Large asymmetric polar scarps on Planum Australe, Mars: Characterization and evolution
Cyril Grima, François Costard, Włodek Kofman, Bertrand Saint-Bézar, Anthony Servain, Frédérique Rémy, Jérémie Mougnot, Alain Herique, Roberto Seu

To cite this version:

HAL Id: hal-00725404
https://hal.archives-ouvertes.fr/hal-00725404
Submitted on 26 Aug 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Large asymmetric polar scarps on Planum Australe, Mars: Characterization and evolution

Cyril Grima, François Costard, Wlodek Kofman, Bertrand Saint-Bézar, Anthony Servain, Frédérique Rémy, Jérémy Mougnoit, Alain Herique, Roberto Seu

PII: S0019-1035(10)00485-9
DOI: 10.1016/j.icarus.2010.12.017
Reference: YICAR 9668

To appear in: Icarus

Received Date: 12 April 2010
Revised Date: 17 December 2010
Accepted Date: 18 December 2010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Large asymmetric polar scarps on Planum Australe, Mars:

Characterization and evolution

Cyril Grima¹ (email) cyril.grima@obs.ujf-grenoble.fr (tel.) +33 4 76 63 52 81
Francois Costard² (email) francois.costard@u-psud.fr (tel.) +33 1 69 15 49 10
Wlodek Kofman¹ (email) wlodek.kofman@obs.ujf-grenoble.fr (tel.) +33 4 76 51 41 47
Bertrand Saint-Bézar² (email) bertrand.saint-bezar@u-psud.fr (tel.) +33 1 69 15 67 93
Anthony Servain¹ (email) berkuts37@hotmail.fr
Frédérique Rémy³ (email) remy.omp@free.fr (tel.) +33 5 61 33 29 58
Jérémie Mouginit⁴ (email) jmougino@uci.edu (tel.) 281 486 2146
Alain Herique¹ (email) alain.herique@obs.ujf-grenoble.fr (tel.) +33 4 76 51 41 73
Roberto Seu⁵ (email) roberto.seu@uniroma1.it (tel.) +39 06 4458 5943

¹Laboratoire de Planétologie de Grenoble (CNRS/UJF, UMR5109), 38041 Grenoble Cedex, France
²Interactions et Dynamique des Environnements de Surface, (CNRS/UPS, UMR8148), Orsay, France
³Laboratoire Etudes en Géophysique et Océanographie Spatiale (CNES/CNRS/UPS), Toulouse, France
⁴University of California, Department of Earth System Science, Irvine, CA 92697-3100 USA
⁵Dipartimento InfoCom, Università di Roma “La Sapienza”, Rome, Italy
Running Head: Large asymmetric polar scarps on Planum Australe

Corresponding author:

Cyril Grima

Laboratoire de Planétologie de Grenoble - BP 53
38041 Grenoble Cedex 9 - France
(tel.) +33 4 76 63 52 81
(fax.) +33 4 76 51 41 46
cyril.grima@obs.ujf-grenoble.fr
Abstract

Numerous scarps with similar characteristics have been observed in the polar layered deposits of Planum Australe, Mars. They are referred to as LAPSs (for Large Asymmetric Polar Scarps) because of their typical cross-section featuring a trough between a straight slope on one side with outcrops of layered deposits and a convex slope on the other side without any outcrops. These LAPSs are restricted to the outlying region of Ultimi Lobe. Topographic data, optical images, and subsurface radar observations have been analyzed and compared to produce a complete morphologic and stratigraphic description of these scarps. In all, 167 LAPS-like features have been identified. All have similar dimensions and characteristics and appear to be deep depressions in the ice. The polar deposits have an average thickness of 1 km in this region and the LAPS depressions commonly reach half of that thickness. Subsurface data indicate that the depressions could reach bedrock at certain locations. Many surface features of the polar deposits of Mars are considered to be consequences of depositional and/or erosion processes. We propose a mechanical failure of the ice for the LAPSs origin, given the striking similarities in shape and size they show with rollover anticlines above listric faults commonly observed as a crustal extension mode on Earth. This tectonic scenario would imply a substantial outward sliding of the polar deposits in the region of Ultimi Lobe and a low basal shear stress. No information is available to determine whether such a system could be active at present. Confirmation of the "mechanical failure" hypothesis of these LAPSs on Mars is of major importance as it could be a macro-expression of fundamental differences between ice-sheet behavior under Martian and Terrestrial conditions.
Keywords: Mars, polar geology; Mars, polar caps; Ices; Radar observations; Tectonics

