N

N

An integer linear program for substitution-tolerant
subgraph isomorphism and its use for symbol spotting in
technical drawings

Pierre Le Bodic, Pierre Héroux, Sébastien Adam, Yves Lecourtier

» To cite this version:

Pierre Le Bodic, Pierre Héroux, Sébastien Adam, Yves Lecourtier. An integer linear program for
substitution-tolerant subgraph isomorphism and its use for symbol spotting in technical drawings.
Pattern Recognition, 2012, 45 (12), pp.4214-4224. hal-00726076

HAL Id: hal-00726076
https://hal.science/hal-00726076
Submitted on 28 Aug 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00726076
https://hal.archives-ouvertes.fr

An Integer Linear Program for Substitution-Tolerant
Subgraph Isomorphism and its Use for
Symbol Spotting in Technical Drawings

Pierre Le Bodic?, Pierre Héroux”, Sébastien AdamP, Yves Lecourtier?
) b b

@ Université Paris-Sud — LRI UMR 8623, 91405 Orsay cedex, France
b Université de Rouen — LITIS EA 4108, 76800 Saint-Etienne du Rouvray cedex, France

Abstract

This paper tackles the problem of substitution-tolerant subgraph isomor-
phism which is a specific class of error-tolerant isomorphism. This problem
aims at finding a subgraph isomorphism of a pattern graph & in a target
graph G. This isomorphism only considers label substitutions and forbids
vertex and edge insertion in G. This kind of subgraph isomorphism is often
needed in pattern recognition problems when graphs are attributed with real
values and no exact matching can be found between attributes due to noise.

Our proposal to solve the problem of substitution-tolerant subgraph iso-
morphism relies on its formulation in the Integer Linear Program (ILP) for-
malism. Using a general ILP solver, the approach is able to find, if one exists,
a mapping of a pattern graph into a target graph such that the topology of
the searched graph is kept and the editing operations between the labels have
a minimal cost.

This technique is evaluated on both a set of synthetic graphs and a prob-
lem of symbol detection in technical drawings. In the second case, document
and symbol images are represented by vector-attributed Region Adjacency
Graphs built from a segmentation process. Obtained results demonstrate the
relevance of considering subgraph isomorphism as an optimization process.

Keywords: Substitution-Tolerant Subgraph Isomorphism, Integer Linear
Programming, Symbol Spotting

Email addresses: Pierre.Lebodic@lri.fr (Pierre Le Bodic),
Pierre.Heroux@univ-rouen.fr (Pierre Héroux), Sebastien.Adam@univ-rouen.fr
(Sébastien Adam), Yves.Lecourtier@univ-rouen.fr (Yves Lecourtier)

Preprint submitted to Elsevier June 11, 2012

1. Introduction

Labeled graphs are data structures able to model complex entities. In
a graph-based representation, vertices and their labels describe objects or
entity components whereas edges represent the relationships between the
components. Due to the intrinsic genericity of structural representations and
thanks to the improvement of the computational power of computers, graphs
are being increasingly used in a large scope of application domains such as
biology, chemistry, computer vision, information retrieval or pattern recogni-
tion. As a consequence of the intensive use of graph-based representations, a
growing interest is being shown to graph algorithms including graph mining
[1, 2, 3], graph classification [4, 5] or clustering [6, 7, 8], graph isomorphism
9, 10, 11, 12].

In the context of pattern recognition, graph-based techniques are gener-
ally used to match a graph representing a known entity to a graph resulting
from an observation. The general framework of graph matching covers dif-
ferent problems according to the kind of constraints which must be respected
or those which can be relaxed. A particular class of matching problem is the
substitution-tolerant subgraph isomorphism. A subgraph isomorphism is said
to be substitution-tolerant when the mapping does not affect the topology,
i.e. each vertex and each edge of the pattern graph has a one-to-one map-
ping into the target graph, but when editing operations between vertex and
edge labels are allowed. A substitution-tolerant mapping is generally needed
when no exact mapping between vertex and/or edge labels can be found,
but when the mapping can be associated to a cost. For example, this case
occurs when vertex and edge labels are numerical values (scalar or vectorial)
resulting from a feature extraction step as often in pattern analysis. The cost
for the mapping can then be defined as the sum of the distances between la-
bel values. A first solution to tackle such problems relies on a discretization
or a classification procedure to transform the numerical values into nominal
labels. The main drawback of such approaches is their sensitivity to frontier
effects of the discretization or misclassification. A subsequent exact matching
algorithm would then be unsuccessful. A second solution consists in using
exact matching algorithms and to customize the compatibility function for
pairing vertices and edges. The main drawback of such approaches is the
need to define thresholds for these compatibilities. A last way consists in

using a substitution-tolerant matching procedure that overcomes this draw-
back by integrating the numerical values during the mapping search. In this
case, the matching problem turns from a decision one to an optimization one.

In this paper, we propose a new modelling of the substitution-tolerant
subgraph isomorphism as an optimization problem modeled by an integer
linear program. This original approach is parameter free and solves problems
that could not be solved optimally using existing algorithms. This paper is
an extended and improved version of [13]. The new contributions concern an
extension of the approach for the search for multiple solutions and a strategy
that enables the learning of a threshold for this search. Moreover, many new
experimental results are proposed on both synthetic and real datasets. They
include a comparison with state of the art approaches, in order to show the
strong points and the weaknesses of the proposed method.

The paper is organized as follows. Section 2 introduces substitution-
tolerant subgraph isomorphism and reviews related approaches from the lit-
erature. Section 3 presents Integer Linear Programming as a way to express
optimization problems and our formulation of the substitution-tolerant sub-
graph isomorphism. Section 4 reports many experimental results obtained by
the proposed approach on both synthetic and application-dependent datasets.
The application concerns the localization of symbols on technical drawings.
Finally, section 5 draws a conclusion of the paper and proposes future direc-
tions.

2. Subgraph isomorphism

2.1. Definitions and notations

The approach proposed in this paper deals with directed graphs, defined
as follows :

Definition 1. A directed attributed multigraph! G is a 4-tuple G =
(V,E, u,&) where V is the set of vertices of G, E is a multiset of ordered
pairs e = (v1,v2) with v; € V and vy € V| ie. edgesof G. p:V — Ly is a
function assigning a label to a vertex, Ly being the set of possible labels for
vertices. £ : F — Lg is a function assigning a label to an edge, Lg being the
set of possible labels for edges.

'In the remaining of the paper, the term graph denotes a directed attributed multi-
graph.

