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Abstract

C. burnetii is a Gram-negative intracellular Y-proteobacteria that causes the zoonotic disease Q fever. Q fever can manifest as
an acute or chronic illness. Different typing methods have been previously developed to classify C. burnetii isolates to
explore its pathogenicity. Here, we report a comprehensive genomotyping method based on the presence or absence of
genes using microarrays. The genomotyping method was then tested in 52 isolates obtained from different geographic
areas, different hosts and patients with different clinical manifestations. The analysis revealed the presence of 10
genomotypes organized into 3 groups, with a topology congruent with that obtained through multi-spacer typing. We also
found that only 4 genomotypes were specifically associated with acute Q fever, whereas all of the genomotypes could be
associated to chronic human infection. Serendipitously, the genomotyping results revealed that all hard tick isolates,
including the Nine Mile strain, belong to the same genomotype.
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Introduction

C. burnetii is a Gram-negative intracellular Y-proteobacteria that

causes Q fever, which is a zoonotic disease with a worldwide

distribution [1]. Q fever can manifest as an acute or chronic

illness. Acute Q fever is typically a self-limiting febrile illness

during which pneumonia or hepatitis can occur, whereas chronic

Q fever is a severe illness in which patients can present

endocarditis, vascular infection, osteomyelitis and chronic hepatitis

[1]. The major route of contamination with C. burnetii is aerosol. C.

burnetii displays antigenic variation in its lipopolysaccharides (LPS)

[2]. Phase I is highly infectious and corresponds to the natural

phase found in animals, including humans and arthropods,

whereas phase II is not very infectious, presents truncated LPS

and can be obtained after several passages in cell culture or from

embryonated eggs [1]. The C. burnetii genome was sequenced in

2003, and its size is approximately 2 Mbp, with a plasmid of

approximately 38 kbp [3]. Recently, 3 new isolates of this species

were sequenced [4].

Analysis of 16S rDNA gene sequencing data has shown that C.

burnetii strains isolated from a variety of geographical areas and

various hosts display considerable genetic homogeneity [5].

Restriction fragment length polymorphism (RFLP) analysis of

genomic DNA (gDNA) [6–8] and sequence and/or PCR-RFLP

analysis [9–12] of specific genes reveal genetic diversity between C.

burnetii isolates. The most extensive survey of C. burnetii genetic

diversity was reported by Glazunova et al. [13], who used multi-

spacer typing (MST) to genotype approximately 150 C. burnetii

isolates. More recently, a comparative genomic hybridization

(CGH) analysis was performed on a collection a 24 strains of C.

burnetii [14]. The availability of the C. burnetii genome sequence

allows a rapid assessment of whole-genome sequence variation by

using comparative genome hybridization (CGH) on microarrays,

allowing the determination of correlations between the genome

repertoire and the source of the organisms.

A long controversy related to the virulence of different isolates of C.

burnetii was resolved recently [13,15–18]. All types of strains can be

isolated from chronic infections that are determined more by host

factors than by bacterial factors. In contrast, only particular strains

have been isolated from acute infections, and the prototype strain,

Nine Mile, has been found to cause acute infection at a lower inoculum

concentration than the strain Q212, which is found in association with

chronic infection. Therefore, there is a difference of the virulence of

strains in causing acute infection that is correlated with the genotype, as

determined by MST, genomotyping or plasmid typing.

Q fever is currently re-emerging in different areas in Europe,

with a major outbreak of Q fever observed in the Netherlands

(causing both acute and chronic infections) [19] and in US military

personnel in Iraq [20]. These C. burnetii outbreaks bring to the

forefront the question of bacterial clonality, which could be related

to distribution of highly virulent clones. Alternatively, the apparent

massive increase in cases of Q fever could be related to improved

detection or increased risk of exposure to animal reservoirs [20].

