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2 A. CHARPENTIER AND E. GALLIC

Abstract. In this paper, we investigate (and extend) Ripley's circumference method

to correct bias of density estimation of edges (or frontiers) of regions. The idea of the

method was theoretical and di�cult to implement. We provide a simple technique

{ based of properties of Gaussian kernels { to e�ciently compute weights to correct

border bias on frontiers of the region of interest, with an automatic selection of an

optimal radius for the method. We illustrate the use of that technique to visualize

hot spots of car accidents and campsite locations, as well as location of bike thefts.

1. Introduction and motivation

Visualizing the density of a spatial process is not only a preliminary step in a spa-

tial analysis, but is also usefull for reporting results in a simple and understandable

way. Flexible techniques to geographically visualize data, and occurrences of a spatial

process, are necessary. Kernel smoothing has always been a popular technique to esti-

mate a density. Nevertheless, as mentioned in Bailey (1994), \kernel smoothing over

irregular areal units provides di�culties ". Edge corrections are neceesary to avoid

misinterpretations. K -functions, introduced in Ripley (1976), can be used to com-

pute quantities with an edge correction, taking into account boundary con�gurations

of a speci�c area. But as mentioned in Zheng et al. (2004), \Current algorithms for

edge-correction are either di�cult to apply or computationally expensive, especially

for complex borders".

This paper addresses this challenge by developing a simple and e�cient correction

to kernel density estimation, inspired by Ripley's circumferential method (described

in Ripley (1976), Ripley (1977) and Ripley (1981)). In kernel density estimation, we

simply count the number of observations in the neighborhood of a given location:

the closer an observation, the larger the weight. The shape of the weight function

is the kernel, and the length of the neighborhood (also called `sphere of inuence' in

Hearnshaw et al. (1994)) is the bandwidth parameter. Since Epanechnikov (1969)

proved that statistical results were not (signi�cantly) a�ected by the choice of the

kernel function, most of the authors have emphasized the fact that bandwidth's choice
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is the crucial issue in this problem. The most popular kernel is the Gaussian one

since a dual representation (occurence's locations observed with a random noise)

can be used. Nevertheless, if such kernel estimators are easy to compute, and satisfy

good statistical properties, Yamada and Rogerson (2003) recall that this methodology

su�ers a so called \edge e�ect" also known in statistical literature as \border bias".

Yamada and Rogerson (2003) mention Ripley's circumference method (from Ripley

(1981)), but claim that \ Ripley's method could be too complicated without proper

software or skilled programmers". In this paper we explain how to use that technique,

and provide also a way to select the \optimal" circumferential parameter.

In this paper, basics on space kernel density estimation are recalled in Section 2.

Notations and heuristics of kernel density estimation are given in Section 2.1 and 2.2.

In Section 2.3, we provide a discussion on the optimal choice of the bandwidth. Then,

Section 2.4 provides a discussion on frontiers and space border bias correction. More

sepci�cally, Ripley's circumferential method (from Ripley (1976) and Ripley (1977))

is described in Section 2.5 and again, heuristics on the interpretation of the weights

(in the context of kernel estimation) are given in Section 2.6. In Section 3, we discuss

the link between the radiusr used in the circumferential method, and bandwidthh of

the kernel smoother. Using Monte Carlo simulation, given a bandwidthh, we show

that there is an \ optimal" radius r ?(h). Using either a L1 or L2 norm (minimizing

either the sum of absolute values of errors or sum of squares of errors) we see that

r ?(h) is linear in h. This property (analytically derived for half space regions) allows

us to introduce an automatic technique. Sections 4 to 6 feature illustrations of this

technique, through three examples (see Figure 1 for a quick vizualization of the spatial

distribution of observations). Section 4 o�ers an estimation of the density of the

location of bodily injury car accidents, in western part of France (Morbihan and

Finist�ere). The impacts of the correction are examined (with respect to standard

kernel estimation) and the technique is used to identify hot spots. Section 5 presents

an estimation of the density of the location of bike thefts in San Francisco. The

interpretation of the density is tackled in that section. An estimation of the density
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of the locations of camping spots is presented in Section 6. Finally, Section 7 concludes

this article1.
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Figure 1. Illustrations: car accident locations (Section 4) in Western

part of France Finist�ere and Morbihan, on top, bike theft locations

(Section 5) in San Francisco in the bottom-left panel, and camping

spots locations (Section 6) in France in the bottom-right panel.