Considering two graphs, one can be interested in finding the instances of
the first one (the pattern graph) in the second one (the target graph). In
graph theory, this problem is called subgraph isomorphism 2. It relies on the
definition of subgraph :

Definition 2. Given a graph G = (V, E, 11, €), a subgraph of G is a graph
S = (Vs, Es, s, &s) such that Vs C V| Es C E, Ve = (v1,v2) € Es,v; €
Vs,v9 € Vs and pus and Es are the restrictions of p and £ to Vs and Eg, i.e.
ps(v) = p(v) and Es(e) = &(e)

Using this definition, the subgraph isomorphism problem between a pat-
tern graph G and a target graph G’ is defined by :

Definition 3. An injective function f : V — V' is a subgraph isomor-
phism from a graph G = (V, E, u,§) to a graph G’ = (V' E' i/, &) if there
exists a subgraph S of G’ such that f is a graph isomorphism from G to S :

e VweV flv)y=v eV f1v)=v

e forall e = (vy,vy) € E, there exists a distinct edge ¢/ = (f(vy1), f(v2)) €
E/

Note that extra edges may exist in G’ between mapped vertices, i.e. a
subgraph does not need to be induced.

In its exact formulation, the subgraph isomorphism must preserve the
labelling, i.e. p(v) = p/(v') and &(e) = £'(¢/). In pattern recognition ap-
plications, where vertices and edges are labeled with measures which may
be affected by noise, a substitution-tolerant formulation which allows differ-
ences between labels of mapped vertices and edges is mandatory. However,
these differences are associated to costs and one is interested in finding the
mapping corresponding to the minimal global cost, if one exists.

2.2. Fxisting approaches

A very complete and detailed review of the numerous graph matching
techniques may be found in [14]. This paper proposes a taxonomy which
distinguishes mainly exact and inexact techniques. In the following, we
only examine approaches that deal with subgraph isomorphism, also called
monomorphism. Exact techniques may be used to solve the substitution-
tolerant subgraph isomorphism problem. For that purpose, a compatibility

2This kind of mapping is also called monomorphism

function must compare labels and decide whether each vertex (resp. edge) of
the pattern graph may be mapped to each vertex (resp. edge) of the target
graph or not. The compatibility function is generally based on a threshold
between label differences. Most of the exact techniques rely on a tree based
exploration in a search space, in which each state corresponds to a partial
mapping. Backtracking, forward checking and procedures maintaining arc
consistency are used to reach a state where all vertices and edges of the
pattern graph are mapped to the target one. The exact subgraph isomor-
phism problem can be modeled as a constraint satisfaction problem [15, 12].
The different techniques proposed in the literature differ from (i) the order
in which partial mappings are explored (ii) the filtering caused by the con-
straint propagation which allows to reduce the search space. In [12], Solnon
reviews and compares several approaches by examining the strength of the
filtering. In this paper, the author proposes the LAD-filtering (locally all
different) which is proven to be stronger than other known techniques (es-
pecially [16, 15] when examining the filtering criterion. Experimental results
reported in this paper also shows that the LAD-filtering allows to resolve
more instances quicker than VF/VEF2.

VF [17] is a solver which performs forward checking propagation of edge
and difference constraints. The constraint propagation is limited to vertices
that are adjacent to vertices already matched. This implies that the subgraph
induced by the matched vertices is connected. VF2 [9] is an improved version
of VF which reduces its spatial complexity and achieve better performance
on large graphs. Experimental resultats reported in [9] illustrate that VF2
clearly outperforms Ullmann’s algorithm on the subgraph isomorphism task.

The main drawback of exact techniques for pattern recognition applica-
tions is the difficulty to set the thresholds used to decide whether two vertices
(resp. edges) can be matched or not, based on their attribute values (regard-
less structural consideration). If one is interested in a subgraph isomorphism
that minimizes the sum of all label differences (or another measure), then
this sum must be computed for all matching candidates. In this context,
choosing a threshold is puzzling. On the one hand, setting a small threshold
reduces the number of matching candidates and speeds up the search, but
at the cost of possibly discarding all optimal mappings (see Fig. 1). On the
other hand, setting a large threshold results in a costly search among more
matching candidates.

In order to overcome this drawback, inexact optimal approaches are
guided by the cost of the partial mapping and a heuristic which approx-

i (1) j @) 2 3 b (1)

_____________________ (a) S and g

e (2) f (2) e) £
NS @

(b) Best solution for t =1 - d =4 (c) Best solution for t =2 — d =2

Figure 1: Example showing the difficulty of selecting the best threshold ¢ for substitution-
tolerant subgraph isomorphism. (a) Definition of S and G. Two structurally isomorphic
matchings exist between S and G. (b) Solution found by a customized exact matching
procedure if the distance threshold ¢ between vertices is set to 1, which leads to a matching
error of d = 4 [(1,¢),(k,d),(i,e),(j,f)]. (c) Solution found by a customized exact matching
procedure if ¢ is set to 2, which leads to a matching error of d = 2 [(1,d),(k,c),(i,a),(j,b)].

imates the future mapping to explore the search space. The branch and
bound algorithm allows to prune branches of the tree that lead to unsuc-
cessful solution as in [18, 19], whereas the A* algorithm dynamically orders
branches to explore as a priority. In this latter case, the computationnal
performance highly depends on the quality of approximation of the future
matching by the heuristics, but the optimal solution is always reached. One
the other hand, the complexity issue is tackled by suboptimal optimization
techniques. Among them, relaxation techniques like the one proposed in [20]
transform the discrete optimization process in a continuous one which can be
solve in polynomial time. Other optimization techniques such as those based
on neural networks or genetic algorithms [10] have been proposed for graph
matching problems. If the polynomial complexity of suboptimal techniques

is appealing, they do not guaranty to provide the matching with the minimal
global cost.

This paper proposes an integer linear program to solve the problem of
substitution-tolerant subgraph isomorphism, which is an inexact approach
for monomorphism. In the literature, linear programming has been proposed
to model other graph matching problems. For example, the weighted graph
matching problem has been successfully tackled by a linear approach by
Almohamad and Duffuaa [21]. More recently, Justice and Hero have proposed
a binary linear program for the graph edit distance [22]: two input graphs
are first embedded into a clique of size the sum of the graph sizes. Then,
an adjacency matrix is shown to encode an isomorphism between an input
graph and the clique, while a permutation matrix encodes edit operations.
The mathematical formulation then consists in finding a permutation matrix
which yields a minimum isomorphism cost.

In the following of this article, we propose an optimization-based approach
for solving substitution-tolerant subgraph isomorphism via an Integer Linear
Program.

3. Solving the Subgraph Isomorphism Problem using Integer Lin-
ear Programming

The main contribution of this paper is the modelization of the substitution-
tolerant subgraph isomorphism problem as an optimization problem. The
general technique used to solve this problem is Mathematical Programming
(MP) which provides tools to model optimization problems as well as resolu-
tion algorithms. More precisely, we provide an Integer Linear Program (ILP),
i.e. a MP with linear equations and integer variables [23, 24]. (Solving an)
ILP is NP-hard, therefore there is no known polynomial-time algorithm to
solve general ILP. However, non problem-specific algorithms are continuously
designed, improved, and implemented by the ILP community. ILP is known
to be one of the most efficient technique for numerous NP-hard optimization
problems that appear for instance in production[25], logistics[26], or network
design[27]. In the following, we briefly explain how to solve a problem using
ILP. Then, we explain how we model the subgraph isomorphism problem.
Finally, we disclose the methods used to find multiple close-to-optimal solu-
tions, rather than a single optimal solution.

