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Power series approximations for two-class generalized

processor sharing systems

Joris Walraevens∗ J.S.H. van Leeuwaarden• Onno J. Boxma◦

Abstract: We develop power series approximations for a discrete-time
queueing system with two parallel queues and one processor. If both queues
are non-empty, a customer of queue 1 is served with probability β and a cus-
tomer of queue 2 is served with probability 1 − β. If one of the queues is
empty, a customer of the other queue is served with probability 1. We first
describe the generating function U(z1, z2) of the stationary queue lengths in
terms of a functional equation, and show how to solve this using the theory
of boundary value problems. Then, we propose to use the same functional
equation to obtain a power series for U(z1, z2) in β. The first coefficient of
this power series corresponds to the priority case β = 0, which allows for an
explicit solution. All higher coefficients are expressed in terms of the prior-
ity case. Accurate approximations for the mean stationary queue lengths are
obtained from combining truncated power series and Padé approximation.

1 Introduction

Consider a discrete-time queueing model with two parallel queues that share a single processor. If both queues
are non-empty at the beginning of a slot, a customer of queue 1 is served with probability (w.p.) β and a
customer of queue 2 is served w.p. 1 − β. If one of the queues is empty, a customer of the other queue is
served w.p. 1. This type of processor sharing occurs naturally in systems where different types of customers
compete for resources. In telecommunication systems with integrated services, for instance, delay-sensitive
streaming traffic shares resources with elastic traffic. So, if we consider the traffic arriving at queue 2 to be the
delay-sensitive traffic in our model, a small β is necessary to limit the delay of this type of traffic. The exact
choice of β should depend on the requirements (in terms of delay, loss, throughput, etc.) of both types of traffic.

The number of customers arriving at queue j (j = 1, 2) during slot k is denoted by aj,k. We assume that
{aj,k, k > 0} forms a sequence of independent and identically distributed (i.i.d.) random variables. We denote
the bivariate probability generating function (pgf) of a1,k and a2,k by A(z1, z2) := E[za1,k

1 z
a2,k

2 ]. The mean
number of arrivals in queue j is denoted by λj . The customers from queue j need service for a geometrically
distributed number of slots with mean 1/μj . Since the service policy is work conserving, the stability condition
is naturally given by ρ = λ1/μ1 + λ2/μ2 < 1.

The above queueing system gives rise to a random walk on the two-dimensional lattice in the quarter plane.
The bivariate pgf of the stationary queue length distribution, denoted by U(z1, z2), can be described in terms
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of a functional equation of the type

K(z1, z2)U(z1, z2) = K00(z1, z2)U(0, 0) + K10(z1, z2)U(z1, 0) + K01(z1, z2)U(0, z2), (1)

where K, K00, K01 and K10 depend on the input functions and input parameters; cf. (3)-(6). Using certain
zero-tuples of the kernel K(z1, z2), one can determine the functions U(z1, 0) and U(0, z2) as solutions to a
Riemann boundary value problem. This approach, developed in (10; 12) and surveyed in (9), is for the model at
hand outlined in Appendix A. The obtained formal solution, however, requires considerable numerical efforts,
including the numerical determination of a conformal mapping.

Alternative approaches exist. The most general method for obtaining the stationary distribution of nearest-
neighbor random walks in the quarter plane is developed by Fayolle, Iasnogorodski and Malyshev since the
early seventies and summarized in the seminal book (13). Their method also starts from (1), but then builds
on the analytic continuation of the functions U(z1, 0) and U(0, z2). The rather ingenious continuation method,
again combined with boundary value problems, then leads to solutions for U(z1, z2) that are valid in the entire
complex plane. Also, the conformal mapping that is required for our approach in Appendix A can in many cases
be replaced by the use of Weierstrass elliptic functions, or by a Fredholm integral equation (as for Examples 1
and 2 in Subsection 5.1); for more details see (13). We choose not to pursue the approach in (13), but rather to
resort to a more numerically-oriented approach.

Other approaches for analyzing two-dimensional queueing models include the uniformization technique
(17), the compensation method (3), and the power series approximation (PSA), see for instance (6; 7; 16). For
a comparison of the approaches see (1). PSA is based on power series expansions of steady-state probabilities
as functions of a certain parameter of the system, usually the load ρ, and was introduced in (16). By using the
balance equations of the queueing system, the coefficients of the terms in the power series can be calculated
iteratively. A disadvantage of this approach is the deterioration of the accuracy when ρ increases. We propose
a novel version of PSA that differs from the conventional approach in two ways. Firstly, we construct a power
series expansion for the bivariate pgf U(z1, z2) directly from the functional equation (1). Secondly, we construct
a power series in β rather than in ρ. This makes sense, since we are primarily interested in the results of our
model for small values of β (and for all possible values of the load). Note further that the queueing system
is symmetric in β in the sense that β = 0 means priority for queue 2, and β = 1 means priority for queue
1. This symmetry is not present for the parameter ρ. Therefore, our PSA approach leads to the most accurate
approximations not only near β = 0 but also near β = 1 (by constructing the power series in 1 − β). This
symmetry furthermore helps us in the construction of good approximations for all β.

Our PSA approach can be summarized as follows. For U(z1, z2;β) := U(z1, z2) we construct the power
series

U(z1, z2;β) =
∞∑

m=0

Vm(z1, z2)βm, (2)

and we outline a procedure to determine the functions Vm iteratively. The first term V0 of this power series
corresponds to the priority case β = 0, which is well studied and allows for an explicit solution, cf. (14). The
second term V1 provides a first-order correction to the priority case for small β. All higher terms Vm can be
expressed in V0.

A final remark concerns the chosen modeling of the service times. Although deterministic service times of
exactly one slot come natural for discrete-time queueing systems, we have opted to extend it to geometrically
distributed service times. This does not complicate the analysis significantly, while it allows us to derive results
for the well-known continuous-time generalized processor sharing queueing system (see (12)) directly from the
discrete-time results. This is accomplished by letting the slot length go to zero and by scaling the arrival and
service processes.

The paper is outlined as follows. In Section 2, we construct the functional equation for U(z1, z2). An
expression for U(z1, z2) in terms of the solution of a boundary value problem is presented in Appendix A. In
Section 3 we present, as our main contribution, the PSA approach for iteratively solving the functional equation.
Approximations obtained from the PSA for the mean queue length are discussed in Section 4, along with some
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numerical validations in Section 5. In Section 6, we show how our discrete-time framework leads to results for
the continuous-time counterpart. Some conclusions are presented in Section 7.

2 The functional equation

The length of queue j at the beginning of slot k is denoted by uj,k, j = 1, 2. We assume that the customer in
service belongs to the queue it arrived in. We have the following system equations relating (u1,k+1, u2,k+1) to
(u1,k, u2,k):

• If u1,k = 0, u2,k = 0: uj,k+1 = aj,k, j = 1, 2.

• If u1,k = 0, u2,k > 0: u1,k+1 = a1,k and

u2,k+1 =

{
u2,k − 1 + a2,k, w.p. μ2,
u2,k + a2,k w.p. 1 − μ2.

• If u1,k > 0, u2,k = 0: u2,k+1 = a2,k and

u1,k+1 =

{
u1,k − 1 + a1,k, w.p. μ1,
u1,k + a1,k w.p. 1 − μ1.