2. On kernel density estimation

2.1. Interpretation of a spatial density. In the context of a spatial process, with

locations Z 1; � � � ; Z n , the interpretation of the value of the density is the following.

For any regionE,

P(Z 2 E) =
Z

E
f (z)dz;

where f (z)dz is usually interpreted as the probability ofZ to fall within the in-

�nitesimal (rectangular) region [z; z + dz], which is the area between (x; y) and

(x + dx; y + dy), when dz is small. Here, units of the projection coordinates used to

1Codes used in this article to computebf and visualize it on a map is described (and fully available)

on https://github.com/ripleyCorr/Kernel_density_ripley .

https://github.com/ripleyCorr/Kernel_density_ripley
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locate z are 1� (111.11 km) times 1� (111.11 km on the Equator, but 87.8 km in San

Francisco for instance, and more generally 111.11 times cos(y)). In the San Francisco

area (discussed in Section 5) the unit corresponds to a 9; 758km2 area, for instance.

It is possible to relate the densityf (z) to the expected number of observations that

should occur in a neighborhood ofz. At location z = ( x; y), the expected number of

observations within a distancer of location z (in km) is

n � f (z) � �r 2

111:112 � cos(y)
:

In the context of San Francisco, a densityf (z) = 100 means that about n=250

observations should be within a 500m distance ofz. Hence, the densityf (z) can

easily be related to the expected number of observations of the spatial process within

a given distance toz. See Section 5.2 for a longer discussion on the interpretation of

the density.

2.2. De�nitions and notations. Kernel density estimation (see Scott (2009), Sil-

verman (1986), Wand and Jones (1994)) is a standard statistical technique to es-

timate a smooth probability density function. It has been extended from univari-

ate distributions (on the real line) to multivariate distributions, including spatial

and spatio-temporal models. Spatial observations are based on spatial locations

Z i = ( X i ; Yi ) (usually characterized by a latitude and a longitude). Based on a

samplef Z 1; � � � ; Z ng the estimation of the density at point z = ( x; y) is

bf H (z) =
1
n

det(H )� 1
nX

i =1

K
�
H � 1(z � Z i )

�
; (2.1)

whereK is some symmetric (centered) kernel function, andH a bandwidth parame-

ter. A popular kernel is the quadratic one, introduced by Epanechnikov (1969), used

e.g. in ArcGIS, and de�ned as

K (u; v) =
2
�

(1 � [u2 + v2])1(u2 + v2 2 [0; 1)): (2.2)
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An alternative is to consider Gaussian kernels,i.e. K Z is the density of a Gaussian

random vector,

K (u; v) =
1

2�
p

1 � � 2
exp

�
�

1
2(1 � � 2)

�
u2 + v2 � 2�uv

�
�

: (2.3)

For convenience, it is rather common to consider a kernel with independent compo-

nents, and a diagonal bandwidth parameter, where values are identical if the spatial

process is homogeneous in both directions:

bf h(z = ( x; y)) =
1

nh2

nX

i =1

K
�

x � X i

h

�
� K

�
y � Yi

h

�
: (2.4)

2.3. On optimal bandwidth. In the context of product of (symmetric) kernels, one

can prove using Taylor's expansion, that

E[ bf h(z)] � f (z) + � 1

�
h2

X

2
@2f
@x2

f (z) +
h2

Y

2
@2f
@y2

f (z)
�

and Var[bf h(z)] �
� 2

nhX hY
f (z)2;

where � 2 and � 2 are parameters related to the shape of the kernel function, see

Wand and Jones (1994) and Scott (2009) for more details on the exact value of those

parameters. The mean integrated squared error is then

MISE(h) = E
� Z

[ bf h(z) � f (z)]2dz
�

� � 3h4 +
� 4

nh

so h? = argminf MISE(h)g is �n � 1=5 for some constant� (function of the kernel as

well as the true { unknown { density f ). In the case where the true densityf is a