3.1. Integer Linear Programming

Solving a problem using ILP is a two-step process: it first requires a
mathematical modelling of the problem as an integer linear program. The
model must then be implemented using a solver. The general form of an ILP
is as follows:

min ¢’z (1a)
subject to Az <b (1b)
reCCZ" (1c)

where c € R, A € R™™ b € R™ are data of the problem.

A solution is a vector = of n variables. In the case of integer programming,
x belongs to a discrete set C' C Z". C has to be defined according to the
modeled problem. A is used to express linear inequality constraints (1b).
Hence, a feasible solution for the problem is a vector x such that z € C
and constraints (1c) are respected. The objective function ¢z is a linear
combination of all variables x weighted by the vector ¢. To find an optimal
solution, the objective function (la) is minimized over the set of feasible
solutions.

Testing each vector x for feasibility is exponential in the number of vari-
ables. Hence, the second step consists in implementing this model using a
solver. Such a tool is a complex set of algorithms that interact to implicitly
explore the tree of solutions with the so-called Branch and Bound method.
Given an instance, the solver finds an optimal solution if one exists.

3.2. Modeling the Subgraph Isomorphism Problem

In the following, for the sake of clarity, the term graph represents a simple
directed graph with loops, what means that no more than one edge exists
linking a vertex to an other, but the modeling holds for multigraphs. As
a consequence, an edge e originating from ¢ and targeting to j and can be
denoted 75 without any ambiguity.

In order to model the problem as an ILP, we use binary variables, i.e.
C' ={0,1}". As depicted in figure 2, two kinds of variable are defined:

e For each pair of vertices i € Vs and k € Vg, there is a variable z;x,
such that z; , = 1 if vertices ¢ and k are matched together, 0 otherwise.

e For each pair of edges ij € Es and kl € Eg, there is a variable y;; i,
such that v, = 1 if edges 7 and kl are matched together, 0 otherwise.

I Y =1 [
i i; . = 1k
S g

Figure 2: an example of matching. S and G both contain a single edge, respectively ij
and kl. The following solution is represented on this figure : z;; = 1 (resp. z;; = 1,
Yijel = 1), i.e. @ (resp. j, ij) is matched with k (resp. I, kl). Conversely, since ¢ (resp. j)
is not matched with [(resp. k), z;; = 0 (resp. z,; = 0).

Given § = (Vs, Es) and G = (Vg, Eg), let us assume that a cost function
cy : Vs x Vg — R as well as a cost function cg : Es X Eg — RT are
known. Let us consider two vertices ¢ € Vs and k € Vg. Pairing i and k (i.e.
x;r = 1) costs cy (i, k), whereas not pairing them (i.e. x;; = 0) costs 0. The
cost can thus be written as the linear expression cy (i, k) * z; 5. Similarly, the
cost between two edges ij € Es and kl € Eg is cg(ij, kl) * y;j . Let us now
write the objective function : the global cost for matching S to a subgraph
of G, which is the sum of the costs for matching vertices and edges, should
be minimized:

r?in Z Z ey (i, k) * zip + Z Z cp(ij, kl) * Yij ki (2a)
Y ieVs keVg ijeEs kl€Eg

Obviously, equation (2a) does not encode the subgraph isomorphism prob-
lem. Let us now consider the constraints of the ILP.

e Every vertex of Vs must be matched to a unique vertex of Vj:

d wipg=1 VieVs (2b)

keVg

e Every edge of EFs must be matched to a unique edge of Eg:
Z Yijkl = 1 \V/Zj < Eg (QC)
klEEg
e Every vertex of Vg must be matched to at most a vertex of Ejs:
d min<1 VkeVg (2d)
1€Vs

If two vertices are matched together, an edge originating the vertex of
S must be matched with an edge originating the vertex of G:

Z Yijo = Tige Yk € Vg, Vij € Eg (2e)

kl€Eg

If two vertices are matched together, an edge targeting the vertex of S
must be matched with an edge targeting the vertex of G:

Z Yijg = 25, V0le€ Vg, Vig € Es (2f)

klEEg

Finally, let us properly write the aforementioned domain constraints of
the variables:

z, € {0,1} Vie Vs, Vk eV (2g)
vij € 10,1} Vij € Es,Vkl € Eg (2h)

Equations (2a) to (2h) form the ILP used to solve the Subgraph Isomor-
phism Problem. It might be the case that the problem is infeasible, if there
exists no graph isomorphism between S and any subgraph of G. Otherwise,
a solver implementing this model will return the best solution found, i.e. the
best subgraph isomorphism.

3.3. Finding Multiple Close-to-Optimal Solutions

Depending on the application context, it may be the case that the pattern
graph that is searched for has many instances in the target graph. As defined
in subsection 3.2, the ILP model is only capable of finding the optimal solu-
tion. There is no out-of-the-box free implementation to find multiple close-
to-optimal solutions in ILP. There are, however, multiple ways to achieve

10

this [28]. In the context of our study, we have chosen to call iteratively the
model and to discard the successive optimal solutions after each call. Such
a solution is linear in the number of instances. There are multiple ways to
discard an optimal solution. The general idea is that a new constraint cut-
ting the current solution is added to the model. Hence, the current optimal
solution becomes infeasible for the next run. The solver can be called again
and will be able to find another optimal solution. In the sake of our study,
the following constraint is added to the formulation :

> > Fix | xwip =0

1€Vs,keVg JEVS

Its purpose is to discard every vertex of G that has been used in the current
optimal solution (Z ¢)T. It means that for every vertex k of G, if there exists
a vertex j of S matched to k, then x; equals O for every vertex ¢ of S.

4. Experiments and results

The evaluation of subgraph isomorphism algorithms is a difficult task
since it implies to have at disposal (i) some graph and subgraph datasets and
(ii) the position of each pattern graph in the target graphs, i.e. the mapped
vertices and edges. For graphs extracted from a real world application, this
information is difficult and time consuming to be collected since the mapping
has to be defined in relation to the application. As an example, for graphs
representing objects in an image, defining the mapping require to consider
both graphs and images. This difficulty is increased when error-tolerant
isomorphism is involved. In order to overcome this difficulty, most of the
papers dealing with subgraph isomorphism propose an evaluation relying on
synthetic datasets, such as the well known VF dataset described in [17] or
those provided on the IAPR TC-15 website®. However, to the best of our
knowledge, all existing datasets rely on a nominal labeling and we are not
aware of publicly available graph dataset with scalar or vectorial numerical
attributes.

In this context, we propose in this paper a two step evaluation of the
proposed algorithm. In the first step, the evaluation is led on a synthetic

Shttp://www.greyc.ensicaen.fr/iapr-tc15

11

graph dataset. Its aim is to validate the functioning of the ILP approach
and to quantify the effectiveness of the algorithm w.r.t. the size of graphs.
Both exact and inexact graph matchings are considered in this part of the
experiments and a performance comparison with VF2 [9] and LAD [12] al-
gorithms is proposed. These algorithms have been chosen because they are
known to be very efficient for different graph matching problems (see 2.2 for
their description). In the second step, the proposed algorithm is evaluated
in a real-world context, on a document analysis problem.