• If u1,k > 0, u2,k > 0:

(u1,k+1, u2,k+1) =

⎧
⎪⎨

⎪⎩

(u1,k − 1 + a1,k, u2,k + a2,k), w.p. βμ1,
(u1,k + a1,k, u2,k − 1 + a2,k), w.p. (1 − β)μ2,
(u1,k + a1,k, u2,k + a2,k), w.p. β(1 − μ1) + (1 − β)(1 − μ2).

We define Uk(z1, z2) as E
[
z

u1,k

1 z
u2,k

2

]
, for all k, and we translate the system equations into pgfs:

Uk+1(z1, z2) =A(z1, z2)
[
Uk(0, 0) +

(
1 − μ2 +

μ2

z2

)
(Uk(0, z2) − Uk(0, 0)) +

(
1 − μ1 +

μ1

z1

)

× (Uk(z1, 0) − Uk(0, 0)) +
(

β

(
1 − μ1 +

μ1

z1

)
+ (1 − β)

(
1 − μ2 +

μ2

z2

))

× (Uk(z1, z2) − Uk(0, z2) − Uk(z1, 0) + Uk(0, 0))
]
.

In steady-state, Uk(z1, z2) and Uk+1(z1, z2) can be replaced by U(z1, z2). By letting k → ∞ in the above
equation, we find the functional equation (1) with kernel

K(z1, z2) = z1z2 − [(1 − βμ1 − (1 − β)μ2)z1z2 + (1 − β)μ2z1 + βμ1z2]A(z1, z2) (3)

and

K00(z1, z2) = [βμ2z1(z2 − 1) + (1 − β)μ1(z1 − 1)z2]A(z1, z2) (4)

K10(z1, z2) = (1 − β)[μ2z1(z2 − 1) − μ1(z1 − 1)z2]A(z1, z2) (5)

K01(z1, z2) = β[μ1(z1 − 1)z2 − μ2z1(z2 − 1)]A(z1, z2). (6)

The functional equation (1) relates U(z1, z2) to U(z1, 0), U(0, z2) and U(0, 0) and can be solved using the
theory of boundary value problems. This is done in Appendix A for a generalization of (1) that includes the
starting position and transient behavior.
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3 The power series approximation

We introduce the notation U(z1, z2;β) := U(z1, z2) to express that this bivariate pgf is a function of β. First,
we rearrange (1) as

G(z1, z2)U(z1, z2;β) − G10(z1, z2)U(z1, 0;β) − G00(z1, z2)U(0, 0;β) (7)

=β · G10(z1, z2)[U(z1, z2;β) − U(0, z2;β) − U(z1, 0;β) + U(0, 0;β)],

where

G(z1, z2) =z2 − A(z1, z2)(μ2 + (1 − μ2)z2), (8)

G10(z1, z2) =A(z1, z2)(μ2(z2 − 1) − μ1(1 − z−1
1 )z2),

G00(z1, z2) =A(z1, z2)μ1(1 − z−1
1 )z2.

Note that one of the difficulties in solving the functional equation (7) is that it comprises both boundary
functions U(0, z2;β) and U(z1, 0;β). Our approach is based on the observation that only one of the two
boundary functions appears at the left-hand side of (7).

We assume, for the moment, that U(z1, z2;β) is an analytic function of β in a neighborhood of 0. We will
argue later on that this assumption is valid; see Subsection 3.1 below and Appendix B. We can then represent
U(z1, z2;β) by the power series expansion (2) for all z1 and z2 in the unit disk. Substitution of (2) into (7)
yields

G(z1, z2)
∞∑

m=0

Vm(z1, z2)βm − G10(z1, z2)
∞∑

m=0

Vm(z1, 0)βm − G00(z1, z2)
∞∑

m=0

Vm(0, 0)βm

=G10(z1, z2)
∞∑

m=0

[Vm(z1, z2) − Vm(0, z2) − Vm(z1, 0) + Vm(0, 0)]βm+1.

Equating coefficients of corresponding powers of β at both sides results in the following functional equation
for Vm:

G(z1, z2)Vm(z1, z2) = G10(z1, z2)(Vm(z1, 0) + Pm−1(z1, z2)) + G00(z1, z2)Vm(0, 0), (9)

for all m ≥ 0, with

Pm(z1, z2) := Vm(z1, z2) − Vm(0, z2) − Vm(z1, 0) + Vm(0, 0),

for m ≥ 0 and P−1(z1, z2) := 0.
We shall now outline how to determine expressions for Vm(z1, z2). For a certain fixed m, we assume that

Pm−1(z1, z2) is known and we want to express Vm in terms of Pm−1. One can prove by a generalization of
Rouché’s theorem (2) that G(z1, z2) (equation (8)) has one zero in the unit disk of z2 for an arbitrary z1 in
the unit disk. Denote this zero by Y (z1). It is uniquely defined in the unit disk as G(z1, Y (z1)) = 0 and
|Y (z1)| < 1. The implicit function theorem then says that Y (z1) is an analytic function in the unit disk. In
fact, Y (z1) is the pgf of a random variable (see (23) for a similar example). Since U(z1, z2) is analytic for all
z1 and z2 in the unit disk, the Vm(z1, z2) are as well. Therefore, the right-hand side of (9) should equal zero for
z2 = Y (z1). This gives

Vm(z1, 0) = −G00(z1, Y (z1))
G10(z1, Y (z1))

Vm(0, 0) − Pm−1(z1, Y (z1)). (10)

Upon substituting (10) into (9) we obtain

Vm(z1, z2) =
1

G(z1, z2)

[G00(z1, z2)G10(z1, Y (z1)) − G10(z1, z2)G00(z1, Y (z1))
G10(z1, Y (z1))

4
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× Vm(0, 0) + G10(z1, z2)Qm−1(z1, z2)
]

(11)

with Q−1(z1, z2) := 0 and for m ≥ 0,

Qm(z1, z2) :=Pm(z1, z2) − Pm(z1, Y (z1))
=Vm(z1, z2) − Vm(z1, Y (z1)) − Vm(0, z2) + Vm(0, Y (z1)). (12)

The last step in finding an expression for Vm in terms of Pm−1 (or Qm−1) is the calculation of Vm(0, 0). This
constant is found from the normalization condition. Since U(1, 1;β) = 1 for all β, it follows that V0(1, 1) = 1
and Vm(1, 1) = 0 for all m > 0. Setting z1 = z2 = 1 in (11) and using that Qm(1, 1) = 0 for all m ≥ 0, we
find that V0(0, 0) = 1− ρ and Vm(0, 0) = 0 for m > 0. We finally arrive at the following relation between Vm

and Qm−1 for m > 0:

Vm(z1, z2) =
A(z1, z2)[μ2z1(z2 − 1) − μ1(z1 − 1)z2]Qm−1(z1, z2)

z1[z2 − A(z1, z2)(μ2 + (1 − μ2)z2)]
. (13)

Here,

V0(z1, z2) =
μ1μ2(1 − ρ)A(z1, z2)(z1 − 1)(z2 − Y (z1))

[z2 − A(z1, z2)(μ2 + (1 − μ2)z2)][μ1(z1 − 1)Y (z1) − μ2z1(Y (z1) − 1)]
. (14)

Hence, starting from V0 in (14), every function Vm can be determined iteratively via (13) and (12).
For β = 0, the second queue has strict priority over the first. The pgf of the queue length in this case equals

U(z1, z2; 0) = V0(z1, z2) as given in (14). This last expression is indeed the pgf in a discrete-time preemptive
resume priority queueing system with geometric service times and the first queue having low priority (see e.g.
(24)).

