
HAL Id: hal-00724563
https://hal.science/hal-00724563

Submitted on 21 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating depth perception of 3D stereoscopic videos
Pierre Lebreton, Alexander Raake, Marcus Barkowsky, Patrick Le Callet

To cite this version:
Pierre Lebreton, Alexander Raake, Marcus Barkowsky, Patrick Le Callet. Evaluating depth perception
of 3D stereoscopic videos. IEEE Journal of Selected Topics in Signal Processing, 2012, 6 (6), pp.710-
720. �10.1109/JSTSP.2012.2213236�. �hal-00724563�

https://hal.science/hal-00724563
https://hal.archives-ouvertes.fr


Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Evaluating depth perception of 3D stereoscopic

videos
Pierre Lebreton1,2, Alexander Raake1Member,IEEE,

Marcus Barkowsky2,Member,IEEE, Patrick Le Callet2Member,IEEE

1Assessment of IP-Based Applications, Telekom Innovation Laboratories, TU Berlin

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
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Abstract

3D video quality of experience (QoE) is a multidimensional problem; many factors contribute to the global rating

like image quality, depth perception and visual discomfort. Due to this multidimensionality, it is proposed in this

paper, that as a complement to assessing the quality degradation due to coding or transmission, the appropriateness

of the non-distorted signal should be addressed. One important factor here is the depth information provided by the

source sequences. From an application-perspective, the depth-characteristics of source content are of relevance for

pre-validating whether the content is suitable for 3D video services. In addition, assessing the interplay between

binocular and monocular depth features and depth perception are relevant topics for 3D video perception research.

To achieve the evaluation of the suitability of 3D content, this paper describes both a subjective experiment and a

new objective indicator to evaluate depth as one of the added values of 3D video.

Index Terms

3D Video, Depth evaluation, Objective model, Quality of Experience, Content characterization

I. INTRODUCTION

3D is a current trend for television. The contribution of adding 3D is stated by some to be at the same level as

the transition from monochrome to color. The added value of 3D depends on the source material and the quality

degradations due to coding [1] [2], transmission and the display device [3]. As a counterpart to the relative added

value of 3D, a new factor significantly impacts the general quality of experience (QoE): the visual discomfort [4].

Even though one can say that visual discomfort could also be present with 2D video [5], with 3D videos this factor

is particularly predominant in the construction of the global experience of the observers.

This paper targets the evaluation of the depth perception of the original source materials. This choice is motivated

by the fact that before speaking of quality degradation due to compression and transmission, the source signals need

to be considered, since different sources are not of equal quality. 3D video content materials are of different depth
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quality or comfort, and thus already without transmission the general QoE is highly content dependent. Having a

tool for evaluating depth will provide some insight into the appropriateness of a given 3D video sequence, and into

whether the 3D effect may deliver a clear added value for that sequence.

The perception of depth may be considered as an iterative process of the depth-cue dependent recognition of the

different elements or objects contained in the scene, and of associating a specific position in depth to these objects

or elements. The position in depth can be determined either by comparing the position of one object relative to the

other, or directly using some knowledge about what is observed.

The paper is structured as follows: section two presents the different dimensions which could be considered when

evaluating depth, and outlines approaches for depth evaluation reported in the literature. The third and fourth sections

describe the set-up and results of a subjective experiment conducted to facilitate the understanding of how observers

judge the depth quality in natural and synthetic video sequences. Section five introduces a new objective model

for depth evaluation. Section six provides the model results on the test database and gives some information on its

current limitations and possible improvements. Section seven concludes the paper.

II. THE EVALUATION OF DEPTH

Two main axes can be investigated when evaluating depth: the depth perception and the depth quality. These

are two distinct aspects: the depth perception is about the ability to understand the organization of the different

elements composing the scene. Considering the fact that the depth understanding of the scene is mainly based on

identifying relative object positions and spatial object features, this is usually denoted as “scene layout” [6]. The

second aspect, the depth quality, depends on whether the depth information is realistic or plausible. If for example,

a scene shows the so-called “cardboard effect” [7], the scene layout will be perceived correctly: the different planes

can be distinguished and their relation in space can be understood. However, the depth quality will not be high,

since the scene will likely appear abnormally layered.