4.1. Experiments on synthetic data

In this subsection, we first describe the data before presenting and dis-
cussing the obtained results.

4.1.1. Data generation

Two sets of synthetic graphs have been generated to evaluate the exact
and the substitution-tolerant subgraph isomorphism. These sets have been
generated considering the same procedure. Firslty, a random graph § is
generated according the Erdos-Rényi model [29]. Then, a graph Gy is created
as an exact copy of §. In the case of substitution-tolerant matching, labels
of Gy can be modified by applying a noise model. Finally, G, is completed to
form a graph G with vertex and edge insertions according the Erdos-Rényi
model until a predefined size.

The informations provided during the creation and the modifications of
Gp are recorded and considered as the ground-truth information. Gy is called
the ground-truth solution. Note that in a noiseless model, there might be
multiple optimal solutions, and in a noisy model, the ground-truth solution
Go may not be the optimal solution. This procedure provides a couple of
graphs (S, G). The following values of the parameters have been chosen for
our experiments :

e Size of G : |Vg| = ng € {50,100, 250, 500}
e Size of S : |Vs| = ns € {10,25,50}
e Probability that an edge connects two vertices : p € {0.01,0.05,0.1}

e vertex and edge labels have been randomly chosen in [—100, 100] with
a uniform distribution.

12

Using this parameterization, two test sets have been generated :

e The first set, denoted as T3, contains 5 couples (S,G) generated for
each combination of (ng,ns,p). In this set, no noise has been applied,
so the mapping between S and G is an exact isomorphism.

e The second set, denoted as 7, aims at evaluating the subgraph iso-
morphism search in presence of noise. These data have been generated
using a Gaussian noise (0 = 5) applied on both vertices and edges
before the graph is completed to its final size.

Figure 3 illustrates an output produced by the synthetic data generation
in the presence of noise.

(-23.75) (-19.85)

(¢) Ground-truth for the mapping
between S and G.

Figure 3: Illustration of the generation of synthetic data for the substitution-tolerant
subgraph isomorphism search with the following parameters : ng = 3, ng = 6, p = 0.3,
labels in [-100,100] and a Gaussian noise (0 = 5). The mapping cost is 24.93

4.1.2. Obtained results

Given the two datasets T7 and T, described above, two experiments have
been led. They relate respectively to exact and substitution-tolerant sub-
graph isomorphisms.

13

(a) Ezact subgraph isomorphism . These first experiments aim at (i) vali-
dating the ILP formulation proposed in 3.2 in the case of exact matchings
and (ii) comparing the efficiency of the proposed approach w.r.t. reference
approaches. In this context, the results obtained using our algorithm have
been compared with those obtained with VF2 [9] and LAD [12]. For these
experiments, the matching cost functions ¢, and ¢, have been defined as the
Euclidean distance between the attribute values. For each of the couple (S, G)
generated for each combination of (ng, ns, p), as expected, we have observed
that the isomorphisms are exactly the same for all the algorithms. Table 1
gives the time needed to solve the five subgraph isomorphism instances for
each configuration.

n5:|V3|

b e 10 25 50
ILPiso | vi2 | lad | ILPiso | vf2 | lad | ILPiso | vf2 | lad
50 0.02]0.03| 0.0 0.04 |0.02| 0.0 0.08 [0.02| 0.0
0.01 100 | 0.02 | 0.02 | 0.0 0.06 | 0.01| 0.0 0.1 0.02 | 0.0
250 | 0.028 | 0.02 | 0.02 0.1 0.02 | 0.02 | 0.28 |[0.02|0.02
500 | 0.08 | 0.06|0.01| 0.26 | 0.05[0.04| 0.72 |0.06 | 0.01
50 0.03]0.02| 0.0 0.06 | 0.02| 0.0 0.3 0.02 | 0.02
0.05 100 | 0.06 | 0.010.02| 021 |0.02|0.01| 076 | 0.02]0.02
' 250 | 0.15 [0.03]0.04| 085 |0.04]0.04] 424 |0.05|0.04
500 | 0.68 [0.14|034| 287 |0.14] 04 | 1482 |0.13| 0.4
50 0.05 [0.02]0.01| 022 |0.02]0.01] 1.28 |0.02]0.02
01 100 0.1 0.02 | 0.01 | 0.63 | 0.02|0.01 3.1 0.01 | 0.01
' 250 | 042 [0.06]| 0.1 3.64 |0.010.14 | 1552 | 0.06 | 0.08
500 | 1.90 |0.24|1.26| 1533 | 0.22 | 1.33 | 42.33 [0.24 | 1.25

Table 1: Results obtained on T3 for the proposed approach, VF2 and LAD. This table
gives the sum of the processing time in seconds for the five solved instances.

As one can see in this table, VF2 and LAD are clearly more efficient than
the proposed ILP approach for exact matching problem. Such a result is
quite natural since approaches do not rely on the same paradigm. VF and
LAD algorithms rely on a decision process, whereas the proposed approach
relies on an optimization process. More precisely, exact algorithms can prune
the solution tree very early, at a vertex’s level, since for a vertex matching,
a single label difference means every solution with this matching is infeasi-

14

ble. The algorithm we propose is by nature error-tolerant and accepts label
differences, making the solution tree harder to prune. As a consequence, it
is natural that it is outperformed by dedicated algorithms.

(b) Substitution-tolerant subgraph isomorphism. These second experiments
on the T, dataset aim at validating the real contribution of the proposed ap-
proach, i.e. the ability of an ILP based approach to tackle problems where a
substitution-tolerant isomorphism is required. First of all, one can note that
if the procedure used to generate synthetic data guarantees that the mapping
between S and G corresponds to an exact or substitution-tolerant subgraph
isomorphism, it does however not ensure that this mapping is unique. Indeed,
the completion of G until its final size may produce new subgraph isomor-
phisms, and some of them may have a lower matching cost. It is difficult
to keep track of this in the case of data generation for the substitution-
tolerant problem. The ground-truth information produced during the gener-
ation phase can then be only partial. However, when doing a multiple search
as explained in 3.3, it is possible to check that the initial solution is in the
list of returned solutions. Such tests have shown that the ground-truth so-
lution is always in this list. Moreover, for the T, dataset, it is always the
first one. Concerning the processing time, the results presented in table 2,
compared with those of table 1 illustrate that more time is needed when an
substitution-tolerant mapping is searched for. One reason is that 77 dataset
is such that there is always a feasible solution of cost 0, which is necessarily
optimal, since the objective function is a sum of non-negative terms. Once
this solution is identified by the Branch and Bound, the search can stop with-
out further tree exploration. For the T, dataset, the optimal value is not 0
in general, thus the tree exploration may continue after finding the optimal
solution, in order to certify that no better solution exists.