3.1 Analyticity of U(z1, z2, β) in a neighborhood of β = 0

Proving the analyticity of U(z1, z2, β) in a neighborhood of β = 0 is not straightforward. There are however
several (potential) approaches to tackle this problem.

A first approach is to combine the implicit function theorem with the balance equations of the Markov chain
that describes the queue lengths. The implicit function theorem basically says that if a set of N equations in
N + 1 variables (x1, , . . . , xN , y) satisfies certain conditions, and if (x(0)

1 , . . . , x
(0)
N , y(0)) is a known solution

of the set of equations, then there are unique (analytic) functions u1(y), . . . , uN (y) such that ui(y(0)) = x
(0)
i

(i = 1, . . . , N ) and (u1(y), . . . , uN (y), y) is a solution of the set of equations (see for instance (19)). In our
problem, xi would represent the mass functions of the queue lengths and y would be β. This approach is for
instance taken in (16) for a related problem. The main difficulty is that the implicit function theorem only
applies to a finite set of equations. Therefore, in (16), the proof consists of three steps: (i) construction of a
finite Markov chain from the original infinite Markov chain, (ii) use of the implicit function theorem to prove
that the stationary process of this Markov chain is analytic in the parameter and (iii) a proof that this analyticity
is carried over to the (stationary process of the) infinite Markov chain. A fourth step in our case should be a
proof that the analyticity of the probability mass function of the queue lengths of both queues is carried over to
the bivariate pgf U(z1, z2).

A second approach would be to reformulate (1) in terms of a Dirichlet problem for a circle, for which
Schwarz’s formula (see (8)) yields the solution to the functional equation in terms of an elliptic integral. Such
an integral would provide an explicit characterization, and for specific choices of A(z1, z2) one could then
investigate the analyticity of U(z1, z2, β). See also Remark 7 at the end of appendix B.

A third approach is the use of the implicit function theorem on the functional equation (1) directly. For
this problem the ‘traditional’ implicit function theorem is of no use, since we do not have a set of equations.
However, there are variants for the implicit function theorem in functional analysis (see for instance (11)).
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For our problem, the proof could go as follows: the left hand side of the functional equation (1) is a map-
ping f(β,U(z1, z2)) from the product space of two Banach spaces to another Banach space. If this mapping
satisfies certain conditions (most notably that the functional derivative D2(f)(β,U(z1, z2)) is a linear home-
omorphism) and if there is a U0(z1, z2) so that f(0, U0(z1, z2)) = 0 then there exists a unique (analytic)
function W (z1, z2, β) so that f(β,W (z1, z2, β)) = 0. In our case, we have a solution U0(z1, z2) = V0(z1, z2),
see expression (14).

Yet another approach is the one discussed in the PhD thesis of W.B. van den Hout ((22), Section 2.5). Van
den Hout first shows that the power series in, say, β as obtained in the PSA do not necessarily converge for all β
inside the unit circle, and may not even be analytic at β = 0. He then provides assumptions which are sufficient
for such analyticity in a neighbourhood of β = 0; see in particular Theorem 2.1 on p. 41 of (22). Translated into
our setting, we would have to pose conditions on A(z1, z2) such that (i) one can bound Vm(z1, z2) from above
by some V̂m(z1, z2) for all |z1| ≤ 1, |z2| ≤ 1 and for m > M for some M > 0, and (ii)

∑
m βmV̂m(z1, z2)

converges in a neighbourhood of β = 0. The latter holds in particular if the V̂m(z1, z2) decay geometrically
fast in m. The recursive expression (13) of Vm(z1, z2) in Qm−1(z1, z2), and hence in Vm−1(z1, z2), is the key
to proving that bound for Vm(z1, z2).

We have chosen the third approach to prove the analyticity of U in a neighborhood of β = 0. A sketch of
this proof is given in Appendix B.

3.2 Conservation laws

Let us first look at the special case μ = μ1 = μ2. The pgf of the total number of customers in the queue can be
found from (1) by setting z = z1 = z2:

U(z, z) =
A(z, z)μ(z − 1)(1 − ρ)

z − A(z, z)(μ + (1 − μ)z)
. (15)

Expression (15) for U(z, z) is in fact the pgf of a discrete-time MX/Geo/1 queue with the pgf of the number
of arrivals in a slot equal to A(z, z) and with geometrical service times with mean 1/μ. It is clear that the total
system behaves as such a queueing system when μ1 = μ2, since customers are served with rate μ when the
system is busy, irrespective of β. As a result, V0(z, z) = U(z, z) and Vm(z, z) = 0 for m ≥ 1, which also
follows from the PSA approach.

When μ1 �= μ2, the total system content is no longer independent of β. However, the total amount of
unfinished work expressed in number of slots does not depend on β. Since each customer of queue j present in
the system at the beginning of a slot needs a geometrically distributed number of slots service time with mean
1/μj , the pgf of the total unfinished work is given by:

U

(
μ1z

1 − (1 − μ1)z
,

μ2z

1 − (1 − μ2)z

)
=

A

(
μ1z

1 − (1 − μ1)z
,

μ2z

1 − (1 − μ2)z

)
(z − 1)U(0, 0)

z − A

(
μ1z

1 − (1 − μ1)z
,

μ2z

1 − (1 − μ2)z

) ,

which is again found from (1). So we have that

V0

(
μ1z

1 − (1 − μ1)z
,

μ2z

1 − (1 − μ2)z

)
= U

(
μ1z

1 − (1 − μ1)z
,

μ2z

1 − (1 − μ2)z

)

and

Vm

(
μ1z

1 − (1 − μ1)z
,

μ2z

1 − (1 − μ2)z

)
= 0, m > 0.

This is also found from expressions (13) and (14). We will make use of this property when approximating the
mean number of customers in the queues.

6
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4 Approximations of performance measures

We have obtained an algorithm to determine the Vm(z1, z2) for each desired m, but the actual calculation
is far from straightforward. The reason for this is that l’Hôpital’s rule has to be used multiple times, which
leads to expressions for Vm(z1, z2) that become more complex with m. For instance, determining Qm(z1, z2)
requires Vm−1(z1, Y (z1)) and Vm−1(0, z2). The application of l’Hôpital’s rule is necessary to obtain these
latter functions from (13). This problem is even more significant when calculating performance measures such
as the moments; the generating functions then have to be differentiated in 1 which again requires multiple
applications of l’Hôpital’s rule.

We restrict the remaining discussion to the mean queue length in queue j given by

E[uj ] =
∞∑

m=0

βm ∂Vm(z1, z2)
∂zj

∣∣∣
z1=z2=1

. (16)

Since Vm(μ1z/(1 − (1 − μ1)z), μ2z/(1 − (1 − μ2)z)) = 0 for m > 0, it is easily seen that

∂Vm(z1, z2)
∂z1

∣∣∣
z1=z2=1

= −μ1

μ2

∂Vm(z1, z2)
∂z2

∣∣∣
z1=z2=1

,

for m ≥ 1. Therefore, for m ≥ 1, we only need to calculate one of the two derivatives in the previous
formula. The partial derivative ∂V0(z1, z2)/∂zj |z1=z2=1, j = 1, 2 can be calculated easily from (14). We
get the results for the mean queue lengths in the low-priority and high-priority queue in the discrete-time
MX/Geo/1 preemptive resume priority queue, as discussed before.