1. Introduction

The south and north polar plateaus of Mars - respectively Planum Australe and Planum Boreum - are the only known examples of extraterrestrial ice-sheets comparable to those of the Earth. Many striking similarities with the Earth’s ice-sheets exist. For instance, the volumes of both Planum Australe and Planum Boreum (respectively \(\sim 1.6 \times 10^6 \text{ km}^3\) and \(\sim 1.1 \times 10^6 \text{ km}^3\)) are of the same order as that of the Greenland ice sheet (\(~ 2.6 \times 10^6 \text{ km}^3\)), with similar average thicknesses of about 1000 to 1500 m (Plaut et al., 2007; Smith et al., 2001; Weidich, 1995). Moreover, water ice is the major ice-sheet component on both Earth and Mars, with an average impurity fraction that is likely less than 10\% for Planum Australe (Plaut et al., 2007) and close to 5\% for Planum Boreum (Grima et al., 2009). When the mass-balance is positive, the growth process of ice sheets on both planets is driven by the deposition of isochronous layers (known on Mars as polar layered deposits, PLD). Their impurity contents vary with the time of deposition (Cutts and Lewis, 1982; Thomas et al., 1992). Furthermore, the ice of the Earth’s ice sheets is crystallized in the hexagonal system (ice-Ih). Although cubic ice (Ice-Ic) could form under Martian conditions by vapor deposition on the surface, it would be metastable (Gooding, 1988). Given the annual rise of surface temperature above the Ic/Ih irreversible transition (\(~ 150 \text{ K}\)), the Martian ice sheets are likely exclusively composed of stable ice-Ih as on Earth. And finally, the evolution of the ice sheets on a geological time-scale is mainly driven by Milankovitch orbital cycles (obliquity, eccentricity, and precession variations) leading to planetary climate forcing (Hays et al., 1976; Head et al., 2003), as on Earth.
Nevertheless, the polar environment on Mars is different than on Earth. For instance, temperatures in Martian polar regions can be as low as 150 K in both hemispheres (Lewis et al., 1999), while the average surface pressure is 0.008 bars with seasonal variations of ± 20% (Clifford et al., 2000) and gravity is 0.38 times less than on Earth. Furthermore, the base elevations of the two Martian polar plateaus differ by around 6000 m, far more than on Earth. On Mars, the geothermal heat flow that largely determines the basal temperature of a glacier is estimated to be in the range of 15 to 45 mW m⁻² (e.g. McGovern et al., 2004; Nimmo and Stevenson, 2000; Reese et al., 1998), lower than the value of ~65 mW m⁻² for the Earth’s continents (Pollack et al., 1993). Consequently, the surface mass balance of the Earth's ice sheets is mainly determined by melting of snow and ice, whereas condensation and sublimation are the dominant processes on Mars (Rognon et al., 2007). Orbital parameters vary with a comparable timescale on Mars and Earth, but with greater amplitudes on Mars. Over the past 10 Myr, Martian obliquity has exceeded 45° and the eccentricity of the orbit has reached maximums twice that of the Earth’s (Laskar et al., 2002; Ward, 1992). Taking all these similarities and dissimilarities into account, Mars can be considered as a full-scale laboratory for the study of the behavior of an Earth-like ice-sheet system over extended conditions. Consequently, the peculiarities observed on the Martian polar plateaus can help us improve our understanding of the Earth's ice-sheet system in general and make the first steps toward meaningful comparative planetology in polar science. With this in mind, this paper provides a geomorphologic description of polar scarps frequently observed in the region of Ultimi Lobe (UL), Planum Australe (see Fig. 1). Despite their km-size and typical asymmetric profile that will be described, equivalent formations have never been reported to date on polar glaciers on Earth. Because of their particular shape, we call these formations LAPSs (for Large Asymmetric Polar Scarps). Until now, only a few studies have
reported such LAPSs on Viking images (Howard, 2000; Thomas and Weitz, 1989), attributing
them to an eolian origin. Here LAPSs are described by coupling optical images, surface
topography, and radar sounding from recent datasets. This multi-instrumental approach makes it
possible to establish profiles of the surface and subsurface of the LAPSs. A LAPS inventory was
undertaken and 167 corresponding formations were identified across UL, providing
geomorphologic elements to identify and discuss different formation processes for LAPSs. Most
of the observations appear to be consistent with a mechanical failure of the ice, analogous to a
“listric fault/rollover” system. This tectonic process will be discussed along with certain direct
implications.

2. Regional context

Planum Australe overlies heavily cratered highlands that are reported to be Noachian and
Hesperian in age (Tanaka and Scott, 1987). The middle-Hesperian Dorsa Argentae Formation
(DAF) is thought to be the youngest surrounding terrain of Planum Australe. The Planum
Australe mound accumulated during the late Amazonian period (Kolb and Tanaka, 2001) and
presently has a maximum thickness of 3700 m (Plaut et al., 2007). Cratering records estimate the
plateau's surface to be as old as 10 to 100 My (Herkenhoff and Plaut, 2000; Koutnik et al., 2002).
Signatures of the former extent of the ice sheet have been observed in the DAF where esker-like
ridges could be the consequence of past basal-melting (Head and Pratt, 2001; Kargel and Strom,
1992; Milkovich et al., 2002). Present-day conditions on Mars preclude exceeding the melting
temperature of water ice, except in cases of substantial geothermal anomalies (Clifford, 1987),
not likely to be detected by any in-flight instrument, or in the case of saline water (Renno et al.,
2009 and references therein). UL is an outlying region of Planum Australe, opposite DAF and extending over equivalent latitudes. It is the only part of Planum Australe below 80°S, with latitudes as low as 72°S (Fig. 1). It covers 400,000 km² (i.e. one-third of the entire plateau area). Without this region Planum Australe would be almost perfectly symmetric instead of being offset from the pole. UL seems to have been subjected to a slight outward horizontal motion during recent geological times, revealed by two opposing signatures co-existing along its border. The first is a viscous deformation of the ice, suggested by glacial tongue-like mounds flowing outward in a series of craters dotting the edge of UL (Byrne, 2003). Similar behavior was reported by Head (2001) in the nearby region of Promethei Lingula. The other glacial signature involves brittle processes such as slumping, landsliding and faulting that have also been reported all along the northern border of UL (Byrne, 2003; Murray et al., 2001). These fractures were interpreted as evidence of modest basal sliding of the whole region, seen as a brittle plate.