Gaussian distribution, with a diagonal variance matrix �, Silverman's rule of thumb

can be used (see Silverman (1986) and Scott (2009) for a discussion)

h?
i �

�
2
3

� 1
6

� � i � n� 1=6:

2.4. Frontier and space border bias. Kernel density estimation is a popular tech-

nique to visualize unbounded smoothed densities. But in some speci�c cases, observa-

tions have to lie within some speci�c areaS. For instance, for tra�c accidents or bike

thefts, events have to occur on-land, as discussed in Sections 4 and 5, respectively.S

would stand for some on-land territory. On the contrary, when locating �shes or sea
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animals using GPS trackers, it is known that those animals have to be in the sea. In

that case,S would represent some territorial sea.

In the case whereS is bounded, kernel estimates (with symmetric kernels) su�er

two important drawbacks:

� the total weight is not equal to 1, leading to an incorrect probability distribu-

tion function2, i.e.
R

S
bf (z)dz < 1,

� close to the frontier@S, bf has a multiplicative bias, i.e. E[ bf (z)] = � z � f (z),

where� z 2 [0; 1] depends on the shape of the border@S in the neighborhood

of z.

As shown in Section 3, in the context of on-land events for regions closed to the

sea, estimators of density can behave very defectively. The idea here is to propose

a methodology which gives an estimatorbf which could be associated to a proper

probability distribution function, and which does not su�er border bias.

2.5. Ripley's circumferential correction. The (univariate) kernel density estima-

tor for a uniform kernel { also called `moving histogram' { is de�ned as

bf h(x) =
1

nh

nX

i =1

1(d(x; X i ) � h); whered(x; X i ) = jx � X i j:

It simply consists in counting the number of observations within a distanceh of the

arbitrary point x. In the context of a two-dimensional spatial density, Ripley (1976)

extended the notion above by implementing theK function, where only observations

within a distance h of an arbitrary point ( x; y) were considered:

bf h(z) =
1

nh

nX

i =1

1(d(z; Z i ) � h); whered2(z; Z i ) = ( x � X i )2 + ( y � Yi )2:

2In standard statistical packages, the estimations are usually normalized so that the overall mass

(on the area where the density is computed) is equal to 1. A multiplicative coe�cient is applied

uniformly on the whole area, while a local adjustment is, obviously, necessary: the density is still

underestimated on the edge@S.
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Ripley (1977) suggested a \proper edge correction method", that we can write { using

our own notations for consistency

bf h(z) =
1

nh

nX

i =1

1
! i (z)

1(d(z; Z i ) � h); whered2(z; Z i ) = ( x � X i )2 + ( y � Yi )2;

where the weight, ! (z) is de�ned as the proportion of a circumference of a circle

centered at point z that lies within the study area S. As claimed in Yamada and

Rogerson (2003) \although it is di�cult to derive ! 's analytically for an arbitrarily

shaped study area, it would still be possible to derive it numerically using GIS". This

method is called Ripley's circumference method in Cressie (1992) and Bailey and

Gatrell (1995).

2.6. Interpretation of the weight based correction. Recall that kernel esti-

mators of densities can be seen as the expected value of the density for sample

f eZ i = Z i + " i g where" i 's are i.i.d. random noises, independent of the observations, as

in Davis (1975), Tapia and Thompson (1978) or Stefanski and Carroll (1990).Further,

the empirical cumulative distribution function is the step function de�ned as

bF (z) =
1
n

nX

i =1

1(Z i � z); (2.5)

and the associated empirical measure is

bf (z) =
1
n

nX

i =1

� Z i (z); (2.6)

where� denotes the Dirac measure. The idea of Kernel based estimator is to substitute

a continuous distribution to Dirac measures,

bf (z) =
1
n

nX

i =1

� Z i (z); (2.7)

where � Z i can be the density of a Gaussian vector, centered inZ i , with variance-

covariance matrix H . The problem is that if the distribution of Z has a bounded

support, then measure� Z i will spread some weight in areas where no observation can
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be found (outsideS). Thus, it might be natural to consider a truncated distribution,

restricted to the support S:

� Z i jS (z) =
� Z i (z )

� Z i (S)
: (2.8)