Let us now assume to have found the exact values vj,m for ∂Vm(z1, z2)/∂zj |z1=z2=1 for j = 1, 2 and
m = 0, . . . ,M . Truncation of the power series (16) leads to

E[uj] =
M∑

m=0

vj,mβm + O(βM+1). (17)

This truncation yields accurate approximations for small β.
The problem is symmetric in β in the sense that the PSA can also be constructed in β̄ = 1− β (instead of in

β). If the vj,m are calculated for general A(z1, z2), μ1 and μ2, this second approximation can also be calculated
directly by interchanging the roles of both queues. So, if one is interested in E[uj] for β near 1, we can use that

E[uj ] =
M∑

m=0

ṽj,m(1 − β)m + O((1 − β)M+1), (18)

with ṽj,m = ∂Ṽm(z1, z2)/∂z3−j |z1=z2=1, Ṽm given by Vm (in (13)) with A(z1, z2) replaced by A(z2, z1), and
μ1 and μ2 interchanged.

Truncation yields approximations which are accurate near 0 or 1. In fact they provide the exact 0- to M -th
order derivatives in 0 or 1. Padé approximants replace the power series (16) by a rational functional. We can
hence approximate E[uj] by

[L/N ]E[uj ](β) =
∑L

l=0 uj,lβ
l

∑N
n=0 wj,nβn

, (19)

with L, N and the coefficients uj,l and wj,n chosen such that

[L/N ]E[uj ](β) =
M∑

m=0

vj,mβm + O(βM+1),

[L/N ]E[uj ](β) =
M∑

m=0

ṽj,m(1 − β)m + O((1 − β)M+1),

7
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i.e., such that the approximant has the correct derivatives up to order M in both 0 and 1. These 2(M + 1)
derivatives to be matched by expression (19) lead to a set of 2(M + 1) equations with L + N + 1 unknowns
(coefficients uj,l (l = 0, . . . , L) and wj,n (n = 1, . . . , N ); we use the normalization wj,0 = 1). Every choice of
(L,N) with L + N = 2M + 1 thus leads in general to a unique solution for the uj,l (l = 0, . . . , L) and wj,n

(n = 1, . . . , N ) in terms of vj,m and ṽj,m, m = 0, . . . ,M . If one is interested in approximate formulas which
are accurate for the whole range [0, 1] of β, the generalized Padé approximants are the best choice. Note that
the [2M + 1/0]E[uj ] approximant is a polynomial, like the truncated version of the PSAs. We have observed
that the [0/2M + 1]E[uj ] approximant is usually among the most accurate ones (see also Section 5). Note
though that these Padé approximants should be used carefully, since the denominators can introduce poles in
the approximation.

Remark 1. (First-order correction) The second term V1 in the PSA equals the difference between the model
described in this paper and the preemptive resume priority queue, for β going to 0. We find the following limits:

lim
β→0

U(z1, z2;β) − U(z1, z2; 0)
β

=
A(z1, z2)[μ2z1(z2 − 1) − μ1(z1 − 1)z2]

z1[z2 − A(z1, z2)(μ2 + (1 − μ2)z2)]
× [U(z1, z2; 0) − U(z1, Y (z1); 0) − U(0, z2; 0) + U(0, Y (z1); 0)]

lim
β→0

E[u2] − E[u2|β = 0]
β

=
E[u2|β = 0] − E[u21u1=0|β = 0]

1 − ρ2
(20)

lim
β→0

E[u1] − E[u1|β = 0]
β

= − μ1

μ2

E[u2|β = 0] − E[u21u1=0|β = 0]
1 − ρ2

,

with 1X the indicator function of the event X. These limits are important as they give first-order correction
terms to the priority results for a near-priority queueing system.

5 Numerical examples

We now compare the PSA approximations to simulation results and investigate the influence of some parameters
on the mean queue lengths. Throughout this section, we consider deterministic service times of one slot. We
consider a generalized processor sharing discipline as analysed in the paper. Thus, when both queues are non-
empty at the beginning of a slot, a customer of queue 1 (queue 2) is served w.p. β (1 − β) during that slot.
If one of the queues is empty, the other queue is served. Because of the work-conservation property, we can
concentrate on the mean queue length of only one queue, say queue 2.

5.1 Validation of the approximations

Example 1. Assume the number of arrivals to both queues and the total number of arrivals in a slot to be
binomially distributed. More precisely, assume the following bivariate pgf of the number of class-1 and class-2
arrivals during a slot:

A(z1, z2) =
(

1 +
λ1

2
(z1 − 1) +

λ2

2
(z2 − 1)

)2

. (21)

Figure 1 depicts the approximations (17) and (18) as a function of β for increasing M . The arrival rates λ1

and λ2 are 0.7 and 0.1. We have simulated the system for β = 0, 0.1, . . . , 1 (crosses in the figure). The horizon-
tal lines (M = 0) equal the values for the priority queues (β = 0 and β = 1 respectively). Figure 1 confirms
that the PSA approximations are indeed accurate for β near 0 and near 1 and that more terms provide larger
regions for β where the accuracy is good. However, as can also be seen from this figure, the approximations
deteriorate (rapidly) for β away from 0 and 1. This can be dealt with using the Padé approximants introduced
in Section 4. Figure 2 depicts the Padé approximants (19) for the same example as in Figure 1 and for M = 3.
It displays the approximants for N = 0, 2, 5 and 7 (and L = 2M + 1 − N ).

8
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Figure 1: Truncation approximations of E[u2] for binomially distributed arrival batch sizes with arrival rates
λ1 = 0.7 and λ2 = 0.1.
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Figure 2: Padé approximations of E[u2] for binomially distributed arrival batch sizes with arrival rates λ1 = 0.7
and λ2 = 0.1.

Example 2. Assume the arrivals of both classes to be a sequence of two independent geometrically distributed
random variables with means λ1 and λ2 respectively, i.e.

A(z1, z2) =
1 − λ1

1 − λ1z1

1 − λ2

1 − λ2z2
.

We again concentrate on queue 2. Figure 3 depicts the mean class-2 content as a function of β for λ1 = 0.7
and λ2 = 0.1. The same conclusions as for Figure 1 can be drawn, albeit that it is more pronounced that the
PSA for β works best for small β and the one for β̄ = 1 − β for β near 1. We can again construct similar Padé
approximants.

9
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Figure 3: Truncation approximations of E[u2] for geometrically distributed arrival batch sizes with means
λ1 = 0.7 and λ2 = 0.1.

