling Complex Living Systems ? A Kinetic Theory and Stochastic Game Approach, Birkhäuser, 2008.

N. Bellomo and M. Delitala, From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Physics of Life Reviews, vol.5, issue.4, pp.183-206, 2008.
DOI : 10.1016/j.plrev.2008.07.001

A. Bellouquid and M. Delitala, Modelling Complex Multicellular Systems ? A Kinetic Theory Approach, Birkhäuser, 2006.

S. Benzekry, N. André, B. Assia, C. Joseph, C. Faivre et al., Modeling the Impact of Anticancer Agents on Metastatic Spreading, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, pp.306-336, 2012.
DOI : 10.1051/mmnp/20127114

URL : https://hal.archives-ouvertes.fr/hal-00657724

F. Billy, J. Clairambault, and O. Fercoq, Optimisation of Cancer Drug Treatments Using Cell Population Dynamics, Mathematical Models and Methods in Biomedicine, 2012.
DOI : 10.1007/978-1-4614-4178-6_10

URL : https://hal.archives-ouvertes.fr/hal-00770366

F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre et al., Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, vol.96, 2012.
DOI : 10.1016/j.matcom.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00662885

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

R. Borges, A. Calsina, and S. Cuadrado, Equilibria of a cyclin structured cell population model. Discrete and Continuous Dynamical Systems Series B, pp.613-627, 2009.

R. Borges, A. Calsina, and S. Cuadrado, Oscillations in a molecular structured cell population model, Nonlinear Analysis: Real World Applications, vol.12, issue.4, pp.1911-1922, 2011.
DOI : 10.1016/j.nonrwa.2010.12.007

D. Bresch, T. Colin, E. Grenier, B. Ribba, and O. Saut, Computational Modeling of Solid Tumor Growth: The Avascular Stage, SIAM Journal on Scientific Computing, vol.32, issue.4, pp.2321-2344, 2010.
DOI : 10.1137/070708895

URL : https://hal.archives-ouvertes.fr/inria-00148610

H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison, Journal of Mathematical Biology, vol.14, issue.1, pp.657-687, 2009.
DOI : 10.1007/s00285-008-0212-0

A. Chauvì-ere, L. Preziosi, and H. Byrne, A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism, Mathematical Medicine and Biology, vol.27, issue.3, pp.255-281, 2010.
DOI : 10.1093/imammb/dqp021

J. Clairambault, Modeling oxaliplatin drug delivery to circadian rhythms in drug metabolism and host tolerance, Advanced Drug Delivery Reviews, vol.59, issue.9-10, pp.1054-1068, 2007.
DOI : 10.1016/j.addr.2006.08.004

J. Clairambault, Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments, Mathematical Modelling of Natural Phenomena, vol.4, issue.3, pp.12-67, 2009.
DOI : 10.1051/mmnp/20094302

J. Clairambault, Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach, Personalized Medicine, vol.8, issue.3, pp.271-286, 2011.
DOI : 10.2217/pme.11.20

J. Clairambault, S. Gaubert, and T. Lepoutre, Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models, Mathematical Modelling of Natural Phenomena, vol.4, issue.3, pp.183-209, 2009.
DOI : 10.1051/mmnp/20094308

URL : https://hal.archives-ouvertes.fr/hal-00344039

J. Clairambault, S. Gaubert, and T. Lepoutre, Circadian rhythm and cell population growth, Mathematical and Computer Modelling, vol.53, issue.7-8, pp.1558-1567, 2011.
DOI : 10.1016/j.mcm.2010.05.034

URL : https://hal.archives-ouvertes.fr/hal-00492983

J. Clairambault, S. Gaubert, and B. Perthame, An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations, Comptes Rendus Mathematique, vol.345, issue.10, pp.549-554, 2007.
DOI : 10.1016/j.crma.2007.10.001

J. Clairambault, P. Michel, and B. Perthame, Circadian rhythm and tumour growth, Paris) Ser. I Mathématique ( ´ Equations aux dérivées partielles), pp.17-22, 2006.
DOI : 10.1016/j.crma.2005.10.029

URL : https://hal.archives-ouvertes.fr/hal-00113511

M. Delitala and T. Lorenzi, A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions, Journal of Theoretical Biology, vol.297, pp.88-102, 2012.
DOI : 10.1016/j.jtbi.2011.11.022