Thus, it is natural to consider

bf (z) =
1
n

nX

i =1

� Z i jS (z) =
1
n

nX

i =1

! i � � Z i (z ) where! i = � Z i (S)� 1: (2.9)

If we consider a noise with circularly contoured distribution (e.g. a Gaussian noise,

as mentioned earlier), it is possible to approximate� Z i (S) by

A(DZ i ;r \ S )
A (DZ i ;r )

; (2.10)

where A denotes the area function, andDZ i ;r the disk centered inZ i with radius

r > 0. This weight is the same as the one used in Ripley's circumference method

(from Ripley (1976)). Note that r should be related to the covariance matrixH

(this will be discussed in section 3), since the later is related to the width of the

neighborhood: the wider the neighborhood, the larger the radius. Thus, here, the

idea is simply to useweighted kernel estimators:

bf (z) =
1
n

nX

i =1

! (Z i ) � det(H )� 1K
�
H � 1(z � Z i )

�
; (2.11)

where weights! (Z i ) should reect the proportion of area aroundZ i (within distance

r ) that belongs to S. Those weighted kernel estimators have been intensively used,

e.g. on censored data, as in Marron and Padgett (1987) (to correct censoring bias) or

Gisbert (2003). As mentioned in Hall and Turlach (1999), having weights that depend

only on the data (Z i 's) and not on the location (z) is interesting from a computational

point of view. From this assumption, and since computing intersection of polygon

areas with standard softwares is extremely simple, Ripley's circumferential technique

can easily be implemented.

Example 1. The use of weights is illustrated on Figure 2 in the univariate case: on

border, the kernel is no longer the density of a Gaussian distribution centered onX i ,
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but the density of a truncated Gaussian distribution. Thus, those weights have an

impact on the border of the support.

l

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 2. Weight correction of a density on [0; 1]: kernel K is no

longer a Gaussian density, but a truncated Gaussian density.

Example 2. The use of weights is illustrated on the top-left graph of Figure 3 on a

non-convex polygonS. The weights are the proportion of the disk that lie in the poly-

gon. On the top-left graph of Figure 3 some speci�c locations are mentioned (they will

be used later on, for an intensive simulation study). Points will be uniformly drawn

within the region S. The theoretical density can be visualized below, with the three di-

mensional surface on the bottom-left graph and iso-density curves on the bottom-right

graph of Figure 3. An estimation based on500 simulated observations (uniformly

drawn on S) can be visualized on Figure 4. Top graphs are the estimation of the

density f using a Gaussian kernel technique. Border bias can clearly be observed.

Bottom graphs are the estimation of the densityf using a Gaussian kernel technique

with Ripley's correction. The estimator is volatile (mainly because of the small sample

size), but it seems much better than the previous one.
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Figure 3. Uniform density on polygonS.

3. Optimal radius r for the circumferential correction

With a Gaussian kernel, in the univariate case, the bandwidthh is the standard

deviation of the Gaussian noise" (see Chiu (1991)), and in the bivariate case,H is

the covariance matrix of the noise," . Then the true probability � Z i (S) is

P(Z i + " 2 S) where " � N (0; H ): (3.1)

3.1. Kernel product with identical bandwidth. A standard assumption in mul-

tivariate density estimation is to assume thatK is the product of two (univariate)
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Figure 4. Estimation of density f (uniform on polygon S) with a

standard Gaussian kernel on top, and the corrected kernel estimate,

below.

kernels. This assumption can be interpreted as a non-correlated noise" , i.e. H

is a diagonal matrix. From the geography of our problem, it is possible to assume

further that the two components have the same `dimension', thus, it might not be a

too strong assumption to assume thatH is a diagonal matrix with identical terms

on the diagonal. Leth denote this diagonal term (this assumption will be relaxed at

the end of this section), so that level curves of the density ofZ are circles.
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3.1.1. Analytical computation whenS is a half-plane. If S is a half-plane, and if the

distance betweenZ i and the border is� , then

P(Z i + " 2 S) = 1 � �( � �h � 1) = �( �h � 1); (3.2)

where � denotes the cumulative distribution function of the N (0; 1) distribution (see

Figure 5).