λ
α

0.1 0.3 0.5 0.7 0.9

0.1 4.8334e-4 1.1755e-3 1.4608e-3 1.2829e-3 5.7582e-4
0.2 2.0833e-3 5.2967e-3 6.9146e-3 6.4153e-3 3.0622e-3
0.3 5.0689e-3 1.3516e-2 1.8668e-2 1.8533e-2 9.6076e-3
0.4 9.7846e-3 2.7456e-2 4.0439e-2 4.3625e-2 2.5293e-2
0.5 1.6678e-2 4.9428e-2 7.8298e-2 9.3511e-2 6.3182e-2
0.6 2.6339e-2 8.2767e-2 1.4231e-1 1.9231e-1 1.6054e-1
0.7 3.9567e-2 1.3237e-1 2.4944e-1 3.9111e-1 4.3844e-1
0.8 5.7460e-2 2.0558e-1 4.2880e-1 8.0254e-1 1.3614e+0
0.9 8.1576e-2 3.1367e-1 7.3150e-1 1.6875e+0 5.1812e+0

Table 1: First-order corrections for near-priority queues

5.2 Influence of input parameters on the mean system content for near-priority systems

Again consider the example of the binomially distributed arrival batch sizes (Expression (21)) and service
times of one slot. The total arrival rate is given by λ = λ1 + λ2 and we define the fraction of class-2 arrivals
α := λ2/λ. Table 1 displays some values of the first-order correction term (the first derivative of the mean class-
2 queue content in β = 0, see Formula (20)) for particular values of λ and α. Some interesting observations can
be made: Firstly, the correction term increases with increasing load for a constant value of α. This is expected
since for high loads the number of customers in the class-1 buffer is usually non-zero, thus sharing the server
with this buffer, even for a small percentage of the time can have a large influence. For small arrival rates,
one of the buffers is almost always empty and the service discipline does not play an important role. A second
observation is that for a given arrival rate the correction term first increases with α, reaches a maximum and
then decreases. In α = 0 and α = 1, the correction term equals 0.

Similar conclusions can be drawn from Table 2, where we show the relative first-order correction

∂V1(z1, z2)
∂z1

/
∂V0(z1, z2)

∂z1

∣∣∣∣∣
z1=z2=1

.
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λ
α

0.1 0.3 0.5 0.7 0.9

0.1 4.8213e-2 3.8883e-2 2.8836e-2 1.7989e-2 6.2436e-3
0.2 1.0363e-1 8.6892e-2 6.7277e-2 4.4032e-2 1.6127e-2
0.3 1.6767e-1 1.4656e-1 1.1920e-1 8.2751e-2 3.2572e-2
0.4 2.4209e-1 2.2126e-1 1.9030e-1 1.4200e-1 6.1596e-2
0.5 3.2922e-1 3.1560e-1 2.8910e-1 2.3548e-1 1.1656e-1
0.6 4.3210e-1 4.3589e-1 4.2847e-1 3.8770e-1 2.2984e-1
0.7 5.5480e-1 5.9106e-1 6.2813e-1 6.4360e-1 4.8814e-1
0.8 7.0296e-1 7.9392e-1 9.1885e-1 1.0872e+0 1.1509e+0
0.9 8.8453e-1 1.0634e+0 1.3495e+0 1.8789e+0 3.0964e+0

Table 2: Relative first-order corrections for near-priority queues

This is a measure for the relative effect of giving a small share of the processor’s time to the class-1 queue
in the priority system. Here, the relative first-order correction does not go to 0 for α → 0 (in fact it tends to
λ/(2 − λ) for this arrival process). The reason is that the mean class-2 queue length in the priority case equals
0 for α = 0. For low loads, the value of the relative first-order correction term is maximal for α = 0 and is a
strictly decreasing function in α. For high loads, a maximum is reached for some α > 0.

We can conclude that an increase of the total arrival rate not only results in an absolute increase of the first-
order correction term, but also in an increase relative to the priority result. A GPS schedule has more impact
when the arrival rate is high. Our results are therefore especially useful for these high arrival rates as they give a
significant first-order (and even higher-order) correction term(s) to the priority result. The examples also show
that these correction terms are sensitive to the parameters of the system, which in turn shows the necessity of
the obtained formulas.

6 Continuous-time results

We now sketch how the discrete-time results lead to results for the continuous-time generalized processor
sharing system. This continuous-time model is the most prominent subclass of the model in (12), there called
coupled processors; see also (18) for an analysis of the symmetric coupled processor model and see (20) for an
approximate analysis of “cycle stealing” in coupled processors.

Assume that arrivals occur to both queues according to independent Poisson processes with arrival rates λ∗
1

and λ∗
2 respectively. The service times of customers in queue j are exponentially distributed with mean 1/μ∗

j .
The processor is shared in the following way: when both queues are non-empty, queue 1 is served with rate β
(0 ≤ β ≤ 1 without loss of generality) while queue 2 is served with rate 1 − β. When one of both queues is
empty, the other queue is served with rate 1.

We outline in this section that we can find the distribution of the number of customers at a random point
in time from the results of the discrete-time case. We therefore show that the pgfs of the numbers of arrivals
and the service times as well as the functional equation (7) go to their continuous-time counterparts. Similar
approaches were taken in (4; 21).

Let us divide the time axis into equal intervals of length Δ. We first define arrival and service processes in
the discrete-time case that scale to the above continuous-time arrival and service processes. Define therefore

μj =μ∗
jΔ, (22)

A(z1, z2) =(1 − λ∗
1Δ + λ∗

1Δz1)(1 − λ∗
2Δ + λ∗

2Δz2). (23)

The service times of class-j expressed in number of slots are geometrically distributed with parameter μj , so

11
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their pgf is given by

Sj(z) =
μ∗

jΔ
1 − (1 − μ∗

jΔ)z
. (24)

The Laplace-Stieltjes transform of the service times in continuous time for the slot lengths going to zero equals

S∗
j (s) = lim

Δ→0
Sj(e−sΔ) =

μ∗
j

s + μ∗
j

. (25)

The interarrival times between non-empty batches in the discrete-time model are geometrically distributed
with parameter A(0, 0), i.e., their pgf is given by

I(z) =
(1 − A(0, 0))z
1 − A(0, 0)z

,

with A(0, 0) = 1 − (λ∗
1 + λ∗

2)Δ + O(Δ2). Similarly as for the service times, we get that the Laplace-Stieltjes
transform of the interarrival times in continuous time for the slot length going to zero is exponential with mean
1/(λ∗

1 + λ∗
2). The pgf of the number of customers arriving in a batch is then given by

A(z1, z2) − A(0, 0)
1 − A(0, 0)

=
(λ∗

1z1 + λ∗
2z2)Δ + O(Δ2)

(λ∗
1 + λ∗

2)Δ + O(Δ2)
.

Hence, for Δ going to zero, the interarrival times between batches are exponentially distributed with mean
1/(λ∗

1 + λ∗
2) and a batch consists of a customer arrival in the first queue with probability λ∗

1/(λ
∗
1 + λ∗

2) or a
customer arrival in the second queue with probability λ∗

2/(λ
∗
1 + λ∗

2). We thus conclude that the arrival process
into both queues converges to two independent Poisson processes with parameters λ∗

1 and λ∗
2.

With μj and A(z1, z2) as in (22)-(23), the discrete-time arrival and service processes converge to Poisson
arrivals and exponential service times for Δ → 0. Since β is the probability that a class-1 customer is served in
a slot, this is the fraction of time class-1 customers are served when both queues are non-empty, in the limit for
Δ going to zero. When we substitute μj and A(z1, z2) by (22)-(23) in the functional equation (7), we arrive at

F1(z1, z2)Δ + F2(z1, z2)Δ2 + F3(z1, z2)Δ3 = 0, (26)

with

F1(z1, z2) = K∗(z1, z2)U(z1, z2) − K∗
00(z1, z2)U(0, 0) − K∗

10(z1, z2)U(z1, 0) − K∗
01(z1, z2)U(0, z2)

and

K∗(z1, z2) =(1 − β)μ1(z1 − 1)z2 + βμ2z1(z2 − 1) − z1z2(λ1(z1 − 1) − λ2(z2 − 1))
K∗

00(z1, z2) =βμ1(z1 − 1)z2 + (1 − β)μ2z1(z2 − 1)
K∗

10(z1, z2) =β(μ2z1(z2 − 1) − μ1(z1 − 1)z2)
K∗

01(z1, z2) =(1 − β)(μ1(z1 − 1)z2 − μ2z1(z2 − 1)).