* Location of Fig. 1 (1.5 column width).

3. Data

Five different data sources were used for this study:

(i) The digital elevation model of the surface acquired by the Mars Orbiter Laser Altimeter (MOLA) (Smith et al., 2001). We used the gridded polar map at 256 pixels/° (~230 m/pixel) with a vertical accuracy of 1 m.
(ii) Visible images from the High Resolution Imaging Science Experiment (HiRISE) with a resolution of 25 to 32 cm/pixel (McEwen et al., 2007). Only a few HiRISE images are available over UL.

(iii) Visible images from the High-Resolution Stereo Camera (HRSC) experiment with a resolution of 10 to 20 m/pixel (Jaumann et al., 2007). Despite a more limited resolution than HiRISE, HRSC were retained because of its high coverage of the UL region.

(iv) Radar subsurface cross-sections (radargrams) of Planum Australe from SHAllow RADar (SHARAD) (Seu et al., 2004). The radar signal (20 MHz) penetrates as deep as ~ 1500 m into water ice materials with 10 × 300 m vertical × along-track resolution. The radar waves are back-scattered by dielectric gradients along the propagation path that are closely related to impurity rate variations in the ice. Thus, SHARAD is able to detect the layers forming Planum Australe. In UL, the detection signal is faint and can suddenly disappear before reappearing tens of kilometres downtrack. This could be due to a low dielectric contrast between isochronous layers. However, the regional density of SHARAD data is high and it was possible to select some radargrams to support morphologic interpretations. Initially, radargrams have a vertical timescale representing the time delay of the echoes. They have been migrated in depth by using a relative dielectric constant of 3.10 as inferred by Grima et al. (2009) for the nearly pure ice of Planum Boreum. Off-nadir surface reflections (clutter) can generate highly delayed echoes that can be confused with subsurface structures. Adaptation of radar simulation developed by Nouvel et al. (2004) allowed us to identified the biggest clutters.

(v) Bedrock elevation as mapped by Plaut et al. (2007) based on the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) data (Picardi et al., 2005). Compared to SHARAD, the MARSIS wavelength (1.8 to 5 MHz) provides a lower vertical resolution of ~80 m in the ice. However the signal penetrates deep enough into Planum Australe to be clearly back-
scattered by the bedrock. The vertical uncertainty on the inferred basal topography is assumed to be 200 m (Plaut et al., 2007). It must be emphasized that this bedrock elevation map were obtained by interpolation of a limited-density dataset: the resolution was sufficient to get the basal regional trend but not to detect local anomalies of the bedrock.

4. Morphological description

4.1. Spatial shape and distribution

The first recognizable feature of the LAPs is their spatial shape. They appear to be arch-shaped, tens of kilometers long, and are distributed over the surface of the ice (Fig. 1). Howard (2000) described this particular signature as a scalloped or a “gull-winged” shape. This criterion enabled us to identify 167 LAPs over Ultimi Lobe (Fig. 2). This count is not accurate for two reasons: (i) sometimes up to three or more LAPs are aligned and/or connected, often making it difficult to precisely define how many LAP there actually are; (ii) the arch-shaped LAPs can be confused with the rims of shallow-buried craters. To avoid this, we do not consider scarps that are obviously linked to a circular structure (an example is shown Fig. 5B). However, since the surface topography is quite disturbed, we cannot rule-out that some less obvious crater-linked formations were counted. The count shows that LAPs are widespread over Ultimi Lobe. Their “horn-to-horn” width is in the range of 10 to 20 km, while some can reach 50 km. Most of them are gathered in aligned series. As already observed by Howard (2000), their regular size and close spacing cannot be universally explained by a crater rim origin. This strongly supports the assumption that most of the LAPs considered in this study are not mainly linked to shallow-
buried craters. As shown in Fig. 3, the concave sides of the LAPSs never face the South Pole and
the dominant orientation is not towards the equator (i.e. azimuth = 0°). Neither is the orientation
constant with respect to longitude. For instance, in a given area, adjacent LAPSs can be almost
right-angled (e.g. white arrows in Fig. 2). The regional orientation in the polar stereographic view
is also a relevant parameter. Let us define 0° and 90° as the angles for which LAPS concavities
face the bottom and the right border of the map respectively. Figure 3 shows this regional
orientation in a circular histogram. The whole set of LAPSs appears to be essentially directed
towards the same quadrant between 0° and 90°.

* Location of Fig. 2 (no particular restriction on the size).

* Location of Fig. 3 (no particular restriction on the size).