The widespread outbreak that is presently occurring in the

Netherlands has been the focus of numerous molecular biology

investigations, including one that indicated that a single genotype,

or at least a reduction of heterogeneity, was implicated in the

outbreak [19,21]. We had the opportunity to test this genotype

using MST methods [13] and found that the putative clone

responsive for the outbreak was identical to a strain isolated from

an infected sheep vagina in Germany over 10 years ago and

several strains isolated from humans in France.
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Although these large outbreaks seem to be related to exposure to

domestic and wild animals, the role of arthropods in Q fever

transmission has to be considered. The role of ticks as vectors and

reservoirs has been discussed since 1937. Ticks may be infected by

C. burnetii during feeding; excrete it via feces, saliva and coxal fluid;

and transmit it transovarially and transstadially. The reference

strain Nine Mile was isolated from a Dermacentor andersoni hard tick,

and Q fever was initially presumed to be a vector-borne disease [22–

25]. At present, ticks are rare vectors for transmission of Q fever

[26].

In this study, we compared 52 isolates from patients and

animals (mammals, bird and ticks) from the C. burnetii strain

collection housed in our laboratory, including 2 isolates presenting

the same MST genotype as the putative epidemic clone from the

Netherlands using DNA whole-genome microarrays to perform

genomotyping to investigate associations of the gene repertoire,

source and clinical information for C. burnetii.

Materials and Methods

C. burnetii isolation, cultivation and purification
The isolate names, geographical/sample origin, plasmid type

and associated clinical disease are listed in Table S1. C. burnetii

were grown at 35uC on L929 cells using MEM (GIBCO,

Invitrogen, Cergy-Pontoise, France) supplemented with 4% SVF

(GIBCO) and 1% L-glutamine (GIBCO). Monolayers of cells and

the supernatants from three 175 cm2 flasks were harvested and

incubated with 1% trypsin (GIBCO) for 1 hour at 37uC. Released

bacteria were purified from L929 cell debris by differential

centrifugation. Purified bacteria were resuspended in 400 ml of

PBS and stored at 280uC.

gDNA extraction and amplification
Two hundred microliters of purified bacteria were incubated for

30 min at 70uC with 200 ml of AL lysis buffer (Qiagen,

Courtaboeuf, France) and 20 ml of proteinase K (Qiagen). gDNA

was extracted and purified using a QiaAmp DNA mini kit as

recommended by the manufacturer (Qiagen). gDNA purity and

concentration was checked using a NanoDrop (Thermo, Wing-

milton, USA). Subsequently, 10 ng of gDNA were amplified with

the processive polymerase phi29 using the GenomiPhi illustrator

V2 kit (GE HealthCare, Lifescience, Orsay, France). This strategy

was previously described for CGH experiments [14].

gDNA labeling and microarray experiments
The amplified gDNA was labeled with the Bioprime CGH

Labeling kit (Invitrogen) using d-CTP Cy3/5 fluorochromes (GE

HealthCare Lifescience) as recommended by the manufacturer.

Labeled amplified gDNA was purified using Pure Link PCR

purification columns (Invitrogen), and the level of fluorochrome

incorporation was quantified using a NanoDrop. Hybridizations

were carried out using two samples of labeled amplified gDNA

(150 pmol of each) that were labeled with Cy3 or Cy5 d-CTP. The

pooled samples were hybridized using the GE hybridization kit

(Agilent Technologies) as recommended by the manufacturer. The

mixture was applied to a Surhyb 1 array (Agilent Technologies)

and hybridized on the Coxiella burnetii array using an Agilent

hybridization chamber (Agilent Technologies). Microarrays were

hybridized for 17 h at 62uC in a rotating oven. Microarrays were

washed using GE washing buffers (Agilent Technologies), with

5 min of Wash-buffer 1 at room temperature, followed by 1 min of

Wash-buffer 2 at 37uC. Microarrays were dried using an

acetonitrile bath (VWR, Fontenay sous Bois, France) and scanned

using a microarray scanner C (Agilent Technologies) with XDR at

a 5-mm resolution.