The precise expressions of F2(z1, z2) and F3(z1, z2) are not important for the further discussion. It suffices
to know that - like F1(z1, z2) - they are linear functions in U(z1, z2), U(z1, 0), U(0, z2) and U(0, 0), with
coefficients analytic in the whole complex plane. Therefore, the three functions Fi are analytic at least in the
region |z1| < 1 and |z2| < 1. For Δ → 0 the first term in (26) is dominant. The functional equation thus
converges to

F1(z1, z2) = 0 (27)

for Δ → 0. This is indeed the functional equation of the continuous-time GPS system described in (12). Since
there is only one normalized solution of this functional equation inside the unit disk, the solution described in

12
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this paper for the discrete-time functional equation evolves to the solution of (27) for Δ → 0 and we can thus
directly find approximations for the continuous-time GPS queueing system from the results in sections 3-4.

Note that we can also find results for the continuous-time GPS system with batch arrivals, by choosing a
less restrictive A(z1, z2). Our discrete-time results can furthermore show the influence of discretizing time on
the performance measures. When a continuous-time model is used to approximate a discrete-time model, our
results can also quantify the error that is introduced, as a function of the slot length.

7 Conclusions

We studied a discrete-time two-queue Generalized Processor Sharing system in this paper. When customers are
present in both queues, the queues are served with probability β and 1 − β respectively. We developed a novel
technique based on Power Series Approximations of the joint probability generating function in the parameter
β. The coefficients of the power terms are iteratively calculated starting from the constant term. This constant
term is the joint pgf of a priority queue (β = 0).

By truncating the power series, we find good approximations for the means of the numbers of customers
in both queues, for small β and, by symmetry, for β near 1. Interpolation techniques lead to more accurate
approximations. A major advantage of the technique over the standard boundary value problem solution tech-
nique (described in the appendix) is that the formulas for say the mean queue lengths are explicit in the input
parameters and require no additional numerical effort. Therefore they can be important in for instance control
problems, where an optimal β is to be found given the delay requirements of both types of traffic.

The developed technique is promising to deal in general with the analysis of queueing systems with some
sort of coupling. Examples are queues with a Packet-based Generalized Processor Sharing scheduling and a
tandem queue where the two queues share a single processor. Another interesting topic is the Generalized
Processor Sharing queue with three (or more) classes. The theory of boundary value problems has not been
developed for problems with more than two dimensions.

A Solution to the boundary value problem

In this appendix, we present the solution to a more general form of the functional equation (1) in terms of
a Riemann-Hilbert boundary value problem. Introducing Uk;x,y(z1, z2) := Uk(z1, z2) with initial condition
u1,0 = x, u2,0 = y and

Φx,y(r, z1, z2) :=
∞∑

k=0

rkUk;x,y(z1, z2), (28)

we have for |r| < 1, |z1| ≤ 1, |z2| ≤ 1:

[z1z2 − rψ(z1, z2)]Φx,y(r, z1, z2) =rA(z1, z2){[βμ2z1(z2 − 1) + (1 − β)μ1(z1 − 1)z2]Φx,y(r, 0, 0)
+ (1 − β)[μ2z1(z2 − 1) − μ1(z1 − 1)z2]Φx,y(r, z1, 0)

+ β[μ1(z1 − 1)z2 − μ2z1(z2 − 1)]Φx,y(r, 0, z2)} + zx+1
1 zy+1

2 , (29)

with
ψ(z1, z2) := A(z1, z2)[(1 − βμ1 − (1 − β)μ2)z1z2 + (1 − β)μ2z1 + βμ1z2]. (30)

It should be noticed that ψ(z1, z2) is the generating function of a pair of non-negative, integer-valued random
variables. Formula (29) has the following global form:

K(r, z1, z2)Φx,y(r, z1, z2) (31)

=rK00(z1, z2)Φx,y(r, 0, 0) + rK10(z1, z2)Φx,y(r, z1, 0) + rK01(z1, z2)Φx,y(r, 0, z2) + zx+1
1 zy+1

2 ,

with the kernel K(r, z1, z2) being defined as

K(r, z1, z2) := z1z2 − rψ(z1, z2). (32)

13
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Random walks on the two-dimensional lattice in the first quadrant of the plane that give rise to functional
equations and kernels of the type as in (31) and (32) are discussed by Cohen (9). In such random walks, the
steps to the West, South-West and South are at most one. In (9), it is sketched how this class of random walks,
typically arising in queueing models, can be analysed via a transformation to a two-dimensional boundary
value problem of mathematical physics, like a Riemann or Riemann-Hilbert problem. In Part II of (10), a much
more detailed exposition of this approach is presented, for a slightly more restricted class of two-dimensional
random walks. The kernel of the random walk that is studied there contains the kernel that features in (32).
In this appendix, we sketch the way in which this boundary value approach can be used to determine the
generating function Φx,y(r, z1, z2) of the two-dimensional queueing problem that was presented in Section 1.
We distinguish between four steps.

A.1 The zerotuples of the kernel

Obviously, the generating function Φx,y(r, z1, z2) should be finite for all zerotuples (ẑ1, ẑ2) of K(r, z1, z2) with
|ẑ1| ≤ 1, |ẑ2| ≤ 1.
Let

A(r) := {(z1, z2) : K(r, z1, z2) = 0, |z1| ≤ 1, |z2| ≤ 1}.

Then for all (ẑ1, ẑ2) ∈ A, one must require that

rK00(ẑ1, ẑ2)Φx,y(r, 0, 0) + rK10(ẑ1, ẑ2)Φx,y(r, ẑ1, 0) + rK01(ẑ1, ẑ2)Φx,y(r, 0, ẑ2) + ẑx+1
1 ẑy+1

2 = 0. (33)

If one can construct functions Φx,y(r, z, 0) and Φx,y(r, 0, z) which are regular in |z| < 1, continuous in |z| ≤ 1,
and satisfy (33) for every zerotuple (ẑ1, ẑ2) ∈ A, then Φxy(r, z1, z2) follows from (29) and the problem is
solved. As outlined in Section 1 of (9), one may restrict oneself to consideration of a suitable subset S1 × S2

of A. Indeed, if there exist curves S1 and S2, with S1 ⊂ {z1 : |z1| ≤ 1} and S2 ⊂ {z2 : |z2| ≤ 1}, and a
one-to-one map z1 = ω(z2) from S2 to S1 such that (ω(ẑ2), ẑ2) is a zerotuple of K(r, z1, z2) for all ẑ2 ∈ S2,
then the following holds. If functions Φx,y(r, z, 0) and Φx,y(r, 0, z) can be constructed that are regular for
|z| < 1, continuous for |z| ≤ 1, and that satisfy (33) for all zerotuples (ẑ1, ẑ2) with ẑ1 = ω(ẑ2), ẑ2 ∈ S2, then
by analytic continuation these Φx,y(r, z, 0) and Φx,y(r, 0, z) satisfy (33) for all zerotuples (ẑ1, ẑ2) of A (9).

A.2 A suitable set of zerotuples

Let us now consider the construction of the curves S1 and S2. While there are many possible choices here, it is
important to make a choice that leads to tractable numerical techniques for obtaining the analytic continuations
mentioned above.