A. Depth layout

There are many factors which contribute to the general understanding of the scene’s depth layout. These can be

decomposed into two classes, monocular and binocular cues [8]. The monocular cues provide depth information using

information from single views. Monocular cues can be further divided into two sub-classes: static and motion-based

cues. Illustrations for the static cues are depicted in Figure 1: light and shading [9], relative size [10], interposition

[10], blur [11], textural gradient [12], aerial perspective [10], and linear perspective [13]. Motion based cues are:

motion parallax [14] and dynamic occlusion [10]. In addition to the monocular cues, the binocular vision provides

the binocular depth cues. Here, stereopsis is considered as one of the most important depth cues. The pupils of

the two human eyes are shifted by approximatively 6.5 cm, which causes each retinal image to provide a slightly

different view of the same scene. The slight difference between views is called retinal disparity. The brain is able to

combine these two views into a single 3D image in a process called stereopsis (see Figure 2). The general perception

of the depth layout results from a combination of the different sources of depth information. Cutting and Vishton [6]
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studied the contribution of some of these depth cues to the general understanding of the scene layout, and provide

depth discrimination functions for each of the studied depth cues as a function of the visualization distance (Figure

3). The chart in Figure 3 provides limits related with each depth cue. Some of them are always discriminative

(like the occlusion), others like binocular disparity contribute only for a limited visualization distance range. For

example, binocular disparity contributes to the depth discrimination for distances from 0-17m from the observer,

and can also be used to estimate the magnitude of the depth separation within a smaller distances range, 0-2m [15].

These results give some insight into a possible pooling of the depth cues. However, further studies are still required

to understand how the global depth impression is formed, since the experiments underlying the results in Figure

3 were focusing on the minimum offset necessary to perceive a depth difference (threshold detection), and not a

weighting of their contributions to overall depth. Some results are available which give information on a possible

weighting of different depth cue contributions. Proposals exist to reduce one depth cue, namely disparity, while

emphasizing another depth cue, blur, in order to reduce visual discomfort for 3D reproduction without reducing

depth perception [16] [17] [18].

Light and shade Relative size Interposition

Texture gradient Areal perspective Linear perspective

Blur

Figure 1: Different type of monocular cues

X Y

Disparity = X-Y

Fixation

Target

Figure 2: The retinal disparity used for stereopsis

B. Depth quality

The perceived depth quality is the other aspect of depth evaluation. Binocular disparity information has been

added by stereoscopic 3D displays and may therefore be expected to play a major role when perceived depth

quality is evaluated. Monocular and binocular depth cues may provide similar depth information, for example, it

has been proposed to emphasize monocular depth cues in order to reduce visual discomfort from excessive disparity

[17]. Many studies have been published on this topic, for example, in [19] the contribution of linear perspective

to the perception of depth was analyzed. While work is still required on the interaction of the different monocular
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and binocular depth cues, this paper focuses mostly on the binocular depth cues since it plays a major role for

discomfort and depth quality. Depth quality depends on different factors, and both the content and the display

device will contribute to the general depth rating. As outlined above, the binocular cues contribute to the depth

perception only within a limited distance range. To provide a good depth quality, it is required to have the objects of

interest be positioned within this zone. When considering the case of shooting a stereoscopic sequence (which can

be extended to N views), two choices for the setup of the cameras are possible to achieve high depth quality: adjust

the optical axes to be parallel, or converging to the object under focus (see Figure 4). Parallel camera axes during

shooting require setting the convergence during post-production, which can be time consuming. Having the camera

axes converge during shooting requires time during production, but less time in post-production, however it can

create keystoning [20] issues which need to be corrected in post-production. Both methods are valid, and there is

no clear answer on which one to prefer. Once the zone where the camera converges is set (this is the null disparity

plane), it is possible to adapt the distance between the cameras (e.g. the inter-camera distance) to ensure a good

perception of the disparity cue. Figure 5 depicts how the depth quality is impacted by the inter-camera distance.