Coxiella burnetii whole-genome microarray construction
OligoArray 2.0 [27,28] was used to design probes from 2,016

CDSs extracted from the NC_002971.gb Genbank sequence file

corresponding the genomic sequence of the Nine Mile reference

strain without plasmid [3]. OligoArray 2.0 integrates a BLAST

analysis against a non-redundant set of sequences and probe

secondary structure analyses [29]. Oligonucleotide calculation

parameters were set as follows: oligo length from 50- to 52 mers;

GC percentage from 35% to 55%; melting temperature from

82uC to 86uC. OligoArray 2.0 selected probes with the lowest

cross-hybridization and an absence of secondary structure and

balanced the set of probes in terms of melting temperature.

Oligonucleotides containing five consecutive As, Cs, Gs or Ts were

discarded. Following probe design, 1990 probes corresponding to

1990 distinct CDS where selected for synthesis. Probes were

ordered from Sigma-Proligo (Paris, FRANCE) as 59 amino-

modified oligonucleotides. Oligonucleotide stocks were aliquoted

for use in microarray fabrication. Oligonucleotides were diluted to

a final concentration of 35–50 mM in 35% dimethyl sulfoxide

(DMSO) containing 100 mM potassium phosphate (pH 8.0).

Coxiella burnetii - 2 k microarrays were printed with a Chip-

WriterProarrayer (Bio-Rad Hercules, CA) on commercial Hydro-

Gel slides (Schott, Mainz, Germany) and processed according to

the manufacturer’s instructions. Our microarrays were spotted in

quadruplicate and contained 1990 different probe genes, corre-

sponding to ca. 98.7% of ORF and around 5% of the total coding

sequence excepting plasmid ORF. The microarray design have

been deposited in the GEO database (http://www.ncbi.nlm.nih.

gov/geo/) under GEO platform accession number (GPL6675).

Analysis of microarray data
All microarray results have been deposited in the GEO database

(http://www.ncbi.nlm.nih.gov/geo/) under GEO series accession

number (GSE31543). The signal intensity and local background

were measured for each spot using the array pictures with Feature

Extractor software (Agilent Technologies). Data filtering normal-

izations were obtained using processing signal from obtained data

raw extraction using Feature Extractor. We used the means of four

replicates per probe to construct an M-A plot. Using the M-A

plots, we deduced a naı̈ve cut-off [30] to obtain genes that are

putatively lost or highly divergent from our reference. A matrix for

clusterization of our data was constructed using 0 for conserved

genes and 1 for genes that were putatively lost or highly divergent.

Clustering analyses were performed using Tmev [31,32]. We used

hierarchical clustering to generate a dendrogram with Euclidean

distance and complete linkage for distance metric calculation and

linkage methods, respectively.

Genomotyping and statistical analysis
To perform genomotyping, we identified the putative single

events of mutation. A matrix for clusterization of our data was

constructed using 0 for conserved genomic content and 1 for

putative events of mutation. Clustering analyses were performed

using Tmev [31,32]. We used hierarchical clustering to generate a

dendrogram with Euclidean distance and complete linkage for

distance metric calculation and linkage method, respectively.

Statistical analysis was performed using GraphPad Prism5

(GraphPad Software, Inc.). A principal components analysis

(PCA) was performed using Comprehensive Meta-analysis soft-

ware (Biostat, Englewood NJ).

Coxiella burnetii Genomotyping
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Results

CGH experiments
A CGH experiment using a whole-genome microarray was

performed to genomotype 52 isolates of C. burnetii to detect deleted

genes, as compared to the reference strain Nine Mile chromosome

sequence (NC_002971). The information from the collection of

isolates is listed in Table S1. To confirm gene losses, we compared

the results to the previous study using CGH in C. burnetii [14]. We

found comparable results between our deleted gene set and the set

obtained by the previous CGH study. The strains used in both

studies (HzS and S217) present similar gene content (Table S2).