L. Dimitrio, J. Clairambault, and R. Natalini, A spatial physiological model for p53 intracellular dynamics, Journal of Theoretical Biology, vol.316, pp.9-24, 2013.
DOI : 10.1016/j.jtbi.2012.08.035

URL : https://hal.archives-ouvertes.fr/hal-00726014

M. Doumic, Analysis of a Population Model Structured by the Cells Molecular Content, Mathematical Modelling of Natural Phenomena, vol.2, issue.3, pp.121-152, 2007.
DOI : 10.1051/mmnp:2007006

URL : https://hal.archives-ouvertes.fr/hal-00327131

B. Druker, M. Talpaz, D. Resta, B. Peng, E. Buchdunger et al., Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia, New England Journal of Medicine, vol.344, issue.14, pp.1031-1037, 2001.
DOI : 10.1056/NEJM200104053441401

A. Ergun, K. Camphausen, and L. M. Wein, Optimal Scheduling of Radiotherapy and Angiogenic Inhibitors, Bulletin of Mathematical Biology, vol.65, issue.3, pp.407-424, 2003.
DOI : 10.1016/S0092-8240(03)00006-5

C. Foley, M. C. Mackey, B. And, and J. Clairambault, Dynamic hematological disease: a review, Journal of Mathematical Biology, vol.89, issue.3, pp.285-322, 2009.
DOI : 10.1007/s00285-008-0165-3

H. Frieboes, M. Edgerton, J. Fruehauf, F. Rose, L. Worrall et al., Prediction of Drug Response in Breast Cancer Using Integrative Experimental/Computational Modeling, Cancer Research, vol.69, issue.10, pp.4484-4492, 2009.
DOI : 10.1158/0008-5472.CAN-08-3740

P. Gabriel, S. P. Garbett, D. R. Tyson, G. F. Webb, and V. Quaranta, The contribution of age structure to cell population responses to targeted therapeutics, Journal of Theoretical Biology, vol.311, pp.19-27, 2012.
DOI : 10.1016/j.jtbi.2012.07.001

URL : https://hal.archives-ouvertes.fr/hal-00649178

R. Gatenby, A change of strategy in the war on cancer, Nature, vol.5, issue.7246, pp.508-509, 2009.
DOI : 10.1038/459508a

R. Gatenby, A. Silva, R. Gillies, and B. Friden, Adaptive Therapy, Cancer Research, vol.69, issue.11, pp.4894-4903, 2009.
DOI : 10.1158/0008-5472.CAN-08-3658

M. Gyllenberg and G. F. Webb, A nonlinear structured population model of tumor growth with quiescence, Journal of Mathematical Biology, vol.18, issue.6, pp.671-694, 1990.
DOI : 10.1007/BF00160231

T. Haferlach, Molecular Genetic Pathways as Therapeutic Targets in Acute Myeloid Leukemia, Hematology, vol.2008, issue.1, pp.400-411, 2008.
DOI : 10.1182/asheducation-2008.1.400

P. Hahnfeldt, J. Folkman, and L. Hlatky, Minimizing Long-Term Tumor Burden: The Logic for Metronomic Chemotherapeutic Dosing and its Antiangiogenic Basis, Journal of Theoretical Biology, vol.220, issue.4, pp.545-554, 2003.
DOI : 10.1006/jtbi.2003.3162

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res, pp.594770-4775, 1999.

P. Hinow, S. E. Wang, C. L. Arteaga, and G. F. Webb, A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor, Theoretical Biology and Medical Modelling, vol.4, issue.1, p.14, 2007.
DOI : 10.1186/1742-4682-4-14

K. Iwata, K. Kawasaki, and N. Shigesada, A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors, Journal of Theoretical Biology, vol.203, issue.2, pp.177-186, 2000.
DOI : 10.1006/jtbi.2000.1075

Y. Kheifetz, Y. Kogan, and Z. Agur, LONG-RANGE PREDICTABILITY IN MODELS OF CELL POPULATIONS SUBJECTED TO PHASE-SPECIFIC DRUGS: GROWTH-RATE APPROXIMATION USING PROPERTIES OF POSITIVE COMPACT OPERATORS, Mathematical Models and Methods in Applied Sciences, vol.16, issue.supp01, pp.1155-1172, 2006.
DOI : 10.1142/S0218202506001492

F. Kozusko, P. Chen, S. G. Grant, B. W. Day, and J. C. Panetta, A mathematical model of in vitro cancer cell growth and treatment with the antimitotic agent curacin A, Mathematical Biosciences, vol.170, issue.1, pp.1-16, 2001.
DOI : 10.1016/S0025-5564(00)00065-1

