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Abstract

The physical model considered in the present numerical work is a square air-filled cavity
cooled from below and aboweith a heated square body located at the cavity center. The aim is
to establish the effects of radiation interchanges amongst surfaces on the transition from steady,
symmetric flows about the cavity centerline to complex periodic flows. Owing to the low
temperature differences involved (1<KAT < 5 K), the two-dimensional model is based on the
Boussinesq approximation and constant thermophysical fluid properties at room temperature.
The cavity walls are assumed grey and diffuse. The flow structure is investigated for various
Rayleigh numbers, emissivities of the wall surfaces and sizes of the inner body. The results
clearly establish the influence of surface radiation, both for steady and unsteady flows. For the
geometry and thermal boundary conditions considered, the Rayleigh number for the transition to
unsteady flows is considerably increased under the influence of radiation. This work underlines
the difficulties in comparing experimental data and numerical solutions for gas-filled cavities

partly subjected to wall heat flux boundary conditions.

Keywords. Natural convection, Surface radiation, Electronics cooling, Numerical study,
Unsteady flows, Bifurcations

Abbreviated title: Coupled radiation and free convection



Nomenclature

A aspect ratio of the inner body, A = W/L
B dimensionless radiosity

k fluid thermal conductivitfv/m K)

L length of the cavity side-walls (m)

N, radiation number

Nu Nusselt number

P dimensionless motion pressure

Pr Prandtl number, Pr fv

Ori net dimensionless radiative heat flux along surface “i”
Ra cavity Rayleigh number, Ra ¢BATL¥av
Ra top Rayleigh number, RaA’Ra.

t dimensionless time

T temperature (K)

To reference temperature,=T(Th + T.)/2 (K)
\ dimensionless velocity vector

W length of the sides of the inner body (m)
(x,y,z) Cartesian coordinates with the origin at cavity center.
Greeks

o thermal diffusivity (ffs)

€ emissivity

AT temperature differencel & Ty — T (K)
n temperature ratiomnT/To

] dimensionless streamfunction

p density (kg/th

o Stefan-Boltzmann constant (Vi1

0 dimensionless temperature difference
Subscripts

c cold wall

cv convection

h hot wall

r radiation

S side walll

Superscripts



* dimensional quantity

1. Introduction

In this paper, the results of a numerical study of combined natural convection and surface
radiation from an inner body enclosed in a cavity are reported. Relevant to the present work are
engineering applications such as electronic cooling, manufacturing processes, building energy
components ... in which natural convection heat transfer between a gas-filled enclosure and
inner bodies occurs. Considerable research has been performed for fully partitioned cavities or
obstructions in the form of partial baffles centered vertically in a vertical enclosure and, for
various shaped obstructions located within a rectangular cavity because the obstructions may
increase as well as decrease the heat transfer. For tall cavities with multiple partitions, the
numerical study by Rabhi et al. [1] demonstrates the effects of surface radiation on the overall
thermal resistance of partitioned cavities.

Relevant to the geometry investigated in the present study are the work by House et al. [2]
who considered the influence of a centered square obstruction in a differentially heated cavity,
and those by Deng and Tang [3], Ha et al. [4] and Lee et al. [5,6]. More recently Bouafia and
Daube [7] reconsidered this class of problem by using the low Mach number approximation
[8] for large temperature differences between a heated body within a rectangular cavity with
cold vertical walls and insulated horizontal walls. This approximation allows to take density
variations into account in all terms of the conservation equations, and it based on a pressure
decomposition into a leading term, assumed spatially uniform, and a second-order, fluctuating
term.

Studies on combined natural convection and surface radiation from heated body inside a
cavity are more scarse (for an overview of recent references, see Bouali et al. [9], Lauriat and
Desrayaud [10], Mezrhab et al. [11]) while the interaction of natural convection and radiation in
participating media was the purpose of many studies (see Colomer et al. [12], for example). The
paper by Mezrhab et al. [13] may be considered as the most related study to the present work.
They considered a differentially-heated cavity of square cross-section containing a conducting,
centered square body. Amongst the conclusions drawn for this particular configuration, the effect
of the inner body on the flow field and heat transfer was shown much important when surface
radiation exchanges were taken into account. In the range of Rayleigh number considered, it is
also shown that radiation augments the fluid velocities in comparison with those obtained for an
empty cavity. It what follows, it will be shown that surface radiation has opposite effects for the

boundary conditions considered herein, and on the stability properties of the flow.