Indeed, the shape of the voxels [3] (3D pixels) highly depends on the position of the cameras: if the inter-camera

distance is too small compared to the distance of the cameras to the zero depth planes, the 3D images will appear

layered (see Figure 5a). This is because the resolution in depth (illustrated by the voxels) is low; hence it is not

possible to distinguish small variations of depth. Only high variations are resolved, and only a scene composed of

discrete planes is visible. In turn, if the inter-camera distance is too high relative to the object distance, the resulting

video may be perceived as uncomfortable due to too high values of disparities [4]. As a consequence, the entire

depth budget is concentrated in a small depth zone (Figure 5b) , which however provides precise depth. Once the

content is shot, the second factor for depth rendering is the display: displays also have limited depth resolutions

(limited by display resolution). Hence, the depth is again quantized (Figure 6). For the present study, this last aspect

will not be considered, and only the impact of the source sequence characteristics on depth perception of 3D video

sequences will be addressed.
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Figure 6: Effect display resolution on depth rendering

C. Depth evaluation results

Several studies reported in the literature target the evaluation of depth. Studies considering depth layout evaluation

can use task-based experiments, with tasks such as the evaluation of the time required and the number of errors

during the localization of a tumor in a brain [21], a depth ordering task, following a path in complex 3D graphs,

or detect collisions [22], or evaluate the efficiency of air traffic control [23]. Other experiments like in Cuttin &

Vishton [6] or [24] evaluate the visual discrimination abilities: two objects are presented in each trial, and the

subject has to order the different objects. This step provides information on the depth contrast perception. Note that

these experiments are typically performed using sythetic signals. Experiments evaluating depth in natural images

are no direct alternative since the subject may be unable to distinguish between the depth quality and depth layout

when asked to provide depth ratings. Oliva and al. [25] carried out subjective tests and evaluated the depth layout

of still 2D images (considering only monocular cues). This, too, typically is a difficult task for the observers.

Other interesting studies focused on the depth degradations due to compression [1]; here, the authors evaluated the

quality, the depth and the naturalness of video sequences under different compression conditions, and relate quality

with depth. The results are quality requirements to achieve a good depth perception. The spatial resolution and

depth perception of stereoscopic images were evaluated by Stelmach et al. [2]. In their study, they observed that

decreasing the horizontal resolution by half does not affect the depth perception too much. The effect of crosstalk

on depth perception was studied in [26]. In the latter studies, it is difficult to determine the exact rating dimension

of the subjects: depth layout or depth quality. They were asked for depth ratings, but without differentiating between

depth layout and depth quality. It is likely that the test subjects provided ratings in terms of a combination of the

two scales. These studies provide valuable input to the research presented here, but content-dependency of depth

perception shall be first addressed.
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D. Instrumental depth metrics

Objective metrics have already been presented for 3D QoE evaluation: quality metrics for stereoscopic 3D images

are proposed in [27] [28] [29], and more specifically on depth evaluation, for the evaluation of the decrease of

depth quality in [30] compared to a reference image or a similarity measure to evaluate the quality of depth maps

in [31]. However these approaches assume that the reference has a perfect depth quality. Respective models extract

a set of features to evaluate the depth quality degradation compared to the reference. For depth evaluation of source

content, this approach is not meaningful, especially since no reference is available. In this case, a no-reference

approach is required to evaluate content or depth quality of the source content.

III. SUBJECTIVE EXPERIMENT

To evaluate the depth, a database composed of 64 source reference signals (SRCs) has been designed. A description

of each source sequence can be found in Table I. These SRCs were used at the highest quality available, and

contained various types of scenes: indoor, outdoor, natural, or computer generated sequences, and containing slow

or fast motion. The objective was to diversify at most the source material. All these sequences were full HD

stereoscopic videos; each view had a resolution of 1920x1080, with a frame rate of 25 images per second. Each of

the sequences was of 10s length. They were presented on a 23” LCD display (Alienware Optx, 120Hz, 1920x1080p).

It was used in combination with the active shutter glasses from Nvidia (NVidia 3D vision system). The viewing

distance was set to 3H, and the test lab environment was according to the ITU-R BT.500-12 recommendation [32].

Twenty four observers attended the experiment; their vision was checked, and it was assured that they passed the

color blindness test (Ishihara test) and the depth perception test (Randot stereo test). Subsequently, they pass all the

vision tests, the observers were trained using five sequences with different values of image quality, depth quality

and visual discomfort. During the training phase the observers had the opportunity to ask questions. After the

training had finished, the observers were asked to rate the 64 sequences on three different scales: overall quality

of experience, depth and visual comfort. The methodology used was Absolute Category Rating (ACR). QoE was

rated on the standardized five grade scale: “Excellent”, “Good”, “Fair”, “Poor”, “Bad”. Perceived depth was rated

on a five-point scale with labels: “very high”, “high”, “medium”, “low” or “very low”. Using this general depth

scale, the observers have rated their general impression about the depth, which takes into account both depth layout

perception and depth quality. The comfort was evaluated by asking subjects if the 3D sequence is “much more”,

“more”, “as”, “less”, “much less” - “comfortable than watching 2D video”. The test subjects were not presented with

2D versions of the video sequences, therefore they had to compare the 3D comfort with their internal references of

2D sequences. One test run took approximately 50 minutes, including the training session and a 3 minutes break

in the middle of the test.