Given the putative gene losses deduced from the hybridization

data from the 52 isolates, the genomic content of C. burnetii appears

highly conserved across the 52 tested isolates (Table S1). The

chromosomal deletion associated with phase II conversion [33]

was found in only two isolates (HzR and Luga) and will not be

included in this study. Comparative analysis showed that relative

to the NMI strain, the percentage of deleted or highly divergent

ORFs ranged from 0 – 2.5 % in S217. Heat map visualization of

genomic variations showed that differences are spread across the

genome (Figure S1). Only 161 genes from the NMI isolate were

predicted to be absent or highly divergent in at least one tested

strain (Table S3). Clustering analysis of genes that were putatively

deleted in at least one isolate indicated that there were three

distinct clusters (clusters 1, 2 and 3) (Figure S2). Clusters 1 and 2

contained genes with a high deletion frequency, whereas cluster 3

was mostly composed of 95 genes with a globally low deletion

frequency. Hot spots of variation are observed along the

chromosome (Figure S3).

Genomotyping
To perform genomotyping, we first identified deleted or highly

divergent genes and assigned them as single chromosomal mutation

events (Table S4 and Table S5) based on the methods described by

Beare et al. [14]. As shown in Figure 1A, we found that the isolates

were organized in two major (A and B) and one minor (C) group

that contained respectively 21, 30 and 1 isolate(s). Groups A and B

were comprised of 3 (A1 to A3) and 6 (B1 to B6) distinct

genomotypes, respectively. Low variability of genomic content was

observable within the genomotypes. However, only a few isolates

exhibited identical gene content, and small divergences occurred

within genomotypes. We also found that group A was associated

with deleted gene cluster 1 while clusters 2 and 3 were associated

with groups A, B and C.

MST-typing and genomotyping
We compared our genomotyping results to the MST genotyping

results described previously [13], which described 3 groups

presenting a similar topology (Figure 1B). MST genotypes 1 to

10 were included within group 1. Genotype 21 was included

within group 2, and the other MST genotypes were associated

with group 3 Thus, genomotype groups A, C and B include

respectively MST genotypes 1 – 8, MST genotype 21 and the

other MST-genotypes. We found only three exceptions in this

analysis, as isolates CB76, CB93 and CB94 were not associated

with the expected genomotype groups. Despite these exceptions,

Figure 1B shows that there was low divergence between the

genomotyping and MST genotyping results, and the two different

methods showed congruence in the clusterization of isolates.

Gene content and genomotyping associated with acute
infection

We attempted to find genes associated with the acute clinical

form of Q fever. We found that 4 clusters were associated with

acute infection (A2, A3, B4 and B5). We hypothesized that these 4

clusters represented genomotypes that may cause acute infection.

Thus, we focused on genes that were specifically deleted in acute

isolates and their clusters and were present in chronic clusters and

Figure 1. Typing of the collected isolates. (A) Genomic content clusterization of the isolates based on mutational events that allow determining
different genomotypes. (B) Comparison of topology for genomotyping and MST typing.
doi:10.1371/journal.pone.0025781.g001

Coxiella burnetii Genomotyping
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vice versa. We found that 4 deleted ORFs were significantly

associated with acute infection isolates but also genomotypes

containing acute infection isolates and their clusters (Table 1).

These genes are annotated as hypothetical protein.

Gene content and genomotyping associated with
physiopathology

We sought to determine whether the gene content of different

strains could be correlated with the physiological and geographical

information listed in Table S1. Comparisons of these data showed

that the human isolates appeared to have more genes deleted than

the animal isolates (Figure 2A). Furthermore, the arthropod

isolates presented fewer deleted genes, particularly from the hard

ticks (Luga, Derma, 5116 and NM), which did not present any

deleted or highly divergent genes (genomotype B1). We also found

that isolates associated with the plasmid QpH1 has fewer deleted

genes compared to those isolates from the plasmids QpRS and

QpDV (Figure 2B). Animal isolates were also principally

associated with the QpH1 plasmid type (Table S1). We performed

PCA to detect associations between gene absences or genomotypes

and clinical or geographical information. We did not find any

obvious associations with gene absence, but we did confirm, as

previously mentioned, that the B1 genomotype is associated with

arthropods, particularly with hard ticks (Figure 2C).