There is still lacking information about the influence of radiation exchanges between surfaces,
even when considering the simplest model based on gray, diffuse surfaces. For example,
although many experimental, numerical and theoretical works are available in the archival
literature, some questions remain open, in particular the relevance in comparisons between
experimental data and numerical simulations when the experiments are conducted for gas-filled
cavities (generally air at an average temperature close to room temperature). Up-to-date flow
visualization techniques are widely used (Cesini et al. [14], Leplat et al. [15]), but the
requirements are generally that two parallel walls should be transparent to laser beams in order to
allow optical access to the cavity. Except for small scale experimental set-up for which glasses
having high infra-red (I.R.) transmittance can be used (such as KRS-5 or KBr crystal material),
the experiments are often conducted by using common glass window or polycarbonate sheets,
opaque at I.R. wavelengths corresponding to room temperature. As it is well known, these
materials have also a high emissivity (close to one) for this wavelength domain. Therefore,
owing to the low temperature differences involved in many experimental work (typically of the
order of 10 K around ambient temperature in air-filled cavities), it was assumed that radiation
exchanges amongst the walls have a negligible influence on the flow and temperature fields.
Such an assumption may be justified if a great care is taken during both designs of the
experimental set-up and measurements. Unfortunately, experiments are still conducted to
determine routes to chaos (bifurcation phenomena) or to validate direct numerical simulations
(DNS) of weakly turbulent flows without taking into account the right boundary conditions at the
semi-transparent walls and, consequently, the effects of surface radiation on the critical
parameters.

The purpose of this investigation is to emphasize the effect of radiation exchanges amongst
surfaces on the stability properties of natural convection flows around an inner body. To this end,
a numerical analysis is performed for natural convection from a single horizontal, heated solid
body of square section immersed at the center of an air-filled cavity of square cross section, as
shown schematically in Fig.1. The solid body is assumed at uniform hot tempergtalesd to
ambient temperature (300 K). The vertical side walls are adiabatic while the lower and upper
horizontal walls are isothermally cooled at a temperatuyradt very different from J. We are
particularly interested in the flow transitions (or bifurcations) which occur when the Rayleigh
number is increased through increases in the temperature difference between the inner body and
the cold horizontal surfacesT = Ty —T¢) within the range [1 K, 5 K] for a square cavity whose

side length is L = 10 cm, containing a body having a side length W ranging from W =2 cm to W



= 8 cm, as in the experiments conducted recently by Ménard [16] and Leplat [17]. Since the
study concerns an air-filled cavity, the Rayleigh number based on L and on physical properties of
air at 298.15 K is very close to Ra 10 AT.

The influence of radiation exchanges amongst the surfaces on the flow field originates in the
thermal boundary conditions applied at the vertical side walls. By assuming the side-walls as
isothermal, radiation has no effect on the flow structure. On the other hand, noticeable interaction
between convection and radiation arises if heat flux boundary conditions are applied at some
parts of the cavity walls, while the emissivities of the surfaces are not close to zero. In order to
reduce the heat losses at the non isothermal parts of the walls, most of the experimental set-ups
were designed such that the non-isothermal walls may be assumed as adiabatic, so that the
number of parameters involved is reduced. Unfortunately, the adiabatic conditions are the worst
for experimental studies of natural convection in gas-filled cavities when the emissivities of the
thermally insulated surfaces are high.