-4 -2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Z i

r

DZ i ;r

� S

h

Figure 5. Link between P(Z i + " 2 S) and A(DZ i ;r \ S ) where S is

a half-plane.

Assume for convenience thath = 1, and that a = 1, then the probability that

Z i + " =2 S is �( � 1) � 15%. The proxy we suggest for� Z i (S) is to consider the

following ratio:

� �
Z i

(r; S) =
A(DZ i ;r \ S )

A (DZ i ;r )
; (3.3)

where DZ i ;r is a disk centered inZ i with radius r . Again, if S is a half-plane, it is

possible to derive an analytical expression, since it will just be related to thecircular

segment(the region bounded by a chord and the arc subtended by the chord, see
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Figure 5). The area of the circular segment is equal to the area of the circular sector

minus the area of the triangular portion:

A (DZ i ;r \ S ) =
�

2�
�r 2

| {z }
sector area

�
r 2 sin(� )

2| {z }
triangle area

where cos
�

�
2

�
=

a
r

: (3.4)

Thus,

A (DZ i ;r \ S ) =

8
<

:

r 2

2
[� � sin(� )] if a < r

0 if a > r
: (3.5)

From the previous computation, we would like to �ndr ? (or � ?) such that A (DZ i ;r \

S) is 15% ofA(DZ i ;r ), when a is equal to 1,i.e.

r 2

2�r 2
[� � sin(� )] =

1
2�

[� � sin(� )] = 15% (= �( � 1)); (3.6)

or equivalently,

� ? � sin(� ?) = 2 � �( � 1) � 1;

thus, � ? = 1 + u whereu is the root of sin(1 + u) = u, which is numerically equal to

0:93. Since� = 2 arccos(r � 1), then r ? � 1=cos(1:93=2) which is numerically equal to

1:76. Therefore, with a disk with radius 1:76, the area of the circular segment located

at 1 from the center of the disk is 15% of the area of the disk.

More generally (with anya and h), if r ? = � ?h, the ratio of the area of the circular

segment is

� ? � sin(� ?)
2�

=
1

2�

�
2acos

�
a

� ?h

�
� sin

�
2acos

�
a

� ?h

���
: (3.7)

Let x = ah� 1 and b= 1=� ?, then the ratio is

x 7!
1

2�
[2acos (bx) � sin (2acos (bx))] : (3.8)

Taylor's expansion (whenx is closed to 0) is

x 7!
1
2

�
2b
�

x +
b3

3�
x3 +

b5

20�
x5 + O(x7):

Following Shah (1985) and Bryc (2002), Taylor's expansion of �(� x) is

�( � x) �
1
2

� 0:368929x � 0:037758x3 + O(x5):
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Therefore, linear terms are equal when� ? = 2=(0:3689� ) � 1:725. The use of a linear

relationship, with a proportionality factor around 1:76 seems to be legitimate.

The intuition is that r ? might be a (linear) function ofh, r ? = � ?h where� ? � 1:76,

with half-plane domains. And this relationship might also be a good approximation

on more general spacesS.

3.1.2. Monte Carlo study for more complex areasS. In order to illustrate the general

case, two regions are considered in this section: the polygon of Figure 3, and the

contour of Finist�ere (the French region). In those two regions, 10; 000 points are

drawn uniformly Z i (1,000 are plotted on Figure 6).

Figure 6. PolygonS on the left and the Finist�ere region on the right,

where 1; 000 points are uniformly drawn.

Given h > 0,

� theorericalweights! i (h) are numerically computed, based on� Z i (S) = P(Z i +

" 2 S), using Monte Carlo simulations, since" � N (0; hI ),

� ! �
i (h) are computed, based on� �

r; Z i
(S) for di�erent values of r ,

� for some normk � k, the optimal radius r ? is solution of

r ?(h) = argmin

(
nX

i =1

k! �
i (h) � ! i (h)k

)

;

(two norms are considered in this studykxk1 = jxj and kxk2 = x2).

On Figure 7,h 7! r ?(h) is plotted on top, where a linear relationship can easily be

identi�ed, and below the slope,i.e. h 7! r ?(h)=h. The horizontal dashed line is the
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1:76 value obtained empirically in the computations of the previous section (using a

half-plane region).