G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-zatorsky, A. J. Levine et al., Dynamics of the p53-Mdm2 feedback loop in individual cells, Nature Genetics, vol.36, issue.2, pp.147-150, 2004.
DOI : 10.1038/ng1293

U. Ledzewicz, H. Maurer, and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, vol.8, issue.2, pp.307-323, 2011.
DOI : 10.3934/mbe.2011.8.307

URL : https://hal.archives-ouvertes.fr/inria-00636033

R. , L. Bar-or, R. Maya, L. A. Segel, U. Alon et al., Generation of oscillations by the p53-mdm2 feedback loop: A theoretical and experimental study, Proceedings of the National Academy of Sciences of the United States of America (PNAS), pp.11250-11255, 2000.

A. Lorz, T. Lorenzi, J. Clairambault, and B. Perthame, Dimorphism in cancer cell populations evolving under drug pressure

A. Lorz, T. Lorenzi, M. Hochberg, J. Clairambault, and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Mathematical Modelling and Numerical Analysis, 2012.
DOI : 10.1051/m2an/2012031

URL : https://hal.archives-ouvertes.fr/hal-00714274

M. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, vol.51, pp.941-956, 1978.

R. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica, vol.28, issue.6, pp.1113-1123, 1992.
DOI : 10.1016/0005-1098(92)90054-J

R. B. Martin, M. E. Fisher, R. F. Minchin, and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells, Mathematical Biosciences, vol.110, issue.2, pp.221-252, 1992.
DOI : 10.1016/0025-5564(92)90039-Y

R. B. Martin, M. E. Fisher, R. F. Minchin, and K. L. Teo, Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy, Mathematical Biosciences, vol.110, issue.2, pp.201-219, 1992.
DOI : 10.1016/0025-5564(92)90038-X

J. Metz and O. Diekmann, The dynamics of physiologically structured populations, volume 68 of Lecture notes in biomathematics, 1986.

D. Morgan, The Cell Cycle: Principles of Control. Primers in Biology series, 2006.

J. Murray, Optimal control for a cancer chemotheraphy problem with general growth and loss functions, Mathematical Biosciences, vol.98, issue.2, pp.273-287, 1990.
DOI : 10.1016/0025-5564(90)90129-M

J. Murray, Some optimal control problems in cancer chemotherapy with a toxicity limit, Mathematical Biosciences, vol.100, issue.1, pp.49-67, 1990.
DOI : 10.1016/0025-5564(90)90047-3

J. Murray, The optimal scheduling of two drugs with simple resistance for a problem in cancer chemotherapy, Mathematical Medicine and Biology, vol.14, issue.4, pp.283-303, 1997.
DOI : 10.1093/imammb/14.4.283

A. D. Onofrio, Rapidly acting antitumoral antiangiogenic therapies, Physical Review E, vol.76, issue.3, p.31920, 2007.
DOI : 10.1103/PhysRevE.76.031920

A. D. Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, vol.191, issue.2, pp.159-184, 1999.
DOI : 10.1016/j.mbs.2004.06.003

A. D. Onofrio and A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Mathematical Medicine and Biology, vol.26, issue.1, pp.63-95, 2009.
DOI : 10.1093/imammb/dqn024

H. Ozbay, C. Bonnet, H. Benjelloun, and J. Clairambault, Stability Analysis of Cell Dynamics in Leukemia, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, pp.203-234, 2012.
DOI : 10.1051/mmnp/20127109

URL : https://hal.archives-ouvertes.fr/hal-00766052

H. Ozbay, C. Bonnet, and J. Clairambault, Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics, 2008 47th IEEE Conference on Decision and Control, pp.2050-2055, 2008.
DOI : 10.1109/CDC.2008.4738654

J. Panetta and J. Adam, A mathematical model of cycle-specific chemotherapy, Mathematical and Computer Modelling, vol.22, issue.2, p.67, 1995.
DOI : 10.1016/0895-7177(95)00112-F

J. C. Panetta, A mathematical model of breast and ovarian cancer treated with paclitaxel, Mathematical Biosciences, vol.146, issue.2, pp.89-113, 1997.
DOI : 10.1016/S0025-5564(97)00077-1

J. C. Panetta, W. E. Evans, and M. H. Cheok, Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells, British Journal of Cancer, vol.93, issue.1, pp.93-100, 2006.
DOI : 10.1016/j.bcp.2004.06.004

E. Pasquier, M. Kavallaris, N. André, and N. , Metronomic chemotherapy: new rationale for new directions, Nature Reviews Clinical Oncology, vol.1805, issue.8, pp.455-465, 2010.
DOI : 10.1038/nrclinonc.2010.82

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics series. Birkhäuser, 2007.