The present study being restricted to two-dimensional flows, the Rayleigh number should not
be too high in order that this assumption may be assumed valid, as in Boufia and Daube [7]. For
Ra much higher than the supercritical value corresponding to the geometric configuration
investigated, the experimental and numerical results by Leplat [17, 18] for A = W/L = 0.4 and
AT = 9.6 K show indeed that complex 3D flows develop. bgkeve that the effect of surface
radiation would be similar to those discussed in the present study because larger temperature
differences imply also larger effects of radiation on the topology of chaotic flows. A

comprehensive study of such flows is beyond the scope of the present work.

2. Governing equations

The dimensions of the box and of the heated inner solid body and, the temperature difference
are such that the flows generated are assumed two-dimensional, incompressible, laminar and that
the Boussinesq approximation can be applied with constant fluid properties. The surfaces are
supposed to be gray and diffuse and, separated by a radiatively nonparticipating medium. The net
radiative heat flux distributions are calculated by using the well-known radiosity-irradiation

method [19, 20]. The governing equations can be written in dimensionless form as

OV=0 (1)
%_:/+V_DV:—DP+PrD2V— Ra Preﬁ )
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The above equations were cast in dimensionless form by scaling length, time, velocity, pressure
and temperature difference (T —)Tby L, L%a, Vo = o/L, pV¢® and AT. Therefore, the

dimensionless variables in the above equations are defined as
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where superscript « * » stands for dimensional quantities.

For the boundary conditions, no-slip velocity conditions are applied at the boundaries. When
radiative interchanges among surfaces are accounted for, the thermal boundary conditions at the
adiabatic walls must include the contribution of the net radiative heat flux. The net radiative heat
flux distributions are axially symmetric provided that the flow is also axially symmetric.
Otherwise, the radiosity distributions being dependent on the wall temperature profiles,
dissymmetry in the flow field implies different radiative heat flux distributions at the vertical
walls. In what follows, the scale for the radiative flux and radiositiis. &he net radiative flux
density along the surfaces of the diffuse-gray and opaque, vertical walls is written in the

following dimensionless form:

9, =B-2 [, BEO)KG)AS (5)

where B(r;) is the dimensionless radiosity along surface S

B (6)=47"(0)+a-2)) [ B ()KG.5)0S ©

wheren; = T/Ty is the dimensionless temperature used for non-dimensionalizing the radiation
part of the problem. The position vectorsandr; denote the locations of elementary surfaces
dS and d$on surfaces;&nd § The kernel function K is defined as

d|:u|$—dsJ

S (7)

K(ri,rj)z

wheredFgsi.gsjis the elementary view factor between d&d d$[20]. The N surfaces involved

are the four walls of the cavity and the four sides of the inner body (i.e. N = 8).

The thermal boundary conditions are:



6= 0.5 at the inner body surface (8a)
6= -0.5 at the bottom and top horizontal surfaceg=0.5 and0.5 (8b)

? =N, q,(y) atthe adiabatic cavity side wallsxat-0.5and0.5 (8c)
X

Yi

whereN;, = oTg* L/kAT is the radiation number. Whatever titevalue, the radiation effects may

be discarded provided that the wall emissivity is very small.
The local Nusselt number along the walls is defined as:

Nu(r,)=-n.06+ N, q; (r)

= Nu, (r;) + Nu(r) ©)

wheren; is the outward unit normal to wali” Nuc, and Ny are the local convective and
radiative Nusselt number, respectively. The average Nusselt number along a side wall is obtained

by integration along the wall.

3. Numerical methods

Calculations were carried-out using the control volume code ANSYS FLUENSys Fluent
12 User'Guide [21])Results of the simulations were collected and processed by employing in-
house softwares.

Collocated, rectangular, structured and weakly non-uniform grids were used on account of the
expected flow structures. The Quadratic Upwind Interpolation for Convective Kinematics
scheme (QUICK) was used for the advective and transport terms in order to compute third-order
truncation error of the convected variables [22]. The velocity-pressure coupling was solved with
the Pressure-Implicit with Splitting of Operators algorithm (PISO [23]) since transient
computations were carried out, and the pressure was calculated with a body-force weighted
scheme which is well adapted for natural convection flows.