Comparing these results with existing approaches such as those used for
exact matching is a difficult task since they have not been designed to tackle
such problems. Nevertheless, as explained in 2.2, it is possible to customize
them in order to make them applicable. Hence, given two thresholds ¢, and
t. (one for the vertices, and one for the edges), two vertices (resp. edges)
are considered as compatible if the distance between their attribute is lower
than t, (resp. t.). For our experiments, we have used an extended version
of LAD supplied by the author of [12] to evaluate such a strategy 4. In this

4We would like to thank the author for his help concerning our experiments

15

_ ns = | Vsl
P\ g =IVel 5155 50
50 0.02 | 0.04 | 0.08
ooy 100 |0.04]005 |0.12
250 | 0.07|0.14 | 0.46
500 | 0.08]0.39 |1.76
50 0.02]0.10 | 0.52
005 | 100 |0.04]027 | 182
250 | 0.19 | 1.58 | 12.68
500 | 1.17 | 951 | 49.87
50 0.07 | 0.48 | 9.60
o1 100 | 0.19]1.60 |26.34
: 250 | 1.55 | 16.18 | 108.76
500 | 2.50 | 98.75 | 370.8

Table 2: Results obtained on 75 for the proposed approach. This table gives the sum of
the processing time in seconds for the five solved instances.

experiment, since the label distribution is the same for vertices and edges,
we used a unique threshold t = t, = t.. The obtained results are given in
table 3. It provides the number of instances that are solved by LAD when
submitted the same five queries than in table 2 by varying the value of ¢ in
{5,10,20} i.e in {0, 20,40}

As one can see in table 3, many instances (389/540) are not solved using
LAD. Two reasons explain these failures: (i) For ”"small” values of ¢, few
solutions are found by the system, because of the phenomenon explained
in 2.2 and illustrated by figure 1. Hence, a threshold of 5 (resp. 10,20)
only solves 9 (resp. 29,113) of the 180 instances. (ii) For larger values of t,
the number of solved instances increase. However, the problem sometimes
becomes intractable because of the important number of vertices (and edges)
that can be matched. Thus, the system is flooded with feasible solutions.
This result has to be correlated to the density of the graphs. Hence, when
the graph density increases, more instances are solved: for p = 0.01 (resp.
0.05,0.1), 14 (resp. 65, 72) instances are solved.

Hence, the choice of the threshold values is crucial since low values can
eliminate good mappings, and since large values can lead to an intractable
problem. As an illustration, figure 4 shows the number of solutions and the

16

ns = |Vs|

P ng 10 25 50
5 110120 5 [10] 2 | 5] 10] 20
50 [2/34/12/0]0/5]0/2|0/0]0/5]0/5|4/0
001 | 100 2/210/1|0/0|0/5|0/1]0/0]0/5]0/4|0/0
1250 0/20/0]0/0 0/5]0/1]0/0]0/5]0/4]0/0
500 | 0/1] 0/0 | 0/0|0/5|0/1]0/0]0/5]|0/4|0/0
50 [0/5]5/0]5/0]0/5]0/5]5/0]0/5]0/5]5/0
005 | 100 2/32/214/0|0/5 | 1/4|5/0|0/5]0/5 |5/0
2 a50 [1/3 1 1/2(2/0 | 0/5 | 1/4 [4/0 | 0/5|0/5 | 5/0
500 | 1/4 | 2/1]2/00/5]0/5|3/0]0/5]0/5|4/1
50 10/5]2/3]5/0]0/5[0/5]5/0]0/5]0/5]5/0
o | 100 0/5|3/2|5/0|0/5] 0/5|5/00/5|0/5]5/0
1250 0/5 [3/2]5/0 0/5]0/5(5/0]0/5|0/5]5/0
500 | 1/4 | 4/1|3/0|0/5|1/4|5/0|0/5|0/5|5/0

Table 3: Results of LAD on the T dataset for threshold values in {5,10,20}. The first
number gives the number of solved instances among the 5 queries. The second number
gives the number of instances for which LAD did not found any solution. The remaining
instances are not solved by LAD.

processing time necessary to find all the solutions according to the threshold
values (the same value is considered here for both vertices and edges but as
a matter of fact, they can be distinguished). As one can see, the number of
compatible graphs as well as the time needed rapidly grows when the thresh-
old increases. One can mention that all the solutions have to be sorted after
this search. Moreover, when using an exact approach, there is no absolute
guaranty that the optimal solution is among the found instances (as for the
example of figure 1). According to us, these results illustrate the important
interest to consider subgraph isomorphism as an optimization process, which
is driven by the objective function under some constraints. Hence, the pro-
posed approach is not the most efficient for all problems, but it does not need
to define a threshold, and it always give the optimal solution.

In the next section, we present the second part of our experiments, that
concerns an application based on substitution-tolerant subgraph isomorphism
for symbol detection.

17

VF2' e 35 VE2

25¢+06 LAD LD #
30
2e+06
1) 25
=
2
3
S 15e+06 % 20
= o
o g
= 15
€ 1e+06
=
= 10
500000
b 5
oo
R o
0 0 2e0g0E
10 20 30 40 50 60 10 20 30 40 50 60
Threshold value for both edges and vertices compatibilities Threshold value for both edges and vertices compatibilities

Figure 4: Evolution of the number of subgraph isomorphism solutions and the computation
time found by VF2 and LAD according to a threshold value for the following parameters
values : (ng = 250,ns = 25,p = 0.1)

4.2. Symbol detection

Symbol detection is a problem related to document analysis that aims at
searching the occurrences of some reference symbols in an input document
image. In the literature, this problem is tackled using either pixel based
approaches [30, 31], symbol signature [32, 33| or structural approaches [34,
35, 36, 37]. In the latter case, the proposed techniques theoretically allow
to overcome the segmentation/recognition paradigm, but they require a sub-
graph isomorphism algorithm to detect the instances of the model graph in
the graph describing the whole document. The remaining of this section
presents how our approach for subgraph isomorphism has been applied to
solve the symbol detection problem. First, the graph database is described.
Then, the experimental protocol and the results obtained for multiple exper-
iments are presented.

4.2.1. Graph database

The database used for this experiment is made of Region Adjacency
Graphs (RAG) extracted from images of technical documents. In a RAG, ver-
tices are associated to the regions of an image and edges are created between
pairs of vertices if the corresponding regions are adjacent. The algorithm
used for extracting such RAG’s is fully described in [13]. Using this algo-
rithm, vertices are labelled with a feature vector corresponding to a set of
Zernike Moments (ZM)[38] and edges are labelled with relative scale and rel-
atwe distance. Once a document image and the symbol to be searched have

18

been described as RAG’s, the symbol detection problem turns into a sub-
graph isomorphism problem. Moreover, this subgraph isomorphism search
has to be substitution-tolerant. Indeed, due to noise on images, the labeling
may differ between the graph which represents the symbol and its instance
in the graph representing the whole document.