In (10), the following choice is proposed. Let s be traversing the unit circle |s| = 1. Let z1 = g(r, s)s and
z2 = g(r, s)s−1, with g such that it makes the kernel zero:

K(r, g(r, s)s, g(r, s)s−1) = 0.

So in our case, with the kernel given by (32), g should satisfy

g2 = rψ(gs, gs−1). (34)

Rouché’s theorem implies that there are exactly two zeros of this equation satisfying |g| ≤ 1. In fact, in our
case one of these two zeros is zero, due to ψ(0, 0) = 0. Now take

S1(r) := {z1 : z1 = g(r, s)s, |s| = 1},

S2(r) := {z2 : z2 = g(r, s)s−1, |s| = 1}.

14
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A.3 Preparing the ground for a Riemann boundary value problem

We next want to construct Φx,y(r, z, 0) and Φx,y(r, 0, z) that are regular in |z| < 1, continuous in |z| ≤ 1,
and that satisfy (33) for all (ẑ1, ẑ2) with ẑ1 = ω(ẑ2), ẑ2 ∈ S2. To accomplish this, one may solve a Riemann
boundary value problem; see, e.g., Gakhov (14) for an extensive discussion of such boundary value problems,
that aim to determine functions which are regular inside respectively outside a certain contour and satisfy a
particular relation on that contour – the boundary. To be able to formulate such a boundary value problem, we
need one more step. One can show (cf. (10), Part II) that for the curves S1(r) and S2(r) there exists a unique
simple closed contour L(r) in the p-plane, and functions z1(r, p) and z2(r, p) such that the following holds:

(i) z1(r, p) : L+(r) → S+
1 (r) is regular and univalent for p ∈ L+(r),

(ii) z2(r, p) : L−(r) → S+
2 (r) is regular and univalent for p ∈ L−(r),

(iii) z1(r, p) = ω(z2(r, p)) for p ∈ L(r), ω(·) being a one-to-one map from S2(r) onto S1(r).

Here C+ and C− denote the interior and exterior of a closed contour C , and univalent means that z1(r, p1) �=
z1(r, p2) for p1 �= p2. Hence (i) and (ii) can be reformulated as:

• z1(r, p) is a conformal mapping of L+(r) into S+
1 (r),

• z2(r, p) is a conformal mapping of L−(r) into S+
2 (r).

The curve L(r) can be determined by solving a particular integral equation, cf. Section II.3.6 of (10).

A.4 The Riemann boundary value problem

Since z1(r, p) is regular and univalent for p ∈ L+(r) and z2(r, p) is regular and univalent for p ∈ L−(r),
Φx,y(r, z1(r, p), 0) also is a regular function for p ∈ L+(r) and continuous for p ∈ L+(r)

⋃
L(r), and simi-

larly Φx,y(r, 0, z2(r, p)) is a regular function for p ∈ L−(r) and continuous for p ∈ L−(r)
⋃

L(r). We are now
ready to formulate a standard Riemann-type boundary value problem:

Determine two functions Ω1(r, p) := Φx,y(r, z1(r, p), 0), p ∈ L+(r)
⋃

L(r), and
Ω2(r, p) := Φx,y(r, 0, z2(r, p)), p ∈ L−(r)

⋃
L(r), such that Ω1(r, p) is regular for p ∈ L+(r) and continuous

for p ∈ L+(r)
⋃

L(r), Ω2(r, p) is regular for p ∈ L−(r) and continuous for p ∈ L−(r)
⋃

L(r), Ω1(r, 0) =
Φx,y(r, 0, 0), lim|p|→∞Ω2(r, p) = Φx,y(r, 0, 0), and on the boundary L(r), the functions Ω1(r, p) and Ω2(r, p)
satisfy the relation (with appropriate functions H(r, p) and h(r, p), cf. (31)):

Ω1(r, p) = H(r, p)Ω2(r, p) + h(r, p), p ∈ L(r). (35)

The solution of this boundary value problem may be found in (14), see also Section I.2 of (10).
As observed before, now that Φx,y(r, z1, 0) and Φx,y(r, 0, z2) are found for z1 ∈ S+

1 (r) and z2 ∈ S+
2 (r),

one obtains Φx,y(r, z1, z2) first for z1 ∈ S+
1 (r) and z2 ∈ S+

2 (r), and finally for |z1| ≤ 1, |z2| ≤ 1 via analytic
continuation.

We end this appendix with several remarks.

Remark 2. It should be noticed that the initial conditions u1,0 = x, u2,0 = y occur in the function h(r, p) in
(35). Further observe that, if the initial state is a set of random variables (u1,0, u2,0) = (X,Y ), with bivariate
pgf U0(z1, z2) =

∑∞
x=0

∑∞
y=0 P (X = x, Y = y)zx

1 zy
2 , then the last term in the right-hand side of (29) is

replaced by z1z2U0(z1, z2). This affects h(r, p), but not the solution approach.

Remark 3. The kernel K(r, z1, z2) has exactly the same form as the kernel that is considered throughout Part
II of (10), but the behaviour of the random walk in the interior of the first quadrant, that we consider, slightly
deviates in the interior from the behaviour of the random walk that is being considered in that Part II. That
implies that a slightly different Riemann boundary value problem results.
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Remark 4. It is easily seen that ψ(0, 0) = 0; indeed, at most one customer is served per time slot, and hence
random walk transitions to the South-West are not possible. In Sections II.3.10-12 of (10), kernels with this
special feature are treated in detail. It turns out that now S1(r) and S2(r) are traversed twice if s traverses
the unit circle |s| = 1 once. Furthermore, one has to distinguish between the cases d

dz ψ(z, 0)z=0 > (<,=)
d
dz ψ(0, z)z=0, as these cases lead to different positions of the point z = 0 w.r.t. the contours S1(r) and S2(r),
and consequently to slightly different analytic treatments. For the sake of exposition, let us restrict ourselves
to the symmetric case that the random variables a1,k and a2,k are exchangeable, i.e., P (a1,k = i, a2,k =
j) = P (a1,k = j, a2,k = i) for all i, j = 0, 1, . . . , and that μ1 = μ2 = 1 and β = 1

2 . Then ψ(z1, z2) =
A(z1, z2)(z1 + z2)/2 and d

dz ψ(z, 0)z=0 = d
dz ψ(0, z)z=0, leading to z1 = 0 ∈ S1(r) and z2 = 0 ∈ S2(r). The

equation determining g(r, s) now is (cf. (34)):

g − rA(gs, gs−1)
s + s−1

2
= 0.

The contour L(r) in this symmetric case turns out to be a circle, with center at 1
2 and radius 1

2 (see Section
II.3.12 of (10)). If, moreover, only P (a1,k = a2,k = 0) = A0,0, P (a1,k = 1, a2,k = 0) = A1,0, P (a1,k =
0, a2,k = 1) = A0,1 and P (a1,k = 1, a2,k = 1) = A1,1 are possibly non-zero, then the equation determining
g(r, s) reduces to a quadratic equation:

g − r[A0,0 + A1,0g(s + s−1) + A1,1g
2]

s + s−1

2
= 0,

from which the contours S1(r) and S2(r) are easily determined.