4.2. Cross-section

The second noteworthy feature is the asymmetric shape of LAPS cross-sections (giving them the
second letter of their acronym). They exhibit a trough between a straight slope on one side,
comparable to a scarp, facing a gentle convex upward slope on the other side that flattens as it
rises. Figure 4 and the cross-sections in Fig. 6 illustrate this profile. The LAPS system forms
extremely deep troughs in the ice with respect to the local ice thicknesses. The height of the
scarps ranges from 200 m to 700 m with an average value of 400 m. The East part of UL (left
side on the map) hosts the highest scarps. The resulting troughs regularly penetrate Planum
Australe to half its thickness. In some cases, the trough reaches the top value of the basal
elevation estimated by MARSIS. This usually occurs when the trough seems flat and parallel to
the bedrock slope, as shown in Fig. 6 for cross-sections 1b-1b’ and 3b-3b’. This leads to the
possibility that the bedrock could in some cases become locally exposed. Some LAPSs exhibit a more complex topography on the side of the convex slope (cross-sections 4a-4a’and 4b-4b’). Their curved shape is broken by one or more flat plateaus, more or less horizontal. These LAPSs are essentially located in the heart and in the Eastern part of UL (left side of Fig. 2). Despite these very particular topographies - asymmetric and deep troughs - it is important to emphasize the relative flatness of the system. The slope of the scarps ranges from 2° to 15°, with an average value of 10°. Indeed, the mean horizontal distance between the foot and the top of the straight slope is 3.5 km. Therefore, the horizontal scale of the LAPS system is roughly an order of magnitude larger than the ice thickness. This thinness and flatness are highlighted in Fig. 6 by the inserts that display no vertical exaggeration.

* Location of Fig. 4 (no particular restriction on the size).

4.3. Hillocks

Another feature is regularly (but not systematically) superimposed on the typical cross-section described above i.e. a ridge that can be observed along certain scarp crests (indicated by black arrows in Fig. 6), similar to elongated hillocks. We did not find any relation between the heights of the hillocks and the height of the straight slope or any other distinctive dimensions. The hillock/straight-slope height ratio is usually < 0.2, although around 10 LAPSs, mostly concentrated in the far-east side of UL, have a ratio > 0.5. However, note that the hillocks remain extremely flat, as they are stretched horizontally over 2 to 5 km.

* Location of Fig. 5 (as wide as possible).
* Location of Fig. 6 (as wide as possible).

5. Stratigraphy

The behavior of the internal structure of any geological formation is necessary to understand its origin. Consequently the structure of the PLD beneath the LAPS and information from subsurface radar are essential. However, as noted in section 3, the layers detected by SHARAD in the UL region correspond to faint signals. To support the radar observations, we compared them with visible images from HiRISE and HRSC. These cross-analyses made it possible to draw a partial pattern for the polar layers.

Figure 7 shows two LAPS cross-sections associated with two SHARAD radargrams. HRSC images of the surface along the groundtracks are also shown. The radargram of cross-section 5-5’ clearly shows horizontal layers on the straight-slope side (right side of the picture), leading to the hypothesis that the scarp includes outcrops there. On the other side, the layers below the convex slope are curved, parallel to the surface and plunging. Unlike the case on the straight-slope side, no outcrops are expected on the convex slope. On the HRSC image associated with this cross-section, polar layer outcrops can be distinguished as gathered lines of various albedos perpendicular to the ground-track. The change in albedo is due to slope and dust content variations from one layer to another. The cross-section locates these outcrops in an area corresponding exclusively to the straight slope, confirming the radar observation. Conversely, the HRSC image does not show any such signature on the convex slope, consistent with the previous hypothesis that the layers are curved downward and do not outcrop on this side. Cross-section 6-6’ shows similar behavior, although the bending of the convex-slope layers is not as clear on the
radargram because of the faint detection signals. However the associated HRSC image reveals that outcrops occur only on the straight slope, implying that the convex-slope layers also plunge downward as supposed.

This asymmetric behavior of the polar layers (outcrops on the straight slope and downward bending below the convex slope) cannot be verified by radar data for the entire set of LAPSs because of the poor layer detection in the UL region as mentioned above. However, visual inspection of available images shows that outcropping on the straight slope only is a common signature of the LAPSs. Figure 8 is an example of a HiRISE image over two successive LAPSs. The asymmetric outcrop is clear for both; however the cross-section path cuts the end of the second LAPS leading to progressive fading of the outcrops.

Finally, it is not possible to comment on the structure just under the LAPS troughs given that no formation is detected by radar. This does not necessarily mean that no reflector is present. It is more likely due to the straight slope, refracting most of the back-wave power offside with respect to the instrument, making underlying features hard to detect. In addition, the recurrent clutter echoes at this location could be strong enough to hide faint signals from the subsurface.

* Location of Fig. 7 (as wide as possible).

* Location of Fig. 8 (as wide as possible).

6. Interpretations
The results of the morphologic description of the LAPS surface and the stratigraphic study are summarized in Fig. 4. The different indicators support that Fig. 4 is a roughly general model for the LAPS morphology. We will now look at the possible origins of the LAPSs.