The document images used for this evaluation are extracted from the
floorplan dataset [39]°. This dataset is made of synthetic images represent-
ing several symbol arrangements on 10 empty architectural plan templates.
Our experiments have been performed using 200 images corresponding to the
20 first images for each template. Figure 5 shows two examples of plans and
the corresponding RAG’s. Figure 6 represent the 16 symbol models. The
whole plan dataset contains 5609 symbol instances, with an average of 28 in-
stances per document image. The graphs corresponding to symbol instances
contain 4 vertices and 7 edges on average. As a comparison, the structural
representations of the plans contain 121 vertices and 525 edges on average.

b4

=]

TR

D»B - ‘\
[&
=) Ol K| W

Figure 5: Examples of plans from the floorplan dataset with the corresponding RAG’s

4.2.2. Performance criteria

The search of a substitution-tolerant subgraph isomorphism results in a
one-to-one mapping between every vertices and edges from the graph repre-
senting the symbol and some vertices and edges from the graph representing
the whole document. In order to be assessed, the proposed mapping has to

Shttp://mathieu.delalandre.free.fr/projects/sesyd/

19

il

L b 1Ot

A B C D G H
A
L1 =y [m—]=
I J K L M N 0] p

Figure 6: Symbol models
be compared with the ground-truth information. This comparison can lead
to the following cases:
e the mapping exactly corresponds to the groundtruth (denoted as =);
e a part of the mapping corresponds to the groundtruth (denoted as ~);
e the mapping does not correspond to the groundtruth (denoted as #);

e no mapping is proposed. This case occurs when no solution fulfills the
constraints of the ILP (denoted as 0).

When an erroneous mapping is proposed, two cases can be distinguished:
e the symbol appears on the document image (denoted as # |+);

e the symbol has no instance on the document image. (denoted as # |—).

4.2.3. Search of a single occurrence

The task which has been evaluated in our first experiments was to locate
the most probable instance of a given symbol in a plan, 7.e. the minimum
cost subgraph isomorphism. This experiment has been performed on 16
symbols and 200 plans, leading to 3200 subgraph isomorphism ”queries”.
For all these queries, the system has always proposed a feasible solution.
The results are reported on table 4. They show that, among the 3200 found
instances, 1719 exactly correspond to a symbol and 337 partly correspond
to an actual mapping. 755 searches returned in an erroneous result which

20

is explained by the fact that the symbol was not on the document. Finally,
only 389 confusions were returned among the 2445 cases where the searched
symbol should have been found. Table 4 also reveals that the performance
are not equally distributed among the symbol classes. For example, symbols
from class E, M or N were quite well located, whereas searches of instances of
C, D or G result in numerous confusions. Two explanations can be given for
these errors. On one hand, it may be noted that the region adjacency graph
representation is not well suited to describe symbols C or D. Indeed, these
symbols only contain two non adjacent regions. Thus, the corresponding
graphs are composed of two vertices without edge. As a consequence, no
topological constraint is used by the subgraph isomorphism, which leads to
erroneous mappings. On the other hand, many confusions occur between F
and G because the graph for symbol G is a subgraph of the graph for symbol
F.

(Symbol | # [= [~ [£+[#]-[0]
A J106] 106 | 0 | 0 [94 |0
B 160 | 46 | 76 | 38 | 40 |0
C 200 5 | 72| 72 | 0 |0
D 60 | O | 11| 49 | 140 |0
E 112|112 | 0 | 0 | 8 |0
Foo|130] 129 | 1 | 0 | 70 |0
G |151| 51 | 21 | 79 | 49 |0
H | 183] 40 [128| 20 | 12 |0
I 176 | 114 | 0 | 62 | 24 |0
J 192 191 | 1 | 0 8 |0
K 200|158 | 25 | 17 | 0 |0
L 123|123 0 | 0 | 77 |0
M |91 8 | 2| 0 | 109 |0
N 180|180 | 0 | 0 | 20 |0
O |183| 131 | 0 | 52 | 17 |0
P 193] 193] 0 | 0 7|0
| Total | [1719337] 389 | 755 |0 |

Table 4: Results for the search of the most probable instance of each symbol on the 200
plans of the floorplan dataset. # denotes here the number of plans which contain the
symbol

21

4.2.4. Search of multiple occurrences

Considering that a symbol can have several instances on the same docu-
ment image, a second experiment has been dedicated to evaluate the perfor-
mance of a multiple search. The algorithm was configured so that any vertex
mapping in a previous solution is excluded from the search space because
a region can be part of at most one symbol. For a search of 50 instances
of all symbol models in the 200 plans, a perfect system should find 5609
symbol instances. Among them, the proposed approach returns exactly 3911
mappings (69.7%) and partially 1636 mappings (29.2%). The 62 symbol in-
stances which are not found correspond to cases where two symbols from
the same class, made of identical regions (e.g. symbol K composed of four
triangles) are closed in the plan so that the mapping is done with regions of
both occurrences. In such a case, the second occurrence cannot be found.
Considering that a partial matching is sufficient to consider the symbol as
detected, the overall recall is thus 99% and the overall recall is 10%. Table 5
details the results per class when 50 occurrences are considered. As one can
see in this table, a significant number of false detections are made. This can
be explained by the fact that the search of 50 instances has led the system
to propose solutions whereas all the actual symbols were already found.

These results highlight a need for some improvements. Indeed, if the
recall rate may be considered as satisfactory, the number of false detections
has to be drastically reduced. This goal may be achieved by implementing
a rejection strategy which is able to filter the search results according to a
threshold used to stop the search. Figure 7 illustrates the results that such
a strategy can produce on precision-recall curves, when varying the value of
the threshold.

4.2.5. Learning of distance threshold

The results presented above show that it is necessary to stop the search us-
ing a threshold on the matching cost when considering multiple occurrences,
in order to improve the precision of the system. As shown by figure 8, which
depicts the ranges of matching costs obtained for each class of symbols for
the 3200 queries, the threshold has to be tuned according to the symbol class
which is considered. Four our experiments, this threshold has been learned
on a subset of 20 floorplans by optimizing the F1-measure which is a tradeoff
between recall and precision (see eq 3). The obtained values are highlighted
as blue strokes on figure 8.

22

| Symbol | Recall (%) | Precision (%) |

A 100 9
B 99 10
C 100 9
D 97 1
E 100 2
F 100 14
G 100 7
H 100 5
1 100 5
J 100 7
K 88 32
L 100 12
M 100 8
N 100 2
O 100 6
P 100 28
’ overall ‘ 99 10

Table 5: Recall and precision for the search of 50 instances

Precision x Recall
F1- =2 3
HESITe Precision + Recall 3)

Table 6 presents the rejection threshold for each class and the new val-
ues for recall and precision, obtained on 180 floorplans. The diversity of the
threshold values justifies the choice to set a class dependent threshold. It
might be noted that these values are somehow correlated with the size of
the model graph. However the main observation is the performance evolu-
tion achieved by the use of this rejection strategy. Indeed, for each symbol
class, a significant improvement in precision was obtained at the cost of a
slight decrease of the recall. The overall performance of the system reaches
a precision of 81% while keeping a high value for the recall (90%).