IV. ANALYSIS OF RESULTS

The coherence of individual ratings of each observer with those of the other observers was checked by following

the β2 test as described in section 2.3.2 from ITU-R BT.500 [32]. The screening was done for each of the three
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Sequence Description Sequence Description

Alignment NAT, skydivers building a formation together, low texture BalloonDrop NAT, balloon of water hit by a dart, closeup

Bike NAT, cyclers, slow motion, lots of linear perspective BloomSnail NAT, closeup on flowers and snail, high depth effect

Building CG, circular movement around towers CarEngine CG, car engine, many moving objects, high disparities

CarMesh CG, car mesh rotating, low spatial complexity CarNight NAT, dark, many scene cuts (5), fire blast popping out

CarPresent CG, circular movement around car CarRace1 NAT, race, rain, fast motion, several scene cuts (7 in 10s)

CarRace2 NAT, race car, fast motion, several scene cuts (7 in 10s) CarRace3 NAT, race car, dust slowly flying towards the camera

Castle NAT, highly textured, temporal depth effect changes CristalCell CG, many particles, different objects in depth

FarClose NAT, skydivers, complex motion, increasing depth effect FightSkull CG, fast motion, low spatial complexity, high depth effect

FightText CG, slow motion, objects popping out Figure1 NAT, skydivers, complex and circular motion, closeup

Figure2 NAT, skydivers, complex motion, closeup, persons in

circle

Figure3 NAT, skydivers, complex motion, closeup group persons

Fireworks NAT, dark, lots of particles, good depth effect FlowerBloom NAT, closeup on flowers, high depth effect

FlowerDrop NAT, closeup on flowers and raindrop Grapefruit NAT, trees, highly textured, pan motion, high depth effect

Helico1 NAT, low texture, circular motion, low depth effect Helico2 NAT, medium texture, circular motion, low depth effect

HeliText NAT, medium textured, text popping out of the screen Hiker NAT, highly textured, person walking in depth

Hiker2 NAT, highly textured, slow motion, closeup on persons InsideBoat CG, indoor, walk through the interior of a ship cabin

IntoGroup NAT, pan motion, colorful, lots of objects in depth Juggler NAT, high spatial complexity, closeup on juggler

JumpPlane NAT, skydivers, fast motion in depth (far from camera) JumpPlane2 NAT, skydivers, fast motion in depth

LampFlower NAT, light bulp blowing up, flower blooming, closeup Landing NAT, fast motion, high texture, depth effect increasing

Landscape1 NAT, depth effect limited to one region of the image Landscape2 NAT, depth effect limited to one region of the image

MapCaptain CG, captain, map, slow motion, low spatial complexity NightBoat NAT, dark, low texture, camera moving around boat

Paddock NAT, race setup, high spatial complexity, lots of objects PauseRock NAT, bright, closeup on persons sitting

PedesStreet NAT, street, linear perspective, lots of motion in depth PlantGrass NAT, closeup on plant growing, grasshopper

River NAT, slow motion, medium texture, boats moving SkyLand NAT, skydivers, high texture, person moving closer,

closeup

SpiderBee NAT, slow motion, closeup on spider eating a bee SpiderFly NAT, closeup on fly, spider and caterpillar

SpinCar CG, car spinning, half of the car in front of screen StartGrid NAT, separate windows showing different race scenarios

StatueBush NAT, closeup on statue with moving flag StreamCar1 NAT, high spatial complexity, car moving in depth

StreamCar2 NAT, high spatial complexity, closeup on a car StrTrain1 NAT, train coming in, motion in depth, high textures

StrTrain2 NAT, train coming in, motion in depth, many objects SwordFight NAT, sword fight, movement limited to one area of image

Terrace NAT, persons chatting, camera moving backward TextPodium NAT, rain, fast motion, champaign and text popping out

TrainBoat NAT, train and boat, fast motion in depth, medium texture Violonist NAT, closeup on violinist and her instrument

WalkerNat NAT, persons walking between trees Waterfall NAT, closeup on water falling, highly textured