6.1. Crater filling as a possible origin of LAPSs

The arched shape of the LAPSs naturally suggests a possible link with craters. Some of the circular objects on UL are obviously buried craters that lay either on buried layered deposits (paleo-surface) or on the bedrock. Subsequent accumulation of deposits of ice on these irregularities would lead to an increasingly smooth surface topography that would nevertheless conserve a spatial signature of the initial formations with a decreasing vertical relief. In particular, the common hillocks observed along the crests could be easily interpreted in terms of crater rim prominences. However, the observed LAPSs are just semi-circular with no sign of an opposite and symmetric formation to complete the circle. Nevertheless, it should be possible to fill a particular crater or bedrock formation with successive deposits of layers in order to obtain a LAPS morphology. One possibility would be to start with a crater that has been asymmetrically eroded. Uneven deposition of ice on a crater is another mechanism that could produce a LAPS by accumulation of the deposits preferentially on one side. However, even if a LAPS production process based on crater filling can be imagined, it does not easily explain the spatial repetitions that are observed (Howard, 2000). The repetition and similar dimensions of the LAPSs as well as their local layout in aligned formations does not support craters as the origin given that crater locations and diameters are basically random.

6.2. Erosion processes as a possible origin of LAPSs
Howard (2000) performed a complete survey of optical images in order to detect surface signatures of eolian processes over the PLDs. He noticed similarities between the arched shape of LAPSs and barchan dunes formed by deposition of wind-transported sand. Since this study, the availability of an accurate digital elevation model (MOLA) allows us to show that LAPSs are instead deep depressions in the ice. This raises the possibility of LAPS formation by erosion of the ice, which could be driven either by eolian processes or sun sublimation.

The long-term efficiency of the wind loaded with abrasive particles to shape the surface of the ice is well known (e.g. Howard, 2000; Koutnik et al., 2005). Wire brush terrains, snakes, and trailing grooves are especially common eolian formations encountered on Planum Australe. They extend for hundreds of kilometers and are associated with a decameter vertical scale (Koutnik et al., 2005). The objects thus formed have a vertical / horizontal ratio several orders of magnitude smaller than the typical dimensions of LAPSs. However, the relatively uniform orientation of the LAPSs is consistent with an eolian origin, except for the quasi-perpendicular LAPSs found in a single region as shown in Fig 2.

At the North Pole, Planum Boreum exhibits numerous spiral troughs in its margin. Their asymmetric cross-sections are quite similar to those of the LAPSs. Although their precise origin is not yet well understood, northern troughs are thought to be sustained by a process involving solar sublimation of the exposed slope together with deposition of water vapor on the pole-facing slope, leading to an asymmetric outcrop (e.g. Pelletier, 2004 and references therein). Ice flow and katabatic winds could also play a key role in their evolution (Fisher et al., 2002; Smith et al., 2010).

In particular, Smith et al. (2010) suggest trough migration to explain the asymmetric stratigraphy of the troughs. They suggest that katabatic winds remove material from the upwind slopes of a trough and carry it to the downwind slope. However, northern troughs have linear shapes up to
hundreds of kilometers long, roughly arranged in a spiral leading out from the pole all around the cap, while LAPSs are individually restricted to a 20-km arch shape in the heart of a single region of Planum Australe. In addition, the hillocks often observed along the crests of the LAPS are not observed on the northern troughs. Thus, spatial shape and distribution considerations do not contribute to a common origin of the northern and southern scarps. Furthermore, LAPS orientations are not preferentially sunward and a number of them have their straight slope with outcrops almost parallel to longitudes, meaning that sun sublimation is not likely to have initiated them.

6.3. Tectonic scenario

On Earth, a common mode of crustal extension consists in the development of listric normal fault and their associated rollover anticline. Because of their crucial importance for commercial prospecting (hydrocarbon traps in faulted/folded strata), these structures have been studied extensively (e.g. Dula, 1991; Poblet and Bulnes, 2005; Shelton, 1984).

Listric faults can be defined as curved normal faults in which the fault surface is concave upwards, its dip angle decreasing with depth. These faults occur in extension zones where there is a main detachment fracture following a curved path that connects to a horizontal décollement. The hanging-wall may develop a syn-tectonic rollover anticline classically interpreted as a direct consequence of layer bending during hanging-wall displacement above the listric normal fault (Fig. 9). The rollover geometry is conventionally interpreted as a direct consequence of the gradual bending of the strata of the hanging-wall moving along the listric normal fault. The shift changes with a horizontal component that increases with depth to become parallel to the
décollement. It is generally accepted that the latter is a level where fluid pressure is abnormally high or where materials are weak.

The morphology of the LAPSs observed on Mars is very similar to the above listric fault formation on Earth. They show a topographic asymmetry with a steeply dipping scarp facing a gentle flexure that flattens with elevation, producing a convex morphology. The radargram cross-section confirms this similarity by revealing the subsurface layer geometry. The similarity with a terrestrial example is striking (see Fig. 10). The footwall compartment clearly shows horizontal layers that appear to intersect with the escarpment, while the hanging-wall shows a flexural geometry with a gradual downward bending of layers toward the scarp.

* Location of Fig. 9 (1 column width).

* Location of Fig. 10 (1 column width).

The LAPS morphology on Mars thus appears to correspond to the formations produced around a listric normal fault on earth. The length of the scarp may correspond to the fault slip. The fault has a strong dip angle with respect to the outcrop, which decreases with depth to reach a level that may be the ice/bedrock interface.

