Skip to Main content Skip to Navigation
Journal articles

A new breaking wave height direct estimator from video imagery

Abstract : Breaker height is a key parameter of nearshore processes and the demand for a continuous remote estimator is pressing. In this paper we present a standalone remote video-based method that estimates wave height at the breakpoint. Individual breaking events are first identified from changes in optical properties and wave height is further derived from the optical signature at the onset of breaking. An extended validation is performed using a dense wave basin dataset. The results show the ability of the method to measure individual breaker heights (9% of mean error, 18% RMS). In addition, the unique combination of in situ and remotely sensed data allows the estimation of two other breaking-related parameters, the height-to-depth ratio and wave front face slope, which show a substantial amount of dispersion. Because nearshore video systems are rapidly spreading over world coasts, this low-cost remote breaker height estimator should encounter large interest in coastal engineering studies.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00724936
Contributor : Hervé Michallet Connect in order to contact the contributor
Submitted on : Thursday, August 23, 2012 - 12:18:17 PM
Last modification on : Friday, January 7, 2022 - 9:34:03 AM

Identifiers

Collections

Citation

Rafael Almar, Rodrigo Cienfuegos, Patricio Catalan, Hervé Michallet, Bruno Castelle, et al.. A new breaking wave height direct estimator from video imagery. Coastal Engineering, Elsevier, 2012, 61, pp.42-48. ⟨10.1016/j.coastaleng.2011.12.004⟩. ⟨hal-00724936⟩

Share

Metrics

Les métriques sont temporairement indisponibles