G. G. Powathil, K. E. Gordon, L. A. Hill, and M. A. Chaplain, Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: Biological insights from a hybrid multiscale cellular automaton model, Journal of Theoretical Biology, vol.308, pp.1-19, 2012.
DOI : 10.1016/j.jtbi.2012.05.015

B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier et al., A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, vol.243, issue.4, pp.532-541, 2006.
DOI : 10.1016/j.jtbi.2006.07.013

URL : https://hal.archives-ouvertes.fr/hal-00428053

B. Ribba, B. You, M. Tod, P. Girard, B. Tranchand et al., Chemotherapy may be delivered based on an integrated view of tumour dynamics, IET Systems Biology, vol.3, issue.3, pp.180-190, 2009.
DOI : 10.1049/iet-syb.2008.0104

URL : https://hal.archives-ouvertes.fr/hal-00756359

A. Sakaue-sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama et al., Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression, Cell, vol.132, issue.3, pp.487-498, 2008.
DOI : 10.1016/j.cell.2007.12.033

A. Sakaue-sawano, K. Ohtawa, H. Hama, M. Kawano, M. Ogawa et al., Tracing the Silhouette of Individual Cells in S/G2/M Phases with Fluorescence, Chemistry & Biology, vol.15, issue.12, pp.1243-1248, 2008.
DOI : 10.1016/j.chembiol.2008.10.015

M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson, and M. A. Chaplain, Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways, Journal of Theoretical Biology, vol.273, issue.1, pp.15-31, 2011.
DOI : 10.1016/j.jtbi.2010.12.016

URL : https://hal.archives-ouvertes.fr/hal-00669200

M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson, and M. A. Chaplain, Influence of the Nuclear Membrane, Active Transport, and Cell Shape on the Hes1 and p53???Mdm2 Pathways: Insights from Spatio-temporal Modelling, Bulletin of Mathematical Biology, vol.6, issue.5, pp.741531-1579, 2012.
DOI : 10.1007/s11538-012-9725-1

A. Swierniak, M. Kimmel, and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy, European Journal of Pharmacology, vol.625, issue.1-3, pp.108-121, 2009.
DOI : 10.1016/j.ejphar.2009.08.041

A. Swierniak, U. Ledzewicz, and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Appl. Math. Comput. Sci, vol.13, issue.3, pp.357-368, 2003.

A. Swierniak, A. Polanski, and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell Proliferation, vol.41, issue.3, pp.117-139, 1996.
DOI : 10.1002/cyto.990110214

P. Ubezio, Unraveling the complexity of cell cycle effects of anticancer drugs in cell populations. Discrete and Continuous Dynamical Systems series B, pp.323-335, 2004.

P. Ubezio, M. Lupi, D. Branduardi, P. Cappella, E. Cavallini et al., Quantitative Assessment of the Complex Dynamics of G1, S, and G2-M Checkpoint Activities, Cancer Research, vol.69, issue.12, pp.5234-5240, 2009.
DOI : 10.1158/0008-5472.CAN-08-3911

B. Vogelstein, D. Lane, and A. Levine, Surfing the p53 network, Nature, vol.408, issue.6810, pp.307-310, 2000.
DOI : 10.1038/35042675

G. Webb, Resonance phenomena in cell population chemotherapy models, Rocky Mountain Journal of Mathematics, vol.20, issue.4, pp.1195-1216, 1990.
DOI : 10.1216/rmjm/1181073070

G. Webb, A NONLINEAR CELL POPULATION MODEL OF PERIODIC CHEMOTHERAPY TREATMENT, Biomedical Modeling and Simulation, pp.83-92, 1992.
DOI : 10.1142/9789812798893_0042

G. Webb, A non linear cell population model of periodic chemotherapy treatment. Recent Trends Ordinary Differential Equations, Series in Applicable Analysis 1, pp.569-583, 1992.

O. Witt, H. Deubzer, T. Milde, and I. Oehme, HDAC family: What are the cancer relevant targets? Cancer Letters, pp.8-21, 2009.

F. Billy and J. Clairambault, Received xxxx 20xx; revised xxxx 20xx