Figure 9C shows a more complex evolution of the system with some subsequent faulting and tilting of individual blocks (Davison, 1986; Hauge and Gray, 1996; Song and Cawood, 2001; Williams and Vann, 1987). It is similar to the surface characteristics observed on cross-sections 4a-4a’ and 4b-4b’. The presence of this rollover geometry suggests extensive regional tectonic activity related to the slow sliding of Planum Australe on a geological time scale. In some particular situations, the semi-circular topographic scarp may correspond to some pre-existing impact crater rims associated with a circular and normal faulting system. Such structural systems
favor the preferential sliding of the UL polar layered region. The implied horizontal displacement would be substantial (several kilometers, depending on the LAPS length) and mainly directed toward the quadrant of the circular histogram Fig. 3.

The rollover hypothesis can be tested by modeling the tectonic process, for instance using the area balance technique conventionally used for the restoration of a balanced cross-section (Davison, 1986; Faure and Seguret, 1988; Gibbs, 1983). The principle is based on the concept of plane strain or volume conservation of cross-sectional area. In Fig. 9B, it consists in measuring the area below the regional datum (area A) which is, in the case of volume conservation, equal to the volume displaced (area B). The latter is the product of the horizontal extension and the depth of the décollement (A = B = h × d). In such a model, it is assumed that the hanging-wall deforms by simple shear and that the footwall remains undeformed throughout the extension (White et al., 1986). The horizontal displacement (H_r in Fig. 11) can be directly inferred from the cross-sections (if the latter is parallel to the tectonic strike). Indeed, in the case of a listric fault, the deformation of the hanging-wall must be similar to simple shear deformation. Most of the shear angles used for earth materials are around 60° (Dula, 1991). Compensation to 60° of potential gap implies that the cutoff point of the hanging-wall is projected at 60° with respect to the surface of the listric fault (Fig. 11). The horizontal displacement can be calculated as: $H_r = H_a + h \cdot \tan(60°)$. In some case, due to slight curvature, the cutoff point may be difficult to locate. We chose to use a range of possibilities between a minimum position and a maximum position (Fig. 11). Thus, we can deduce a range for the depth of the décollement level which can be compared to the range of the ice/bedrock interface depth inferred by MARSIS.

* Location of Fig. 11 (1 column width).
Using the geometric and topographic data, we built various LAPS models. Table 1 and associated
Fig. 12 gives the results of the 8 profiles tested. For each profile, we calculated the minimum,
maximum and average values of the décollement level vs depth of the bedrock interface. From
Fig. 12, it appears that the depths of the décollement levels, deduced from the above models, are
in good agreement with the regional depths of the bedrock interface, except for profiles 3a-3a'
and 4b-4b’. For these last profiles, the depth of décollement is overestimated or underestimated
by about 1 km compared to the depth of the bedrock. Of course, these disagreements could be
produce by local singularities of the bedrock topography that cannot be detected by Marsis. A
byproduct of this test is the horizontal displacement Hz. It appears that the listric fault scenario
agrees with a substantial (4-5 km on the average) horizontal displacement of the ice,
corresponding approximately to 0.5 to 1% of the UL width. These values are consistent with
those usually encountered for terrestrial rollover analogs. For instance, the seismic profile
presented in Fig. 10 corresponds to a horizontal displacement of about 10 km (Zhang, 1994).

* Location of Table 1.

* Location of Fig. 12 (1 column width).

7. Discussion and conclusions

We have provided a complete description of particular polar scarps observed in the ice of UL, a
large outlying region of Planum Australe. Cross-analyses of topographic data, optical images, and
subsurface radar observations were used to derive a morphologic and stratigraphic scheme for
these scarps that we refer to as LAPS (Large asymmetric polar scarps) because of their particular
cross-section with a trough between a straight and a convex upward slope, along with outcrops on
the straight slope only. Although the scarps have a weak slope, they commonly reach more than
half the thickness of the PLD made up of 1 to 1.5 km of stacked ice. The LAPSs are numerous
and widespread over UL, but they all have similar dimensions.
Surface features on Martian PLDs are usually explained in terms of depositional and/or erosion
processes. (e.g. Fisher et al., 2002; Howard, 2000; Koutnik et al., 2005; Smith and Holt, 2010).
As an alternative process, we suggest a mechanical failure of the ice for the LAPSs origin, based
on their striking similarities in shape and size with rollover anticlines above listric normal faults.
A quantitative model, based on area balance technique, has been briefly introduced to roughly
test this hypothesis by computing some dimensions of a few basic geometries (Davison, 1986;
Faure and Seguret, 1988; Gibbs, 1983). It appears that the expected depth of the décollement
agrees with the bedrock depth inferred by Marsis for most of the LAPSs. It would be of interest
to extend this method in the future to all the LAPSs. This system is also associated with
horizontal displacement, computed to be 4-5 km on average for the LAPSs. This result agrees
with what is usually observed for terrestrial rollover analogs, and would imply a substantial
global outward sliding of the PLD. Such sliding has already been suggested by Murray et al.
(2001) based on fractures observed along with undeformed layers outcropping from Planum
Australis margins. Such peripheral fractures could be damping structures resulting from an
outward sliding from the heart of UL. The sliding of an ice sheet is a process requiring a weak
basal shear stress. Such conditions could be met in case of (i) incompetent basal sediments, (ii)
basal sediments softened by melt-water, (iii) over-loaded salt acting as lubricant (Jackson et al.,
1994), or (iv) a lower yield stress of Martian ice compared to Earth ice (Banks and Pelletier,
2008). No information is available to determine whether such sliding could occur at present day
or not.