The governing equations were solved either in their transient form, sequentially, with a second-
order decoupled implicit scheme (segregated solver) or using the implicit coupled scheme for
purely steady approaches. In both cases, the implicit treatment of the equations was achieved
using an iterative solver with a convergence criterion &fadfd 10 for unsteady and steady
problems, respectively. The radiation fluxes were updated once every 10 iterations of the

iterative solver ensuring the implicit coupling of all the variables and the radiosity field was



assumed converged when its maximum normalized changes from one sweep to the next was less
than 10.

Validations of the results for pure natural convection flows were carried out by comparison of
our results with those reported in Leplat [16]. A mesh study for uniform grids was also
conducted using a steady approach and the dependences of the wall heat fluxes on the grid
resolution are reported in Table 1. Comparison of these results with those obtained with a
150x 150 weakly non-uniform grid (see Tab. 2 fer= &5 =0) shows a good agreement and
justifies the use of this latter mesh which presents a good compromise between accuracy and
computational loads.

The computational costs depend strongly on the flow regime. For steady flows <a2 R&
for pure natural convection with a 150x150 grid, for example, the CPU-time is about 2900 s to
reach convergence on a workstation with a mono-processor (2.8GHz) and 4GB of RAM. With
radiation taken into account, the CPU-time is increased up to about 3500 s. For unsteady flows,
one thousand time-steps requires about 7 hours for pure natural convection and more than 8

hours with radiation
4. Resaults

All the computations were carried out for a square cavity of L = 10 cm side-length, containing
a centered, square body made in aluminum, having a side length ranging from W =2 cmto W =
8 cm. The average temperature of air was kept fixed atZ98.15 K ¢ = 2.15 10 m’/s, Pr =
0.71). The temperature difference between the hot inner body and the cold horizontal surfaces
(AT =T, — T) was varying between 2 K and 4 K. The emissivity of the inner body surface was
en =0.05 for all of the cases investigated. The reference heat flux used for the dimensionless heat
flux is thus g = 0.2607AT (W/m?) and the radiation number is &/1718AT.

4.1. Case A = 0.4 steady flows

In that case, the flow is stable up to a Rayleigh number very close toRES (i.e. AT =2
K) when neglecting radiant interchanges among the surfaces. Below this Rayleigh number, the
flow is steady and symmetric about the vertical centerline of the cavity (reflection symmetry,
Boufia and Daube [7]).

4.1.1. Pure natural convection

The isothermal patterns and streamlines displayed in Fig. 2a for R4G and A = 0.4 show
that the flow structure consists in two symmetric, counter-rotating, Rayleigh-Bénard type cells at

the upper part of the cavity delimited by two large cells rotating in opposite directions along the



vertical walls (clockwise at the right-hand side). These side-cells extend up and penetrate into the
thermally stratified fluid layer below the inner body. For this case, the Rayleigh numbers based
on the distance between the cavity and inner solid walls (e = 3 cm)ar&&20 for the bottom

and upper parts of the cavity. Therefore; Bang larger than 1708, potentially unstable flows
occur within the horizontal upper part of the cavity (note thaER&08 forAT =0.63 K). From

our computations and those reported in Leplat [17], the flow undergoes a bifurcation leading to a
periodic motion as it will be discussed in the next section. About the fluid layers along the
vertical sides, the effective Rayleigh numberss, Rauld be evaluated from a characteristic
temperature differenc&Ts= Ty, —Tsige Where Tige iS the average temperature of the pars’

or C"'D” (see Fig. 1) of the adiabatic walls facing the inner body {R&700AT). These parts

being obviously the hottest parts of the side wallgjsemaller than Ras can be seen in Fig. 3

from which it is found that Rex 2295 ATs~ 0.85 K) when neglecting surface-to-surface

radiation exchangesq(= &s =&, = 0).
4.1.2. Effects of surface radiation

The effects of radiation were considered for four cases: first, the asymptotic case of four black
surfaces of the cavity{=es = 1). This case corresponds to the emissivities of the wall surfaces

in the experimental set-up used in Ménard [16] and Leplat [17], i.e. black cold horizontal walls,
side walls made of double-glazing windows. Second, the isothermal, cold horizontal surfaces
made in copper could have been polished instead of being painted in black. In that case, we
assumed that their emissivities could be closg $0®:05 while double-glazing windows are still

used to allow flow visualizatiore{ = 1). Third, we considered that the four side walls have the
same emissivity:, = &s = 0.05 (insulated vertical walls covered with aluminum sheets, for
example). Fourth, we assumed that the four cavity walls were slightly oxidized{= 0.1).