Figure 7. Optimal r ?(h) as a function ofh on the polygon shape (on

the left) and the Finist�ere region (on the right), from Figure 6, on top,

and below, ratio ofr ?(h) over h, as a function ofh.

Thus, from bandwidth h, it is possible to approximate weights using

! �
i (h) =

A(DZ i ;r ? )
A (DZ i ;r ? \ S )

wherer ? = � ?h and � ? � 1:76:

3.2. Comparison with other corrections. A method for edge correction of an

intensity estimator was introduced in Diggle (1985), including a discussion on the
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bandwidth estimation (see also Berman and Diggle (1989) and the estimation of

relative risk (see Kelsall and Diggle (1995)). In Section 2.3, we explained how to

estimate densities at various pointsz's, and we mentioned that a standard global

measure to assess the quality of the �t was to use the mean integrate squared error

(where the mean squared error is integrated on the whole area) with

MSE(z; h) = E
h

bf h(z) � f (z)
i 2

=
�

E
h

bf h(z) � f (z)
i� 2

| {z }
bias2

+ Var
h

bf h(z)
i

| {z }
standard deviation 2

:

Here we estimate that function using simulations, and the two components (bias and

variance) are reported on Figure 8.ns = 1; 000 samples ofn points uniformly drawn

on the polygon of Figure 3 are generated. The density is displayed on the diagonal

of the upper-left corner [B; D ] (as de�ned on Figure 3). For any pointz, estimators
bf 1(z); � � � ; bf ns (z) (with the two techniques) are obtained, based on thosens = 1; 000

samples. The average value of those estimators,�f (z) (which is a approximation of

E[ bf h(z)]), as well as the variance,

dVar[ bf (z)] =
1

ns � 1

nsX

i =1

h
bf i (z) � �f (z)

i 2
with �f (z) =

1
ns

nsX

i =1

bf i (z);

(which is an approximation of Var[bf h(z)]) are plotted on Figure 8, for allz 2 [B; D ].

Figure 8, shows that both estimators have a similar behavior on average, but the

variance (and therefore the mean-squared error) is much smaller with Ripley's correc-

tion, especially on small samples. Besides, Figure 9 exhibits much more volatility for

Diggle's correction (on the right) compared to our estimate (with Ripley's correction,

on the left).

4. Vizualizing locations of car accidents

Car accident concentration is usually identi�ed asblack spots, as in Nguyen (1991)

or Joly (1992). Those zones suggest that there might exist some spatial dependence

between individual occurrences, as suggested by Steenberghen et al. (2004). Detecting

clustering (in time and space) might be an important issue, to improve road safety

and to reduce tra�c accidents. We consider here the dataset of tra�c accident, that
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(a) E(f̂ ); n = 100 (b) E(f̂ ); n = 1000

(c)
q

Var(f̂ ); n = 100 (d)
q

Var(f̂ ); n = 1000

Figure 8. Estimation of the density in the upper left corner of polygon

S, on interval [B; D ], with n = 100 and n = 1; 000 points, on the

left and on the right, respectively, with the average density (on 1,000

samples), and the standard deviation.

occurred in 2008 in France and involved bodily injuries. The BAAC dataset (bulletins

d'analyse d'accident corporel) is �led by police forces, and most accidents have a

speci�c location. In 2008, the dataset contains 10; 854 accidents with a location.
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(a) Diggle, n = 100 (b) Diggle, n = 1 ; 000

(c) Ripley's Correction, n = 100 (d) Ripley's Correction, n = 1 ; 000

Figure 9. Estimation of the density in the upper left corner of polygon

S, on interval [B; D ], with n = 100 and n = 1; 000 points, on the

left and on the right, respectively, with the average density (on 500

samples), and the standard deviation.

4.1. Spatial location of bodily injury car accidents in two regions. In order to

illustrate border issues, we focus here on two speci�c regions, Finist�ere and Morbihan3,

3Note that islands were removed, namely Belle-Ile, Ile de Groix, Ile de Ho•edic and Ile d'Houat

since no tra�c accident occurred on those islands in 2008.
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where major cities (Brest in Finist�ere and Lorient, or Vannes in Morbihan are next

to the sea). There are 186 observations for the �rst region, and 180 for the other one.