Discussion

In this study, we examined the genomic content of 52 isolates of

C. burnetii compared to the reference strain NMI using a global

genomic approach based on comparative genomic hybridization

by whole-genome microarray. A previous CGH analysis of C.

burnetii was performed on 23 different isolates and two antigenic

variants of NMI. Our collection included 3 strains in common

with those used by Beare et al. (NMI, S217 and HzS), which were

used as positive controls in this study. Although microarray used in

the previous study has many more probes (covering approximately

30% of coding) compared to our home-made microarray (5%

of coding sequence), we found high homologies between our

results and those of Beare et al. [14] (Figure S1). In this regard,

we conclude that we obtained robust and confirmed data to

perform genomotyping with our microarray results. Several typing

methods have been developed for the causative agent of Q fever

[5,7,8,10,12–14]. Glazunova et al. [13] and Beare et al. [14]

showed that these different methods of typing are globally

congruent. In our study, we compared whole-genome typing with

MST methods. This comparison showed that the two methods

produced a similar clusterization of isolates within three groups

with significantly divergent gene content (Figure 1B). Thus, the

different isolates of C. burnetii present divergent evolution of the

three groups that is independent of geographic origin and clinical

context, as previously proposed by Glazunova et al. [13] and Beare

et al. [14].

In several animal models, both the amount of inoculum used

and the strain influence the presence and manifestations of acute

pneumonia during Q fever [17,18,34]. However, there is no

evidence that isolates from chronic and acute human infections

differ when large collections are screened by different methods of

typing [13]. A preliminary analysis based on MST-typing showed

that acute Q fever was induced by isolates belonging to MST

genotypes 1, 2, 4, 16 and 18 and that the plasmid QpDV was

highly associated with acute Q fever. Isolates from chronic

infections were associated with all MST-genotypes and all of the

observed plasmid types. In our study, we found that only

genomotypes A2, A3, B4 and B5 contained isolates from acute

Table 1. ORFs associated with acute infections.

Locus Tag Description Acute isolates (7) Acute Genomotypes Isolates (20) Other (32)

CBU_1214 Hypothetical protein 5 13 0

CBU_1216 Hypothetical protein 5 13 0

CBU_1215 Hypothetical protein 6 16 0

CBU_0563 Hypothetical protein 7 17 0

The table shows the number of isolate presenting the putative deletion of different ORFs. We performed the investigation for 3 different categories, the isolates
associated with acute manifestation (Acute isolates), isolates of the genomotypes that contain isolates associated with acute manifestation (Acute genomotype Isolates)
and isolates from genomotypes that do not contain isolates from associated with acute manifestation.
doi:10.1371/journal.pone.0025781.t001

Figure 2. Association with gene repertoires and information. (A) Association of plasmid type and the number of deleted genes. (B)
Association of the source of isolation and the number of deleted genes. (C) Representation of PCA analysis of source and genomotyping data. The
blue circle represents the strongest associations.
doi:10.1371/journal.pone.0025781.g002
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infections. Based on these associations, we found four deleted or

highly divergent ORFs with unknown functions that were signif-

icantly associated with acute Q fever. Furthermore, the previous

microarray genomic analysis showed that isolates from acute

infections had a comparable gene repertoire to that of genomotype

B1 [14]. Because no genomotype was specifically associated with

chronic Q fever, we confirmed that all isolates could be involved in

chronic infections, as previously proposed [13,16]. Previously, Beare

et al. has mainly associated acute Q fever with B1 genomotype [14].

We described four additional genomotypes that were associated with

acute infections compared to the previous study. Based on the results

obtained using previous methods of typing collected isolates and on

studies of acute Q fever in animal models, we have schematically

represented the putative factors involved in Q fever infections

(Figure 3). After the primary infection, we speculate that minimal

inoculum is necessary to induce acute manifestations in case of the

strain present specific plasmids, MST genotypes or genomotypes.