WineCellar NAT, low spatial complexity, indoor, closeup on persons WineFire NAT, closeup on a glass and fire, complex motion

TABLE I: Description of the source sequences. CG: Computer generated, NAT: Natural scene

scales individually. Observer could be kept for a specific scale but rejected for another. This was motivated by the

fact that observers may have misunderstood one scale, but may still correctly evaluate for the other scales. After

screening, four observers of the 24 were rejected on each scale: two observers showed strong variation compared

to the rest of the group on the quality and depth scales, two on the comfort and quality scales, one on the depth

and comfort scales, one on only the comfort scale and one on only the depth scale. None of the subjects showed

inconsistent behavior for all three scales. The results show a high correlation between the different scales (figure
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7). The three scales are closely related: a Pearson correlation of 0.74 is observed between QoE and depth, 0.97

between QoE and visual comfort, and 0.71 between depth and visual comfort. The very high correlation between

QoE and visual comfort could be explained as follows:

• It is worth pointing out that the video does not contain coding artifacts, so it is likely that people have

rated the QoE of the sequences according to the sources of disturbance they perceived: the visual discomfort

and eventually an influence of crosstalk between the two views although crosstalk was judged to be close

to imperceptible by the experimenters. Previous studies [33] show that when observers are asked for quality

evaluation, they usually do not take into account the depth in their rating (and then, 3D is not necessarily

better rated than 2D). Indeed, in the experiment described by Seuntiens, subjects had to rate 3D still images

which were shot with different inter-camera distances (0cm, 8cm, 12cm). These different inter-camera distances

provide different binocular depth perceptions, but did not affect the image quality ratings significantly in [33].

Hence the added value due to depth did not seem to influence the quality ratings to a large extent. On the other

hand, in presence of high disparity values as it may happen for sequences with a lot of depth, it may become

more difficult for the observers to fuse the stereoscopic views [34] [35]. This results in seeing duplicate image

portions in distinct areas of the videos and is likely to be transferred to the quality rating.

• Another alternative explanation is that observers did not really understand the visual discomfort scale. This

aspect has been addressed previously [36]. It has been observed that different classes of observers exist that

differ in their understanding and thus use of the comfort scale. In this study, it is possible that observers have

decided to use the comfort scale based on their QoE ratings.

It may be observed that there is a high variance between the source sequences in the here considered degradation-

free case. The observed difference may be due to the shooting and display conditions. As outlined earlier in this

paper, an objective metric to quantify these differences will be useful for content suitability classification, and a

first model algorithm will be presented in the following section.
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Figure 7: Scatterplots with regression lines showing the relation between the different evaluated scales
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V. MODELLING

Considering that observers have watched dedicated 3D sequences in the subjective experiment presented here,

and have also been asked to assess quality and visual discomfort in the same test, it is likely that they based their

judgment of depth on the added value they perceived with the 3D stereoscopic representation. That is why even

though monocular cues contribute to the depth perception, the prospective model presented here is based only on

binocular cues. The general structure of the model is depicted in Figure 8. There are four main steps: 1) Extraction

of disparity maps, 2) identification of regions of depth-interest, 3) feature extraction from selected areas, and 4)

pooling of features to calculate the final depth score.

A. Disparity module

The target of this first module is to extract a disparity representation that captures the binocular cues and

particularly binocular disparities. The most accurate way is to acquire disparity information from the video camera

during shooting. Indeed some video cameras are equipped with sensors which provide the ability to record the

depth. Using these depth maps, disparities can easily be obtained. At present, it is still rare to have video sequences

including their respective depth map. In the future this will be more frequent due to the use of video plus depth-

based coding, which will be applied to efficiently encode multiples views as required, for example, for the next

generation of multiview autostereoscopic displays. For the present study, this information was not available, and

has to be estimated from the two views. To estimate depth maps there exists the Depth Estimation Reference

Software (DERS) [37] used by MPEG. This software can provide precise disparity maps. However, it requires at

least 3 different views, and information about the shooting conditions (position & orientation of the cameras, focal

distances...), information not available for the present research and employed stereoscopic sequences.

In the literature, studies establish the relation between disparity estimation and motion estimation. This is motivated

by the analogy between the two tasks: finding pixel displacement between two frames. On the consecutive frames

t and t+1 for motion estimation and on the stereo views for disparity estimation [38]. It has then been decided to

use a dense optical flow algorithms to estimate the dense disparity maps. An extensive comparison of dense optical
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Figure 9: Results for the estimation of the disparity

flow algorithm is reported by the university of Middlebury [39]. Based on these results the algorithm proposed by

Werlberger et al. [40] [41] and available at GPU4Vision [42] was used to estimate disparities from stereoscopic

views since it is ranked between the algorithm which provides the best performance and is also particularly fast.

