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Abstract — Hybridized discontinuous Galerkin methods preserve the

advantages of classical discontinuous Galerkin methods and in addi-

tion enable to circumvent the issue of the number of degrees of free-

dom. The principles of these numerical methods are summed up for 3d

time-harmonic Maxwell’s equations and basic examples are proposed

to assess their efficiency.

I. INTRODUCTION

Discontinuous Galerkin (DG) methods are currently
widespread for the discretization of time-transient
Maxwell’s equations [1, 2]. This success can be explained
by several advantages compared to other approaches such
as the flexibility for hp-adaptivity or a natural parallelism
[3]. Nonetheless for stationary problems as time-harmonic
Maxwell’s equations, the number of degrees of freedom is
several times larger than when using a classical conforming
finite element method and this aspect is cumbersome. Hy-
bridized DG (HDG) methods have been proposed recently to
circumvent this problem [4]: preserving the discontinuous
approximations of both electric and magnetic fields, the
only global linear system to solve determines the degrees of
freedom of a new hybrid variable “living” on the interface
of each element of the mesh. Thus, a HDG method leads to
the solution of a reduced-size linear system without altering
the nice properties of a DG method. We consider here such
a HDG method for solving the 3d time-harmonic Maxwell’s
equations and illustrate the accuracy and the computing cost
of the approach.

II. HDG DISCRETIZATION

Electric E and magnetic H fields are approximated by
discontinuous vector fields Eh and Hh whose components
are polynomials in each element, i.e. Eh and Hh belong
to (Pp(K))3 in each element K of the mesh with Pp(K)
the space of polynomials of degree p on K. The fields Eh

and Hh are computed by weakly verifying time-harmonic
Maxwell’s equations in each element K of the mesh; it
means that for all V in (Pp(K))3, Eh and Hh satisfy1

(iωεrEh,V)− (Hh, curlV) + � �Ht
h,n×V� = 0,

(iωµrHh,V) + (Eh, curlV)− ��Et
h,n×V� = 0.

(1)

Here i is the imaginary unit, ω the angular frequency, εr and
µr the relative permittivity and permeability. Symbols ( · , · )
and � · , · � denote the scalar product of complex-valued vec-
tors integrated over K and ∂K, the boundary of K; n is
the outward unit normal vector on ∂K with × the cross-
product. Quantities �Ht

h and �Et
h are only defined on ∂K and

1For sake of simplicity, we omit the volume source term but it can be
straightforwardly added.

assumed to be approximations of the tangential component
of the magnetic and electric fields on ∂K.

In the classical DG approach, both quantities �Ht
h and �Et

h

are defined as linear combinations of the electric and mag-
netic fields of the elementK and of its neighboring elements.
This strategy leads to the solution of a linear system which
can be several times larger than the system obtained by a
more classical conforming finite element method.

In the HDG approach, �Ht
h is considered as a new hy-

brid variable, which is single-valued on each interface of

the mesh. On the boundary of each K, the variable �Et
h is

then defined from the hybrid variable and the local field by

�Et
h = E

t
h + τn× ( �Ht

h −H
t
h) on ∂K, (2)

where τ is a (often strictly) positive parameter. Contrary to
�Ht

h,
�Et
h has a priori two distinct values on each side of an

interface between two elements. We thus need to weakly

enforce that �Et
h is single-valued on each interface

���Et
h�,η�F = 0, ∀F ∈ F i

h, (3a)

and that the scheme is consistent with the boundary condi-
tions (Silver-Müller conditions for instance)

��Et
h × n+ �Ht

h −G
i,η�F = 0, ∀F ∈ Fb

h. (3b)

HereF i
h andFb

h are the set of the interior and boundary faces

of the mesh (Fh = F i
h∪Fb

h), �V� denotes the jump ofV on

any face,Gi is a source term provided by an incident electro-
magnetic wave on the boundary and the meaning of � · , · �F
comes from (1) with F replacing ∂K. The test functions η
belongs to the tangential trace space M

p

h

M
p

h =
�
η ∈ (L2(Fh))

3 | η|F ∈ (Pp(F ))3,

(η ·n)|F = 0, ∀F ∈ Fh} ,
(4)

with L2(Fh) the space of square-integrable functions onFh.

The hybrid variable �Ht
h belongs to this space M

p

h.
Thus, from (1), we obtain disconnected local problems in

each element and a reduced-size linear system can be assem-
bled only for the hybrid variable in a classical finite element
way starting from the interface conditions (3); see for in-
stance [5] for more details. Once the linear system for the
unknowns associated to the hybrid variable has been solved,
the local electromagnetic field within each K can be recov-
ered locally by solving (1).

III. PRELIMINARY NUMERICAL RESULTS

A. Accuracy of the method

We consider the propagation of a plane wave in vacuum.
The computational domain is chosen to be the unit cube
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Ω = (−0.5; 0.5)3, and a Silver-Müller absorbing boundary
condition is imposed on the whole boundary. Parameters εr,
µr and τ are set to be 1, and ω to be 2π.