The averaged convective Nusselt numbers at the various surfaces shown in Fig.1 are reported in
Table 2 for these four cases. Due to space limitation, the streamlines and isothermal patterns are
plotted in Fig. 2b and 2c for the casgs{0.05,es=1) and . =&s= 1) only.

Comparisons between Figs. 2a (pure natural convection) and 2b shows a rather small effect of
radiation exchanges on the flow field, and effects of radiation restricted to small fluid layers

along the vertical adiabatic walls where the impingements of the isotherms are not perpendicular
to the black surfaces. The largest effects of radiation are seen at the bottom part of the cavity
where the thermal stratification differs. However, these effects of radiation may be assumed to

have a small influence on the main flow circulations, and thus on the bifurcation path to unsteady



flows. The reason is that the temperature distribution along the vertical walls does not differ

much from that for pure natural convection, as can be seen in Fig. 3.

When the cold horizontal walls are recovered with a black paiat 1), a comparison between

Fig. 2a (no radiation) and 2c shows that the fluid recirculations in the vertical side layers are
noticeably increased (about 30%). The explanation can be found in the decrease in the adiabatic
wall temperatures, as can be seen in Fig. 3. It is found thatdReases then up to 4185 due to

the reduction of about 1.3 K in the mean temperature of segment A’B”. Since the emissivity of
the hot inner body is very small,(= 0.05), the heating of the adiabatic walls by radiation is
insignificant. On the other hand, the view factors between the horizontal cold surfaces and the
vertical wall surfaces being quite large.{F 0.46 as a rough approximation) due to the
relatively small size of the inner body, the radiation exchanges between the vertical sides and the
cold horizontal surfaces lead to significant decreases in the temperatures of the adiabatic walls.
Radiation has a rather weak effect on the Rayleigh-Bénard cells because the two horizontal, top

surfaces BC and B'C’ are isothermal.

Finally, since the effect of the radiation exchanges amongst the cold and adiabatic surfaces are to
decrease the adiabatic surfaces temperature, it could be assumed that the case of a cavity with
four cold walls at T= 297.15 K is an asymptotic configuration. In that case, surface radiation
has no effect. Through comparisons between Fig. 2a, 2c and 2d, it can be deduced that the flow
structure predicted for isothermal, cold vertical walls (Fig. 2d) is closer to the experimental
conditions than that for pure natural convection in a cavity with two adiabatic, non-radiating
vertical surfaces (Fig. 2a). The values of the convective Nusselt number at the surfaces of the
inner body, reported in Table 2, support this observation. The stabilizing influence of radiation
can be indeed exemplified by the increase in the fluid recirculations produced within the vertical
layers which, in turn, leads to higher convective heat flux at surfaces A’'B’ and C'D’.

The increases in fluid recirculations along the side walls caused by radiation can be
depicted by the variation of the maximum value of the streamfunction (Fig. 4). It was found
that the flow rate increases almost linearly with the emissivity according to the smoothed law:

Wmax= 1.464 + 0.339 ¢ for A= 0.4 & = ssand Ra = 3.10

The question is whether two-dimensionality of the flow field may be invoked. In order to check
this assumption, 3D simulations were carried out for a 18 cm-depth cavity, i.e. the length of the

experimental set-up in [17]. Isothermal patterns are displayed in Fig. 5a for pure natural

10



convection and in Fig. 5b in the case of four black walls. These patterns for the middle plane
section (z* = 0) and two symmetrical sections (z*=-4.5 cm and z* = 4.5 cm) clearly show that
3D effects can be neglected over most of the cavity depth for Ra % ZH® influence of

surface radiation does not differ from that found through 2D-simulations.