5. Conclusion

In this paper, an integer linear formulation has been proposed to solve the
problem of substitution-tolerant subgraph isomorphism. This optimization

23

10 L0 L0
os 0o os o
os o8 0s
] ; 004
14 o. 14 0. 13 o c
2 0.6 S o8 S o6 2
205 2 o5 2o g oo
]]] g
8oa £oa £oa £ oo
03 03 03
02 02 02 o1
o1 o1 o1
00 0o 0o 000
00 o1 02 03 04 05 06 07 08 05 Lo 1 02 03 04 05 06 07 08 05 10 00 01 02 03 04 05 05 07 08 05 10 00 01 0.2 0.3 0.4 05 06 07 08 05 10

recall

(a) Symbol A

recall

(b) Symbol B

recall

(¢) Symbol C

recall

(d) Symbol D

1.0 10 10 10
0. 09 09 09
08 08 08 08
07 07 co7 co7
806 S 06 g 06 Sos
§os gos Los gos
goa goa Eoa Eoa
03 03 03 03
0.2 02 02 02
01 01 01 01
0.0 0.0 0.0 0.0

01 02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 10

03 04 05 06 07 08 09 10
recall

(e) Symbol E

01 02 03 0.4 05 06 07 08 09 10
recall

(f) Symbol F

recall

(g) Symbol G

10 10 1.0 1.0
08 0.9 0.9 09
08 08 08 08

£ 07 £ 07 £ 07 £ 07

S o6 S 06 S 06 S 06

$os Gos Bos Sos

£oa £ o4 £oa £ oa

i g & &
03 03 0.3 03
0.2 0.2 0.2 02
01 01 01 01
0.0 0.0 o,

00 01 02 03 04 05 06 07 08 0,9 1.0
recall

(i) Symbol I

0.0
00 01 02 03 04 05 06 0.7 0.8 0.9 1.0
recall

(j) Symbol J

00 01 02 03 04 05 06 07 08 08
recall

(k) Symbol K

.0
00 01 02 03 0.4 05 0.6 0.7 0.8 0.9 10
recall

(1) Symbol L

Lo Lo Lo L0
0s 0s 0s o
9 0s 0s by

o7 o7 o7 o7

S 06 S 0.6 2 0.6 S 0.6

Zos Zos Zos 205

£os £os £os £os
03 02 02 o3
0z 0z 0z 0z
01 01 01 01
00 00 o

00 01 02 0.3 0.4 05 06 0.7 08 0.5 1.0
recall

(m) Symbol M

(n) Symbol N

0.0 -
00 01 02 03 04 05 0.6 0.7 0.8 0.9 1.0
recall

(0) Symbol O

.0 s -
00 01 02 03 04 05 0,6 0,7 08 09 10
recall

(p) Symbol P

Figure 7: Precision-recall curves per class for the search of 50 instances

approach enables us to find instances of a query graph into a larger one the
attribute of which may differ. Results have been presented for experiments
performed on synthetic graph datasets. We also report results obtained on
graph-based representations extracted from architectural plans where a sub-
graph isomorphism corresponds to a symbol instance. For these latter, we
have proposed a rejection strategy based on the learning of matching cost
thresholds. This strategy improves the precision by greatly reducing false
detections while keeping the good recall performance achieved by a multiple
search.

The main characteristics of the proposed approach are the following.
First, it is very general in the sense that it can be applied to the most general
class of graphs. Indeed, it can process directed multigraphs (several edges

24

Figure 8: Ranges of mapping costs for good detection and errors according to the class of
symbol. The stroke line represents the threshold that has been learned.

may exist between edges, even loops). The graph can be labeled on both
vertices and edges and there is no restriction considering the type of label,
only a distance or a cost function to compare labels of two different vertices
or edges are needed. Neither the pattern nor the target graph need to be
connected. Second, in contrast to the approach by Messmer and Bunke [40],
the graph database does not need to be preprocessed. The subgraph isomor-
phism search can be directly applied to two newly presented graphs. Finally,
the approach presented in this paper separates the formulation of problem
and the method used to solve it. The error-tolerant subgraph isomorphism
is modeled as an optimization problem under constraints. The responsibility
to solve this problem can be delegated to any solver able to process an ILP
formulation. Such solvers are continuously developed by the combinatorial
optimization community.

The work described in this paper can be pursued following several leads.
First, concerning the symbol detection problem, the subgraph isomorphism
approach could be applied to vector or contour-based structural descriptions
of symbols and documents as the ones proposed by [37] or [41], in order
to overcome some of the limits of region-based descriptions. At the same
time, in order to manage possible segmentation errors which may result in
merged or split vertices, operators establishing distances for one-to-many or

25

Matching
Symbol cost Recall (%) | Precision (%)
threshold

A 2.451 93 100
B 3.875 75 85
C 0.489 70 49
D 0.889 95 D
E 1.165 100 100
F 2.315 100 100
G 2.969 76 38
H 2.710 90 100
I 0.862 95 38
J 1.831 96 100
K 4.435 84 90
L 3.513 100 98
M 3.767 100 100
N 1.144 100 90
O 0.447 60 100
P 3.625 100 100

’ overall \ \ 90 \ 81 ‘

Table 6: Precision and recall of the symbol spotting system implementing the rejection
strategy based on the maximization of the F-measure

many-to-one mappings [42] should be considered. This remark could even be
integrated at the isomorphism level. Indeed, the integer linear programming
formulation proposed for substitution-tolerant subgraph isomorphism could
be adapted to other mapping problems such as substitution-tolerant induced
subgraph isomorphism or isomorphisms allowing topological transformations.
Also, the overall running time of the algorithm can be improved by further
customizing the ILP solver heuristics.

Finally, considering the lack of public ground-truthed dataset to evaluate
subgraph isomorphism in presence of graph labeled with numerical values,
the ones used in this paper are available on demand and we intend to make
them publicly accessible for download.

26

6. References

1]

2]

3]

M. Kuramochi, G. Karypis, Finding frequent patterns in a large sparse
graph, Data Mining and Knowledge Discovery 11 (3) (2005) 243-271.

A. Inokuchi, T. Washio, H. Motoda, Complete mining of frequent pat-
terns from graphs: Mining graph data, Machine Learning 50 (3).

E. Barbu, P. Héroux, S. Adam, E. Trupin, Frequent graph discovery:
Application to line drawing document images, Electronic Letters on
Computer Vision and Image Analysis (ELCVIA) 5 (2) (2005) 47-57.

M. Neuhaus, H. Bunke, Edit distance-based kernel functions for struc-
tural pattern classification, Pattern Recognition 39 (10) (2006) 1852
1863.

R. Raveaux, S. Adam, P. Héroux, E. Trupin, Learning graph proto-
types for shape recognition, Computer Vision and Image Understanding
115 (7) (2011) 905 — 918. d0i:10.1016/j.cviu.2010.12.015.

H. Zanghi, C. Ambroise, V. Miele, Fast online graph clustering via Erdos
Renyi mixture, Pattern Recognition 41 (12) (2008) 3592-3599.