The chronic manifestation could be induced by all the strains whether

the host presents favorable clinical field.

A bias in sampling exists in this study. Whereas chronic Q fever

affects 20 times fewer patients than the acute form of the disease,

most of the human isolates used here were from chronic disease

patients, and the isolates from acute infections were mainly obtained

from France. However, our collection of isolates contained 2 isolates

presenting an identical MST-genotype to the putative epidemic

clones, which came from a patient suffering from chronic Q fever in

Marseille (CB74) and from the placenta of a goat in Germany

(Z3055). The 2 isolates revealed comparable, but different gene

repertoires and were associated with different genomotypes.

Surprisingly, the comparative genomic analysis of our isolate

collection revealed that animal isolates (especially from arthropods)

exhibited fewer deleted genes globally than human isolates

(Figure 2A). All isolates from hard ticks presented gene content

identical to the Nine Mile I strain. Beare et al. [14] previously

found that two isolates associated with hard ticks exhibited

identical gene content to NMI (Dugway 5G61-63 and BDT 1),

and C. burnetii has been identified in many species of ticks [26].

A major limitation of our study is that we only used the genome

of the reference strain Nine Mile to design the microarray [3]. It

was the only genome available at the beginning of our study, and

the addition of sequences from other strains may contribute to a

better understanding of the C. burnetii cycle and Q fever

pathophysiology. However, we found here, for the first time, that

isolates from hard ticks exhibit the same gene content and

probably the same origin. Moreover, we observed the loss of 4

putative genes associated with virulence, fuelling the hypothesis

that bacterial pathogenicity is driven more by gene loss than gene

gain.

Supporting Information

Figure S1 Representation of genomic content of the 52
isolates. The figure represents the genomic variation of the

different isolated compare to the reference strain Nine Mile I. The

red marked ORFs are considered as deleted and the black marked

ORFs are considered as conserved.

(PDF)

Figure S2 Clusterization of genes deleted at least one
time among the collected isolates. The figure represents a

hierarchical clustering of the genomic content among isolates. The

red marked ORFs are considered as deleted and the black marked

ORFs are considered as conserved. The hierarchical clustering has

been performed using the average linkage and the Euclidian

distance for classification of isolates and ORFs both.

(PDF)

Figure S3 Frequency of gene deletions. The figure

represents the frequency of variation that could occur within the

different isolates along the Nine Mile I chromosome. The

frequency along the chromosome is represents as heat map (A)

and as histogram (B).

(PDF)

Table S1 C. burnetii isolates used in this study.
* Epidemic genotype isolates.

(XLSX)

Table S2 Comparison with the two different CGH
studies. The table represents the comparison of results obtained

from the two CGH studies. Grey cells represent genes that are not

Figure 3. Bacterial factors involved in Q fever.
doi:10.1371/journal.pone.0025781.g003
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spotted. Black cells represent ORFs that have not been found

deleted. Red cells represent ORFs that have been found deleted.

Orange cells represent ORFs that have been found partially

deleted. Bleu cells represent ORFs with a small insertion

(XLS)

Table S3 Genomic content of the 52 isolates. The table

presents a matrix with the ORFs (with annotation) that have found

deleted in at least 1 isolate and the different strains (with

information). In the matrix the value 0 is associated to non-

deleted ORFs and the value 1 to deleted ORFs.

(XLS)

Table S4 Different genomic events found. The table

presents the different events assumed in our study. Yellow cells

represent ORF that have been found deleted in our study and the

event associated with a combination of deletion is written in blue.

(XLS)

Table S5 Genomic events found in the 52 isolates. The

table presents a matrix with genomic events that have been

assumed for each strain. In the matrix the value 0 is associated to

the absence of the genomic event and the value 1 to the presence

of the genomic event.

(XLS)
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