This motion estimation is based on low level image segmentation to tackle the problem of poorly textured regions,

occlusions and small scale image structures. It was applied to find the “displacement” between the left and right

stereoscopic views, providing an approximation of the disparity maps. The results obtained are quite accurate as

illustrated in Figure 9, and are obtained in a reasonable computation time (less than a second for processing a pair

of full HD frames on an NVidia GTX470).

B. Region of depth relevance module

The idea of the region of depth relevance module is that observers are assumed to judge the depth of a 3D

image using areas or objects which will attract their attention and not necessarily on the entire picture, because

during scene analysis the combination of depth cues seems to lead to an object-related figure-ground segregation.

For example, for the sequence depicted in Figure 10a, people are assumed to appreciate the spatial rendition of

the grass, and base their rating on it without considering the black background. In the same way, for the scene

shown in Figure 10b observers are expected to perceive an appreciable depth effect, due to the spatial rendition

of the trees and in spite of most of the remaining elements of the scene being flat. Note that this is due to the

shooting conditions. The background objects are far away, and hence the depth resolution is low, so that all objects

appear at a constant disparity. Further note that the disparity feature provides mainly relative depth information,

but it can also give some absolute depth information if the vergence cues are also considered. The region of depth

relevance module extracts the areas of the image where the disparities changes, and this way contribute as a relevant

depth cue. It is most likely that these areas will be used to judge the depth of the scene. In practice, the proposed

algorithm follows the process described in listing 1 (also depicted in Figure 11):

Listing 1: Estimation of the region of depth relevance

--------------------------------------------------------------------------------------------------------

Let the function Std, the standard deviation as defined by:

Std : RN 7→ R

X →
√

1
#X

∑#X
i=1

(
Xi − X̄

)2
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With X̄ the average value of the elements in X

And #X the cardinal of X

--------------------------------------------------------------------------------------------------------

Let the variables:

M, N, T: Respectively the number of lines, the number rows of the images and the number of

frames in the sequence.

LeftV iew = [ILn,i,j ]N×M×T ,∀(i, j, n) ∈ [1, N ]× [1,M ]× [1, T ], ILn,i,j ∈ [0, 255]3

ILn,i,j: The pixel value of the left stereoscopic view at the location (i, j) of the frame n

RightV iew = [IRn,i,j ]N×M×T ,∀(i, j, n) ∈ [1, N ]× [1,M ]× [1, T ], IRn,i,j ∈ [0, 255]3

IRn,i,j: The pixel value of the right stereoscopic view at the location (i, j) of the frame n

Disparity = [Dn,i,j ]N×M×T ,∀(i, j, n) ∈ [1, N ]× [1,M ]× [1, T ], Dn,i,j ∈ R

Dn,i,j: The horizontal displacement of the pixel IRn,i,j compared to ILn,i,j such that

ILn,i,j+Dn,i,j
= IRn,i,j.

Here, Dn,i,j is the output of the disparity module described in Section 5.A.

Labels = [Ln,i,j ]N×M×T ,∀(i, j, n) ∈ [1, N ]× [1,M ]× [1, T ], Ln,i,j ∈ N

Ln,i,j: The value of the label at the location (i, j) of the frame n resulting of the object

segmentation of the left frame using the mean-shift algorithm.

--------------------------------------------------------------------------------------------------------

Let region of depth relevance as defined by:

For each object, determine the standard deviation of disparity values within the object

V = [vn,l]T×N, ∀(n, l) ∈ [1, T ]× N, vn,l ∈ R

∀l ∈ [1,max(Labels)], vn,l = Std(Dn,i,j), (i, j) ∈ [1,M ]× [1, N ], Ln,i,j = l

The region of depth relevance of the frame n rodrn is the union of the objects which have a

standard deviation of disparity value greater than dth

RODR = [rodrn]T ,∀n ∈ [1, T ], rodrn ∈ ([1, N ]× [1,M ])N
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rodrn = {(i, j)|(i, j) ∈ [1,M ]× [1, N ],∃l ∈ [1,max(Labelsn)]|Ln,i,j = l, vn,l > dth}

In our implementation dth is set to 0.04

In the description of the region of depth relevance extraction, the mean shift algorithm has been introduced [43]

[44]. This algorithm has been chosen due to its good performance in object segmentation on the data base under

study, which has been verified informally for the segmented objects of a random selection of scenes.