H. Qiu, E. Hancock, Graph matching and clustering using spectral par-
titions, Pattern Recognition 39 (1) (2006) 22-34.

F. E. M.A. Lozano, Protein classification by matching and clustering
surface graphs, Pattern Recognition 39 (4) (2006) 539-551.

L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub)graph isomor-
phism algorithm for matching large graphs, IEEE Trans. Pattern Anal.
Mach. Intell. 26 (10) (2004) 1367-1372.

S. Auwatanamongkol, Inexact graph matching using a genetic algorithm
for image recognition, Pattern Recognition Letters 28 (12) (2007) 1428
1437.

S. Zampelli, Y. Deville, C. Solnon, Solving subgraph isomorphism prob-
lems with constraint programming, Constraints 15 (3) (2010) 327-353.

C. Solnon, Alldifferent-based filtering for subgraph isomorphism, Artifi-
cial Intelligence 174 (12-13) (2010) 850 — 864.

27

[13]

[18]

[19]

[20]

[21]

P. Le Bodic, H. Locteau, S. Adam, P. Héroux, Y. Lecourtier, A. Knip-
pel, Symbol detection using region adjacency graphs and integer linear
programming, in: Proceedings of the International Conference on Doc-
ument Analysis and Recognition (ICDAR’09), 2009, pp. 1320-1324.

D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph match-
ing in pattern recognition, International Journal of Pattern Recognition
and Artificial Intelligence 18 (3) (2004) 265-298.

J. Larrosa, G. Valiente, Constraint satisfaction algorithms for graph
pattern matching, Mathematical Structures in Computer Science 12 (4)
(2002) 403-422.

J. R. Ullmann, An algorithm for subgraph isomorphism, J. ACM 23 (1)
(1976) 31-42.

L. P. Cordella, P. Foggia, C. Sansone, M. Vento, Performance eval-
uation of the VF graph matching algorithm, in: Proccedings of the
International Conference on Image Analysis and Processing, 1999, pp.
1172-1177.

D. E. Ghahraman, A. K. C. Wong, T. Au, Graph optimal monomor-
phism algorithms, IEEE Transactions on System, Man and Cybernetics
10 (1980) 181-188.

A. K. C. Wong, M. You, S. C. Chan, An algorithm for graph optimal
monomorphism, IEEE Transactions on System, Man and Cybernetics
20 (3) (1990) 628-638.

R. C. Wilson, E. R. Hancock, Structural matching by discrete relaxation,
IEEE Transactions on Pattern Analysis and Machine Intelligence 19
(1997) 634-648.

H. A. Almohamad, S. O. Duffuaa, A linear programming approach for
the weighted graph matching problem, IEEE Transaction on Pattern
Analysis and Machine Intelligence 15 (5) (1993) 522-525.

D. Justice, A. Hero, A binary linear programming formulation of the
graph edit distance, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 28 (8) (2006) 1200-1214.

28

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

G. L. Nemhauser, L. A. Wolsey, Integer and combinatorial optimization,
Wiley-Interscience, New York, NY, USA, 1988.

A. Schrijver, Theory of Linear and Integer Programming, John Wiley &
Sons, New York, NY, USA, 1998.

H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer,
Berlin, Germany, 2004.

D. L. Applegate, R. E. Bixby, V. Chvatal, W. J. Cook, The Travel-
ing Salesman Problem: A Computational Study (Princeton Series in
Applied Mathematics), Princeton University Press, 2007.

F. K. Hwang, D. S. Richards, P. Winter, The Steiner Tree Problem,
Vol. 53 of Annals of Discrete Mathematics, North-Holland, Amsterdam,
Netherlands, 1992.

E. Danna, M. Fenelon, Z. Gu, R. Wunderling, Generating multiple solu-
tions for mixed integer programming problems, in: IPCO ’07: Proceed-
ings of the 12th international conference on Integer Programming and
Combinatorial Optimization, Springer-Verlag, Berlin, Heidelberg, 2007,
pp- 280-294.

P. Erdos, A. Rényi, On random graphs, Publicationes Mathematicae 6
(1959) 290-297.

S. Tabbone, L. Wendling, K. Tombre, Matching of graphical symbols in
line-drawing images using angular signature information, International
Journal on Document Analysis and Recognition 6 (2) (2003) 115-125.

S. Adam, J. Ogier, C. Cariou, R. Mullot, J. Labiche, J. Gardes, Symbol
and character recognition: application to engineering drawings, Inter-
national Journal of Document Analysis and Recognition (IJDAR) 3 (2)
(2000) 89-101.

P. Dosch, J. Lladds, Vectorial signatures for symbol discrimination, in:
Graphics Recognition: Recent Advances and Perspectives, Vol. 3088 of
Lecture Notes in Computer Science, 2004, pp. 154-165.

W. Zhang, L. Wenyin, A new vectorial signature for quick symbol index-
ing, filtering and recognition, in: Proceedings of the Ninth International
Conference on Document Analysis and Recognition, 2007, pp. 536-540.

29

[34]

[35]

J. Lladés, E. Marti, J. J. Villanueva, Symbol recognition by error-
tolerant subgraph matching between region adjacency graphs, IEEE
Transactions on Pattern Analysis and Machine Intelligence 23 (10)
(2001) 1137-1143.

E. Barbu, P. Héroux, S. Adam, E. Trupin, Using bags of symbols for au-
tomatic indexing of graphical document image databases, in: Graphics
Recognition. Ten Years Review and Future Perspectives, Lecture Notes
in Computer Science, 2005, pp. 195-205.

H. Locteau, S. Adam, E. Trupin, J. Labiche, P. Héroux, Symbol spotting
using full visibility graph representation, in: Proceedings of the seventh
International Workshop on graphics Recognition, 2007, pp. 49-50.

R. L. Qureshi, J.-Y. Ramel, D. Barret, H. Cardot, Spotting symbols in
line drawing images using graph representations, in: Graphics Recogni-
tion. Recent Advances and New Opportunities, Lecture Notes in Com-
puter Science, 2008, pp. 91-103.

M. Teague, Image analysis via the general theory of moments, Journal
of the Optical Society of America 70 (8) (1980) 920-930.

M. Delalandre, E. Valveny, T. Pridmore, D. Karatzas, Generation of
synthetic documents for performance evaluation of symbol recognition;
spotting systems, International Journal on Document Analysis and
Recognition 13 (2010) 187-207.

B. T. Messmer, H. Bunke, A new algorithm for error-tolerant subgraph
isomorphism detection, IEEE Transactions on Pattern Analysis and Ma-
chine Inteligence 20 (5) (1998) 493-504.

S. Tabbone, L. Wendling, D. Zuwala, A hybrid approach to detect graph-
ical symbols in documents, in: Document Analysis System VI, Vol. 3163
of Lecture Notes in Computer Science, 2004, pp. 342-353.

S. Sorlin, C. Solnon, J.-M. Jolion, Applied Graph Theory in Computer
Vision and Pattern Recognition, Vol. 52 of Studies in Computational
Intelligence, Springer, 2007, Ch. A Generic Graph Distance Measure
Based on Multivalent Matchings, pp. 151-182.

30