Results of the estimations for Finist�ere can be seen on Figure 10. When the stan-

dard kernel is used, we can think of at least twoblack spots, with one in the North

being more important than the other one in the South coastline. When the correction

is used, the two spots still show up, but another locale stands out on the lower tip

of Finist�ere. The area of this third place is surrounded by water, thus the estimation

with standard kernel fails to highlight it.

The same happens in Morbihan, as seen on Figure 11. The density estimation at

the North-West frontier is really di�erent depending on the use of weight corrections.

Once weights are applied to correct the border bias, one can easily detect ablack spot.

Figure 10. Locations of car accidents, in Finist�ere, standard kernel

on the left, and corrected one on the right.

4.2. Detecting hot spots. In order to improve road safety and to reduce tra�c acci-

dents, public authorities have to understand where tra�c accident occurred. Analysis

of spatial patterns is then a crucial issue, since it is di�cult to assume that occurrences

of tra�c accidents are purely random observations, in space. In most cases, tra�c

accidents form clusters, called \hot spots", in geographic space (see Taylor (1977) or

Steenberghen et al. (2004)). Spatial (and temporal) patterns along a certain roadway

segment are largely determined by their tra�c volume, but also physical environment

(slopes and angles) or weather (see Black (1991), Noland and Quddus (2004) and
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Figure 11. Locations of car accidents, in Morbihan, standard kernel

on the left, and corrected one on the right.

references therein). Detecting spatial patterns and clusters of car accidents is a re-

current problem (see Yamada and Thill (2004), Erdogan et al. (2008), Xie and Yan

(2008), Loo (2006) and reference therein). The so-called \quadrat" analysis (see Getis

(1964), Rogers (1965) or Thomas (1977) for a description) is one popular technique

to analyse the pattern of a distribution of events within a given regionS. The idea is

to divide regionS into sub-regionsSi 's having equal (and homogeneous) areas, called

quadratsand to study histograms on this partition ofS. GIS packages allow then vi-

sualizing the phenomenon via color-based representations of quadrats. Nevertheless,

the analysis is then extremely sensitive to the partition considered.

As described in Chapters 7 of Levine (2010) (see also Levine (2008) for additional

motivations and Everitt et al. (2011) for more technical discussions), it is possible to

use the density estimation to identify and visualize hot spots. In Levine (2010), a

\ Single Kernel Density method" is considered. It is employed here on the accidents

data, and referred to as \the estimate without border correction". Ripley's correction

is also applied to visualize hot posts. Figure 12 displays the convex hull of the hot-spot

regions for car accidents, for both estimation techniques.

Further, following Chainey et al. (2002) and Van Patten et al. (2009), the Predictive

Accuracy Index (PAI) can be computed, as the ratio of the hit rate percentage in the

hot spot to the area percentage (area in the hotspot in relation to the study's total

area). PAI's using Ripley's correction are reported in the last column of Table 1.



22 A. CHARPENTIER AND E. GALLIC

Figure 12. Convex hull of hot spot areas, without border correction

(on the left) and with Ripley's correction (on the right).

hot spot n area percent hit rate PAI

non correction 55 15.09 29.57 1.9596

correction 102 28.50 54.84 1.9242

Table 1. Predictive Accuracy Index (PAI) for car accidents.

5. Vizualizing bike theft locations

5.1. Density estimation of bike theft locations. Another popular area of appli-

cations, where visualizing spatial densities is also a crucial step, is criminology (see

Block et al. (1995), Eck (1997), Ceccato and Haining (2004), Levine (2010) or Nakaya

and Yano (2010) among others). In order to illustrate Ripley's correction technique,

another application on bike thefts in San Francisco is considered. Data about re-

ported crimes in San Francisco are available onhttps://data.sfgov.org/ . Density

estimates are computed as a �rst step, on the 794 reported bicycle thefts from 2013.

These estimates are used in a second step to compute an estimation of the number

of stolen bikes per year within a 500 m radius.