Why the PLD exhibits an outward motion is also a major question resulting from the sliding
hypothesis. Possible explanations include (i) an active tectonic displacement of the underlying
bedrock, (ii) a simple gravitational readjustment of the accumulated ice stack, or (iii) a fluid
basal-material naturally dragged up and drained outward by the weight of the glacier.

The link between the tectonic hypothesis and the hillocks often observed along the LAPS crests
remains to be determined. The hillocks are possibly related to (i) a post-deposition of icy
materials, in which case the LAPS topography, under the dominant wind-stream, would generate
depressions and cold traps along the crests, (ii) a slight elastic rebound of the footwall after the
breaking of the ice, as is commonly observed for Terrestrial tectonic phenomenon (e.g. Weissel
and Karner, 1989; Westaway, 1992) and could be in our Martian case a natural consequence of
listric faulting, the magnitude of which holds information on the ice rheology, (ii) a rheological
response to a change in basal conditions as observed around subglacial lakes on Earth (Remy et
al., 1999).

A deeper study of possible tectonic activity in UL should be undertaken because of its
implications on the ice rheology and PLD basal conditions. In particular, it could be a macro-
expression of fundamental differences between ice-sheet behavior under Martian and Terrestrial
conditions, given that the viscosity of ice on Earth would not be expected to generate such
faulting.
Acknowledgements

The Shallow Radar (SHARAD) was provided by the Italian Space Agency and operated by the InfoCom Department, University of Rome ‘‘La Sapienza’’. Thales Alenia Space Italia is the prime contractor for SHARAD and is in charge of in-flight instruments and the SHARAD Operations Center. The Mars Reconnaissance Orbiter mission is managed by the Jet Propulsion Laboratory, California Institute of Technology, for the NASA Science Mission Directorate, Washington, DC. Lockheed Martin Space Systems, Denver, Colorado, is the prime contractor of the orbiter. The authors are grateful to the European space agency (ESA) and the French space agency (CNES) for supporting this work. We thank Pierre Beck, Harvey Harder and two anonymous reviewers for their careful reviews that greatly improved this paper.
References

American Association of Petroleum Geologists. 75, 1609-1625.

Table 1. Depth of the décollement level determined for 8 LAPS profiles.

<table>
<thead>
<tr>
<th>Profile</th>
<th>Min. value (km)</th>
<th>Max. value (km)</th>
<th>Measured area (km²)</th>
<th>Depth of décollement (km)</th>
<th>Depth of bedrock (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₃</td>
<td>hₙ</td>
<td>H₄</td>
<td>H₃</td>
<td>hₙ</td>
</tr>
<tr>
<td>1aa'</td>
<td>2.31</td>
<td>0.26</td>
<td>2.46</td>
<td>3.23</td>
<td>0.26</td>
</tr>
<tr>
<td>1bb'</td>
<td>2.98</td>
<td>0.28</td>
<td>3.14</td>
<td>3.70</td>
<td>0.27</td>
</tr>
<tr>
<td>2aa'</td>
<td>3.00</td>
<td>0.43</td>
<td>3.25</td>
<td>4.10</td>
<td>0.45</td>
</tr>
<tr>
<td>2bb'</td>
<td>3.20</td>
<td>0.35</td>
<td>3.40</td>
<td>3.80</td>
<td>0.34</td>
</tr>
<tr>
<td>3aa'</td>
<td>2.10</td>
<td>0.19</td>
<td>2.21</td>
<td>3.70</td>
<td>0.22</td>
</tr>
<tr>
<td>3bb'</td>
<td>5.70</td>
<td>0.40</td>
<td>5.93</td>
<td>8.80</td>
<td>0.40</td>
</tr>
<tr>
<td>4aa'</td>
<td>4.40</td>
<td>0.58</td>
<td>4.74</td>
<td>5.90</td>
<td>0.57</td>
</tr>
<tr>
<td>4bb'</td>
<td>3.80</td>
<td>0.55</td>
<td>4.12</td>
<td>6.90</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Figure captions

Fig. 1. Shaded topography of UL (stereographic projection with illumination from the bottom-right). The white line is the Planum Australe boundary. The bottom-right insert locates UL within the entire polar plateau. Five black boxes delimit the regions that are enlarged in Fig. 5.

Fig. 2. Arch-shaped features are indicated in bold red. The arches marked by X's are LAPSs that exhibit a convex slope with a more complex topography (see section 4.2 for details). White arrows indicate an example of neighboring LAPSs with strictly different orientations.

Fig. 3. (Top) Histogram of the LAPS azimuths. The Y-axis is the number of occurrences. A concavity facing north has an azimuth equal to 0°. A concavity parallel to a longitude and facing decreasing west-longitudes has an azimuth equals 90°. (Bottom) Circular histogram of the relative orientation of the LAPSs in a regional context. The circle border represents 25 occurrences. See section 4.1 for details.