A sequence of regular tetrahedral meshes is employed. Ta-
ble I displays the error in L2-norm and the convergence or-
ders estimated between two consecutive meshes, i.e. an es-
timate of the exponent α in the asymptotic convergence rate
hα, for the HDG method and p = 1. Table II yields the same
characteristics for p = 2. In Table I and II, “mesh size” de-
notes the edge length of the tetrahedrons on the edge of the
unit cube and Ndof the number of degrees of freedom for
the hybrid variable. We observe that the asymptotic conver-
gence orders of the approximate solutions for both E and H

are optimal, i.e. of order p+1 for both E andH when using
polynomial order p. This convergence rate has been proved
for the Helmholtz equation in 2d [6] but no theoretical result
is currently available for Maxwell’s equations in 3d.

TABLE I. CONVERGENCE OF THE HDG METHOD WITH p = 1.

mesh size Ndof �E−Eh�L2 �H−Hh�L2

value order value order

1/2 720 2.27e-1 - 2.35e-1 -
1/4 5184 6.02e-2 1.9 6.68e-2 1.8
1/8 39168 1.54e-2 2.0 1.78e-2 1.9

TABLE II. CONVERGENCE OF THE HDG METHOD WITH p = 2.

mesh size Ndof �E−Eh�L2 �H−Hh�L2

value order value order

1/2 1440 3.13e-2 - 3.36e-2 -
1/4 10368 4.00e-3 3.0 4.44e-3 2.9
1/8 78336 4.93e-4 3.0 5.53e-4 3.0

B. Computational costs

We add a perfectly conducting cube of side length 1/3
centered at the origin in the previous problem and ω is
set to be 4π. We can link the HDG method with a Up-
wind Flux (UF) DG discretization [7] and, because both ap-
proaches provide us the same solution, we can “fairly” com-
pare their numerical costs. For each method the solution of
the problem is based on a Schwarz-type domain decompo-
sition method as described in [8]: a global iterative solver
is coupled with local solvers in each subdomain of the de-
composition. Several kinds of local solvers are studied but
they all benefit of a single-precision LU factorization of the
local problems. The timing measures for this factorization
phase are given in Table IV where Ns denotes the number
of subdomains (one per processor). Three local solvers are
considered: two Krylov subspace solvers preconditioned by
the LU factorization, GMRes (DD-gmres) or BiCGStab(l)
(DD-bicgl), and one direct solver using iterative refinement
(DD-itref) to get the double-precision accuracy. The corre-
sponding CPU times are summarized in Table V where #it
denotes the number of iterations for the Schwarz algorithm.

TABLE III. MESHES FOR THE SCATTERING BY A METALLIC CUBE.

Mesh # Vertices # Tetrahedra # Faces

M1 29,062 156,000 318,000
M2 67,590 82,944 757,728
M3 131,922 744,000 1,503,600

IV. CONCLUSION AND PERSPECTIVES

HDG methods lead to the same optimal accuracy as some
classical DG methods but greatly reduce the computational

TABLE IV. COMPUTING TIMES AND MEMORY FOR L AND U FACTORS.

Mesh Ns CPU time (max) RAM (max)

HDG UF HDG UF

M1 32 26.57s 270.18s 218MB 895MB

M2 64 44.17s 450.10s 288MB 1166MB

M3 128 51.85s 474.57s 288MB 1186MB

TABLE V. COMPUTING TIMES (SCHWARZ ALGORITHM).

Mesh Strategy #it CPU time (min/max)

HDG UF

M1 DD-bicgl 10 83.97s/90.20s 301.22s/330.76s
DD-gmres 10 43.15s/46.22s 152.21s/167.03s
DD-itref 10 32.26s/34.64s 107.25s/117.47s

M2 DD-bicgl 13 148.74s/158.89s 512.75s/564.21s
DD-gmres 13 77.15s/82.05s 262.20s/287.40s
DD-itref 13 54.18s/59.55s 168.55s/185.22s

M3 DD-bicgl 16 181.29s/213.25s 625.02s/723.77s
DD-gmres 18 105.36s/125.05s 340.34s/397.49s
DD-itref 17 72.34s/84.80s 205.33s/246.02s

burden in comparison. They make DG methods more attrac-
tive for stationary problems. We are currently working on ef-
ficient strategies for solving the linear systems for the hybrid
variable unknowns, as well as on the the further develop-
ment and application of the proposed HDG method to more
challenging propagation problems. Other questions need to
be addressed, especially the use of a variable order p and
non-conforming meshes, as it can be naturally dealt with the
HDG strategy [4]. Moreover, it should also facilitate the rig-
orous coupling with other discretizations because the HDG
approach clearly separate the local volume problems (1) and
the interface conditions (3).
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