Remark 5. If the steady-state distribution of the joint queue-length distribution in our model exists, then its
generating function Φ(z1, z2) can be determined via Φ(z1, z2) = limr→1(1 − r)Φx,y(r, z1, z2). In Section
II.3.9 of (10), the details of this approach are presented; in Section II.2.16, for the case of a symmetric two-
dimensional random walk, it is outlined how one can directly handle the steady-state case. Here one considers
the kernel K(1, z1, z2), identifying a contour L(1) and zeros (z1(1, p), z2(1, p)) of the kernel, and formulating
a Riemann boundary value problem for Φ(z1(1, p), 0) and Φ(0, z2(1, p)) with boundary L(1).

Remark 6. In order to determine performance measures like the mean steady-state queue lengths, one has to
evaluate quantities like d

dz Φ(z, 1)z=1. Using our approach, this requires the numerical determination of L(1),
and of (the analytic continuation of) the conformal mappings from S1(r) and S2(r), respectively, to L(r).
Finally, a numerical analysis is required of the singular contour integrals that specify Φ(z, 0) and Φ(0, z). We
refer to Part IV of (10) for an extensive discussion of such numerical aspects. While it turns out to be possible to
obtain numerical values of such performance measures, the analysis is quite involved. We have hence decided
to concentrate in this paper on an alternative approach for the steady-state analysis of the queueing model under
consideration – a method that has several novel aspects, and that allows us to obtain numerical values in a more
straightforward manner. Finally, let us mention that these numerical problems could be circumvented by using
the approach in (13) that strongly relies on analytic continuations, and that makes use of Weierstrass elliptic
functions or a Fredholm integral equation instead of a conformal mapping.

B Proof of analyticity of U in a neighborhood of β = 0

In this appendix, we argue that U(z1, z2;β) is an analytic function in a neighborhood of β = 0. We therefore
use the implicit function theorem for Banach spaces (see theorem (10.2.3), page 272 in (11)), stated first.

Lemma 1 (An implicit function theorem for Banach spaces). Let E, F , G be three Banach spaces, f a p-
times continuously differentiable mapping of an open subset A of E × F into G. Let (x0, y0) be a point of A
such that f(x0, y0) = 0 and that the partial derivative D2f(x0, y0) is a linear homeomorphism of F onto G.
Then there is an open neighborhood Y0 of x0 in E such that, for every open connected neighborhood Y of x0,
contained in Y0, there is a unique continuous mapping u of Y into F such that u(x0) = y0, (x, u(x)) ∈ A and
f(x, u(x)) = 0 for any x ∈ Y . Furthermore, u is p-times continuously differentiable in Y .
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The proof of analyticity of U(z1, z2;β) in a neighborhood of β = 0 evolves as follows. First, define B2

as the Banach space comprising all bivariate analytic bounded functions in D2, with D the open complex unit
disk. Similarly, define B3 as the Banach space comprising all trivariate analytic bounded functions in D3, that
have a limit of 0 for the first two arguments going to 1.

Define E, F and G in Lemma 1 as E = C, F = B2 and G = B3 × C.
We define the mapping f as:

f(β,U) =[K(z1, z2, β)U(z1, z2) − K00(z1, z2, β)U(0, 0)
− K10(z1, z2, β)U(z1, 0) − K01(z1, z2, β)U(0, z2), U(1, 1) − 1]

with K, K00, K10 and K01 given in (3)-(6).
This mapping is defined from an open subset A of E ×F to G, where A includes the point (0, V0) (V0 is the

pgf of the system content of both classes for the HOL priority scheduling, i.e. for β = 0).
Since K, K00, K10 and K01 are bounded analytic functions in D3, and since f is affine in U and β, it is

easily seen that f is p-times continuously differentiable for all p. We further observe that

f(0, V0) = [0, 0].

Since f is affine in U , the (Banach space) derivative d2f(0, V0) (see (11), section 8 for more explanation on
differential calculus in Banach spaces) equals

d2f(0, V0)(U) = [K(z1, z2, 0)U(z1, z2) − K00(z1, z2, 0)U(0, 0) − K10(z1, z2, 0)U(z1, 0), U(1, 1)].

We now prove that this mapping is a homeomorphism in four successive steps, namely that (i) it is continuous,
that the mapping is (ii) injective and (iii) surjective (and thus bijective) and that (iv) the inverse (d2f(0, V0))−1

is a continuous mapping.

• First of all, it is clear that d2f(0, V0) is a continuous mapping for the same reasons as that the mapping f
itself is continuous.

• Assume that d2f(0, V0)(U1) equals d2f(0, V0)(U2) for given U1 and U2. Then

K(z1, z2, 0)(U1(z1, z2) − U2(z1, z2)) − K00(z1, z2, 0)(U1(0, 0) − U2(0, 0))
− K10(z1, z2, 0)(U1(z1, 0) − U2(z1, 0)) = 0,

U1(1, 1) − U2(1, 1) = 0.

Or in other words,

f(0, U1 − U2) = (0,−1).

However, this functional equation has the zero-solution as a unique solution (see Theorem 3.3 in (5)),
and as a result U1 = U2 and d2f(0, V0) is injective.

• To prove that the function d2f(0, V0) is surjective, we solve the equation d2f(0, V0)(U) = (g, c) with g
a bivariate analytic bounded function in D2 with limit 0 for its arguments going to 1, and c a complex
number. We thus solve

K(z1, z2, 0)U(z1, z2) − K00(z1, z2, 0)U(0, 0) − K10(z1, z2, 0)U(z1, 0) = g(z1, z2),
U(1, 1) = c.

This functional equation has the same form as functional equation (9), and the same technique can be
applied, leading to the solution

U(z1, z2) =

[(
1 − λ1

μ1
− λ2

μ2

)
c − g(1)(1, 1)

μ1
− g(2)(1, 1)

μ2

]

17



QUES9188_source.tex; 21/07/2010; 15:23 p. 18

× K00(z1, z2, 0)K10(z1, Y (z1), 0) − K10(z1, z2, 0)K00(z1, Y (z1), 0)
K10(z1, Y (z1), 0)K(z1, z2, 0)

+
g(z1, z2)

K(z1, z2, 0)
− K10(z1, z2, 0)g(z1, Y (z1))

K10(z1, Y (z1), 0)K(z1, z2, 0)
,

with g(j)(1, 1) = ∂g(z1, z2)/∂zj |z1=z2=1 and

Y (z1) =
A(z1, Y (z1))μ2

(1 − A(z1, Y (z1))(1 − μ2)
.

• The U obtained in the previous bullet is (d2f(0, V0))−1. This mapping is easily seen to be continuous.

We conclude that the mapping U → d2f(0, V0)(U) is a linear homeomorphism. It thus follows from Lemma 1
that U(z1, z2;β), as defined in the paper, is p-times differentiable at β = 0, and this for all p.

Remark 7. Although the particular two-dimensional process in this appendix, and hence our Riemann-Hilbert
problem, is a special case of the more general class of problems treated in (10), there is an alternate approach to
solving the functional equation (31) by exploiting the special structure of our problem. From (31) we see that

βK10(z1, z2) + (1 − β)K01(z1, z2) = 0, (36)

so that the two functions K10 and K01 are equal up to a multiplicative constant. This feature makes that the
Riemann-Hilbert problem can be reduced to a Dirichlet problem for a circle, for which Schwarz’s formula
yields the solution to the functional equation in terms of an elliptic integral. Such integrals provide efficient
algorithms for computing performance characteristics by numerical integration. This approach was taken in
(8; 12; 15). We choose not the pursue this approach here, as it requires a construction based on the analytic
continuations of the functions K10 and K01, and a detailed study of the involved conformal mappings, which
is rather involved.
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