Fig. 4. 3D view of a LAPS (located at the lower right corner of Fig. 5A). Illumination is from the upper-left. Keep in mind that the vertical scale is exaggerated by a factor of 10. The volume is 45 km x 40 km x 1800 m. The bottom gray area depicts the expected position of the bedrock detected by MARSIS (Plaut et al., 2007), taking into account the ±200 m uncertainty. Note the typical asymmetric cross-section, perpendicular to the spatial arch shape, with a straight slope.
facing a convex slope. The general behavior of the polar layers deduced from the stratigraphic
study was added to create a typical model of a LAPS cross-section. The outcrops on the straight
slope are outlined, while the downward bending of the subsurface layers is visible below the
convex slope. The question mark beneath the LAPS is a reminder that no radar data regarding the
subsurface structure are available at the corresponding location (see section 4.2 for details).
Hillocks are also present.

Fig. 5. Five enlargements (A-E) for the corresponding regions indicated in Fig.1. The background
map is the unshaded MOLA elevation map. Contour lines are separated by 50 m. Elevation color
coding and the spatial scale are the same for all boxes. The black lines locate the cross-sections
shown in Fig. 6. The three white rectangles delimit the extent of the images corresponding to the
cross-sections in Fig. 7. An example of merging craters that were not taken into account for
LAPS counting can be seen at the bottom left of box B (see section 4.1 for details).

Fig. 6. Cross-sections of some LAPSs. The cross-section locations are indicated in Fig. 5. Black
lines are the surface and gray areas depict the expected position of the bedrock as retrieved from
the interpolated MARSIS map (Plaut et al., 2007), taking into account the 200 m uncertainty.
Elevations are indicated in meters, while horizontal lengths are in kilometers. Black arrows show
hillocks when present (see section 4.3 for details). Each cross-section is represented by two
profiles: (Bottom) Vertical scale multiplied by 10 to highlight the surface shape, (Top) No
exaggeration of vertical scale to emphasize the relative flatness and thinness of the system.

Fig. 7. Cross-sections (5-5’ and 6-6’) of two LAPSs, associated with HRSC pictures (DLR/FU
Berlin/ESA) and SHARAD radargrams (NASA/ASI). Illumination is from the left. See Fig. 5 for
locations. The first radargram from the top has its vertical scale multiplied by 10. The last two have a vertical scale multiplied by 30 to emphasize the subsurface echoes. The colored lines in the bottom radargram highlight the behavior of detected subsurface layers. The blue lines are polar layered deposits and the red lines are the putative bedrock deduced by correlation between the SHARAD radargram and the MARSIS basal topography. Black arrows indicate strong echoes that are clutters generated by off-nadir surface reflections.

Fig. 8. Cross-section (7-7’) of two successive LAPs, associated with the HiRISE picture PSP_06222_1055 (NASA/JPL/University of Arizona). Illumination is from the bottom-right. See Fig. 5 for locations. Outcrops of layers occur only on the straight slope of the LAPs, especially clear on the LAP on the left. For the LAP on the right, the cross-section path cuts the end of the LAP leading to progressive fading of the outcrops.

Fig. 9. Sketches illustrating the typical geometric evolution of hanging-wall deformation in a listric normal fault system. (A) An outward stress breaks the layered material. The dip angle of the resultant fault decreases down to the level of the décollement. (B) Gradual bending of the hanging-wall leads to a rollover anticline geometry. (C) Antithetic faults can follow either directly steps (A) or (B) (modified from Song and Cawood (2001)).

Fig. 10. Seismic profile of a rollover fold associated with a listric fault in the Bohai Gulf of northern China. The vertical scale is in seconds. Note that LAPs observed on Mars are only made up of pre-tectonic deposits. This rollover fold corresponds to a horizontal displacement of about 10 km. 1 s is equivalent to 700 m on the vertical scale. Modified from Zhang (1994).
Fig. 11. Area balance for extension. Top: Relationship between the undeformed and deformed lengths. The cutoff points are the intersection between the stratigraphic boundaries and the listric fault. For a given stratigraphic horizon, we can identify a footwall cutoff point and a hanging wall cutoff point. The real horizontal extension (H_r) is the sum of the apparent horizontal extension (H_a) and the projected cutoff point position (H_c). Bottom: Because of the low curvature of the listric fault and the rollover geometry, the position of the cutoff point is uncertain. Two extreme positions are used giving two values of apparent horizontal extension (H_a). Uncertainty on the position of the bedrock is represented by a gray band.

Fig. 12. Graphic illustration of the minimum, maximum and average depth of the décollement level according to the minimum, maximum and average position of the bedrock for the 8 profiles tested.
Figure 3

Azimuth

Relative Orientation in a stereographic view
Figure 9

Hangingwall

Listric Fault

Footwall

Rollover anticline

Antithetic faults

A

B

C

regional datum

x10

d

h

A

B
Research Highlights

- The ms makes a new and complete geomorphologic description of intriguing scarps of Planum Australe, using jointly different set of data.

- This description is similar to the cross-section of a listric normal fault. This allows proposing a new hypothesis regarding the formation process of these scarps, implying a mechanical failure of the ice and a subsequent basal sliding.

- It is emphasized that this process should be study more deeply because of its implications on the ice rheology and basal conditions.