Figure 10: Illustration of cases where it is assumed that not the entire image is used for judging the depth.

Input 

Object Decomposition

Object analysis

std(disparity) < dth

RODR

std(disparity) < dth

Figure 11: Illustration of the algorithm used for determining the region of depth relevance (RODR).

C. Frame-based feature extraction module

Once RODR per frame extracted, the next step is to extract the binocular feature used for depth estimation for the

entire sequence. The disparities contribute to the depth perception in a relative manner, which is why the variation

of disparities between the different objects of the scene are used by the proposed algorithm for depth estimation.

In practice, the proposed algorithm follows the lines described in listing 2, as illustrated in Figure 12:
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Listing 2: Estraction of feature per frames

The frame-based indicator is the logarithm of the standard deviation of the disparity values

within the RODR normalized by the surface of the RODR.

SD = [Sdn]T ,∀n ∈ [1, T ], Sdn ∈ RN

Sdn = {Dn,i,j |(i, j) ∈ rodrn}

FrameBasedIndicator = [FrameBasedIndicatorn]T , ∀n ∈ [1, T ], F rameBasedIndicatorn ∈ R

FrameBasedIndicatorn = Log(
Std(Sdn)
#Sdn

)

Input 

RODR Disparity 

Parameter Estimation

Disparity selection
according to RODR

standard deviation of 
disparities within RODR

f: std(disparities)

normalization 
& logarithm 

f: 1 / #disparities
f: log()

Figure 12: Algorithm used for determining the value of the depth indicator for a single frame

D. Temporal pooling

Until now, no temporal properties of the 3D video sequences were considered. To extend the application of our

approach from images to the entire video sequences as they are under study in this work, the integration to an

overall depth score has to be taken into account. Two main temporal scales can be considered, a local and a global

one.

1) Short-term spatio-Temporal depth indicator: Locally, the temporal depth variation can be used as a reference

to understand the relative position of the elements of the scenes. In the previous step, the evaluation of the relative

variations in depth of objects per image have been considered, which are extended to a small number of subsequent

images to address short term memory, since depth perception is expected to rely on the comparison between objects

August 6, 2012 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, NOVEMBER 2011 13

for consecutive frames. Since the fixation time is 200ms [45], it has been decided to take the temporal neighbourhood

into account by analyzing the local temporal variation of relative depth between objects for the evaluation of every

frame, to reflect the temporal variation used for evaluating the current frame. A sliding window of LT frames

corresponding to the fixation time and centered on the frame under consideration was used for the spatio-temporal

extension of the depth indicator. In practice, the algorithm is as implemented in listing 3, and illustrated in Figure

13:

Listing 3: Spatio-Temporal metric

--------------------------------------------------------------------------------------------------------

Let the variables:

LT ∈ 2N + 1 the size of a local temporal pooling window (for a frame rate of 25 frames per

second, LT = 5)

STdisp = [stdispn]T−LT−1,∀n ∈ [1, T − LT − 1], stdispn ∈ RN

stdispn the spatio-temporal disparities used for depth evaluation of frame n as in Section 5.C/

Listing 2.

--------------------------------------------------------------------------------------------------------

The spatio-temporal depth indicator is defined as:

stdispn = {Dt,i,j |t ∈ [n− LT−1
2

, n + LT−1
2

], (i, j) ∈ rodrn}

STIndicator = [STIndicatorn]T−LT−1,∀n ∈ [1, T − LT − 1], stdispn ∈ R

STIndicatorn = Log(
std(stdispn)
#stdispn

)

2) Global temporal pooling: Global temporal pooling is still work in progress: it is not trivial to pool the

different instantaneous measures to calculate an estimate of the global judgment as obtained from the observer. In

the case of quality assessment, there are several approaches for temporal pooling, such as the very simple averaging,

Minkovsky summations, average calculation using Ln norm or limited to a certain percentile. Other approaches

are more sophisticated [46] and deal with quality degradation events. Regarding the global estimation from several

local observations, it is usually assumed that if an error occurs people will quickly say that the overall quality of the

sequence is poor, and it will take some time after the last error event until the overall quality is considered as good

again [46]. In the context of our depth evaluation, this seems to be the inverse: observers who clearly perceived

the depth effect will quickly report it, and if there are some passages in the sequence where the depth effect is not

too visible, they seem to take some time to report this in their on overall rating. To reflect this consideration on

our model, we then decided to use a Minkovsky summation with an order higher than 1, to emphasize passages of
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Figure 13: Local temporal pooling

high short-term depth-values. The final mapping is then performed using a third order polynomial function.