5.2. On the interpretation of the density. As discussed in Section 2.1, for any

region E,

P(Z 2 E) =
Z

E
f (z)dz;



RIPLEY'S CIRCUMFERENTIAL CORRECTION 23

Figure 13. Estimates of expected bike thefts per year within a 500m

radius on the left, and corrected kernel density estimates on the right

(zoom).

wheref (z)dz is usually interpreted as the probability ofZ to fall within the in�nites-

imal region [z; z + dz]. Here, units of the projection coordinates used to locatez are

1� (111.11 km) times 1� (111.11 km on the Equator but 87.8km in San Francisco),

which is a 9758km2 area. Therefore, the whole areaS of San Francisco (120:11 km2)

is 1=81 of the total 1� times 1� area: a uniform distribution over San Francisco would

be f ? (z) � 81.

To have an interpretation of the density in terms of the number of bikes stolen per

year within a given areaD { say a 500m distance to locationz { then P(Z 2 D ) �

f (z)A (D \ S ), where D is the disk of radiusr centered inz. If the distance from

z to the sea exceedsr , then P(Z 2 D ) � f (z) � A (D). A circle of radius 500m is

0:785km2; and since the whole areaS of San Francisco is 120:11 km2, A (D) is 1/153

of the total San Francisco area. If the distance fromz to the sea is belowr , there is

a multiplicative factor A (D \ S )=A(D) (proportion of the disk inland). This ratio is

the same as the one when computing weights for the correction.

Figure 14 shows those computations.

Observe that the interpretation of the number of stolen bikes can be related to the

standard kernel density estimation, without the correction. The correction is neces-

sary when computing a density (which can be related to a probability of occurrence
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Figure 14. Density estimation bf (z) - in the middle - at latitude

37:788� , and estimation of the expected number of bikes stolen, per

year, within a 500 m distance to locationz - bottom graph. On top,

observations in the neighborhood of the lattitude can be visualized. A

� 500m tube was added.

with respect to some unit) but not when computing the number of events that should

occur within a given time frame.

6. Vizualizing the density of campsites

The third and last example to apply Ripley's circumference method concerns camp-

sites locations in France. More generally, from an economic perspective, getting

a better geographical perception of the location of accommodation facilities is ex-

tremely important, as explained in Hsueh and Tseng (2013). In this example, we

will discuss locations of campgrounds, in France. Data about French lodgings were
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downloaded athttps://www.classement.atout-france.fr , and only observation

concerning campgrounds were kept. A total of 5; 494 camping pitches were geolocated

using the Google Maps API4. The density estimates can be visualized on Figure 17,

with and without applying the correction. Figures 17 and 19 provide zooms on two

regions where an abundance of campgrounds can be found near the coastline. In order

to highlight the di�erence, using the technique described in Section 4, convex hull of

hot spot areas are also ploted (see Figure 16 for France, 18 for the Mediterranean

side, and 20 for the Atlantic side).

Figure 15. Density estimates of French campground locations, stan-

dard kernel on the left, and corrected one on the right.

Figure 16. Convex hull of hot spot areas, without border correction

(on the left) and with Ripley's correction (on the right).

4Seehttps://developers.google.com/maps/ .
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Figure 17. Density estimates of French campground locations (zoom

on Southern France), standard kernel on the left, and corrected one on

the right.

Figure 18. Convex hull of hot spot areas (zoom on Southern France),

without border correction (on the left) and with Ripley's correction (on

the right).

7. Conclusion

In this article, a technique relating kernel density estimation and Ripley's circum-

ferential technique was discussed, including a pratical technique to select the optimal

radius of Ripley's correction technique. This correction is necessary to provide an ad-

equate visualization of the density. Nevertheless, when interpreting the density as an

expected number of occurences, this correction might be misleading. Computations

are fast, and our estimate provided a less volatile estimation of the density, compared

to the popular estimate introduced by Diggle (1985). That estimate was used on
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Figure 19. Density estimates of French campground locations (zoom

on the Atlantic coast), standard kernel on the left, and corrected one

on the right.

Figure 20. Convex hull of hot spot areas (zoom on the Atlantic coast),

without border correction (on the left) and with Ripley's correction (on

the right).

three di�erent applications, when regions have di�erent shapes, and with di�erent

sample size too.
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