Listing 4: Global temporal pooling

Indicator = 1
T−LT−1

k

√∑T−LT

2

t=1+LT

2

(STIndicatort)
k

In our implementation k is set to 4

MOSe = A× Indicator3 + B × Indicator2 + C × Indicator + D

In our implementation A, B, C, D are respectively set to −0.06064, −2.213, −25.79, −93.04 (

obtained by using the optimization function polyfit of MATLAB)

VI. MODEL PERFORMANCE

Figure 14 depicts the subjective depth ratings as compared to the the predicted subjective depth. The model

training and validation are carried out using cross - validation (6 combinations of training/validation). The model

achieves the following performance: the Pearson correlation R = 0.60, the root mean squared error RMSE = 0.55,

the RMSE* = 0.37, and the outlier ratio (OR) is equal to 0.83 / 21.33 (where 0.83 is the number of outliers on a

validation dataset subset composed of 21.33 sequences. The reported floating point values are mean values which

stem from the cross-validation) on our entire database for seven defined parameters (The threshold in the RODR

algorithm,the size of the local temporal pooling, the order of the Minkovsky summation, the four coefficients of

the polynomial mapping). These results show that there is still space for further improvements.

As it can be observed from Figure 14, eight source sequences are not well considered by the algorithm (plotted

as red triangles). These specific contents show a pop-out effect which apparently was well appreciated by the

observers, who rated these sequences with high depth scores. Two distinct reasons could explain these results: From
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Figure 14: Results of the model on the estimation of depth, the triangles represents the contents which have pop-out

effect, the circle represents a class of under-estimated content (which have a lot of linear perspective)

a conceptual point of view, the current algorithm does not make a difference between positive and negative disparity

values, and hence between the cases that the objects pop out or stay inside the screen. From an implementation

point of view, the disparity algorithm did not succeed to well capture the small blurry objects that characterize the

pop-out effect. This leads to an under-estimation of the depth for these contents. Without these contents, we achieve

a Pearson correlation of 0.8, an RMSE of 0.38, an RMSE* of 0.18 and an OR of 0 / 18.66.

Even though they do not have a strong effect on the general results of the model, a second type of contents could

also be identified (represented by the circles in Figure 14), which have been overestimated in terms of depth. For

the lower contents, it is still unclear what factors contribute to these ratings. Some of the sequences show fast

motion, some have several scene changes, and other depth cues may also inhibit the depth perception.

As a consequence, three factors are currently under study to improve the general accuracy of the model:

• Incorporate a weighting depending on the position in depth of the object (if they pop-out or stay inside the

display),

• Improve the accuracy of the disparity estimation,

• Consider the monocular cues which are in conflict with the binocular depth perception.

Listing 5: RMSE∗

let Xgth ∈ RN a set containing the ground truth values.

let Xest ∈ RN a set containing the estimated values.

let CI95i the confidence interval at 95% of Xgthi

∀i ∈ [1,#X], Perrori = max(0, |Xgthi
−Xesti | − CI95i )
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RMSE∗ : RN × RN 7→ R

(Xgth, Xest)→
√

1
#X−d

∑#X
i=1 (Perrori )2

With d the degree of freedom between Xgth and Xest

VII. CONCLUSION

This paper describes an objective indicator for characterizing 3D materials on the depth perception scale. The

model has been validated on a subjective depth evaluation database. The prediction performance of the model is

promising even though several perception-related considerations are still missing, such as a weighting based on the

position in depth of the object (if they pop-out or stay within the display). Further performance gain is expected

with the improvement of the low-level feature extraction such as the disparity estimation, which shows its limits

when it has to estimate the disparity of objects which pop out of the screen. Instead of an improved depth estimation

algorithm, the depth recorded by cameras can be used in case of future set-ups to include this information during

recording. The presented depth model forms the first part of a 3D material suitability evaluation framework. Further

studies target the evaluation of other dimensions which play a role for the evaluation of the appropriateness of 3D

video sequences.
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