The conclusion which could be drawn is that the experiments conducted for four black walls,
two adiabatic vertical walls and two cold isothermal walls, lead to measurements far from those

expected for pure natural convection.

4.2. Case A = 0.4: unsteady flows

4.2.1. Pure natural convection

As described in the previous sections, the flow structure consists in two symmetric counter-
rotating Rayleigh-Bénard cells above the heated body, delimited by two large circulation flows
along the vertical walls. In the classical Rayleigh-Bénard problem between infinite plates, the
natural dimensionless wavelength based on the fluid thicknesgv&127 ~ 2 at the
conduction/convection transition, and then increases with Ra. In the present configuration, the
Rayleigh-Bénard cell stretching is limited from below by the size of the inner body (W = 4 cm)
and also by the distance between the heated body and the cold horizontal surfaces (e = 3 cm).
Since W/e = 1.33, this distance is smaller than the natural wavelength. If the two large circulation
flows located on both sides of the solid body are suppressed, for example by changing the
adiabatic boundary conditions into hot wall temperature boundary conditions,fer R&a 10
(AT = 0.75 K) the two upper cells become unstable; (R2025), and a new steady flow
configuration takes place which is characterized by an overall circulation around the inner body.
The two large lateral circulation cells have thus a stabilizing effect on the Rayleigh-Bénard

convection above the heated inner body.

When the temperature difference is increased ug te A K, the Rayleigh number is beyond
the critical value deduced from the linear stability theory. For larjerthe steady flow
displayed in Fig. 2a becomes unstable through a growing oscillatory disturbance and, finally,
reaches a mono-periodic regime. Before describing the behavior of the flow as a function of
time, let us first notice that the Rayleigh number based on the height between the hot and cold
horizontal surfaces is equal to aboutR&400 forAT = 2 K, a value much smaller than.Ra3
10*, which is the critical value for the onset of oscillations for 2D Rayleigh-Bénard flows
between infinite horizontal plates (Shan [19]). Thus, the transition in the present problem is
probably not explained through classical Rayleigh-Bénard instability theories. When the Ra-

11



number is increased, the intensities of the cells are strengthened, but proportionally more for the
Rayleigh-Bénard cells than those for the lateral circulations. As a result, the lateral cells cannot

restrain the size of the cells below the top cold wall.

Let us assume that a small perturbation amplifies the horizontal stretching of the left
Rayleigh-Bénard cell with respect to the right one. This left cell (LHS) tends to recover its
natural extension just above the heated body at the expense of the right cell (RHS). Because the
right circulation flow is not strong enough to prevent displacement of the RHS Rayleigh-Bénard
cell, this cell is shifted above the inner body toward the right upper corner of the cavity (Fig. 6a).
Consequently, the size and intensity of the side circulation are considerably reduced. On the
other hand, the circulation cell along the left wall being not blocked by the top Rayleigh-Bénard
cell, it grows until the occurrence of an overall circulation around the heated body (Fig. 6b).
Finally, the top RHS cell comes back above the inner body and ejects the left cell in the LHS

upper corner (Fig. 6¢).

While the oscillatory flow breaks the natural symmetry of the problem, this property may be
recovered by averaging the flow field over an oscillation period. It should be noticed that this
average solution is nevertheless different from the unstable steady flow (i.e. before the growth of
the disturbances). The temporal variations of the vertical velocity compoitgrand () at
locations R(-0.22, 0.35) and #0.22,0.35), shown in Fig. 1, were recorded and then used to
compute the differenceit) - v»(t). This signal centered upon zero can be viewed as a local
symmetry indicator. Figure 7 shows its time variation for R2.15 16: the amplitude of the
oscillation growths exponentially at first, and becomes constahtf8t5, showing an unsteady,
asymptotic mono-periodic flow. It should be noted that the dimensionless frequency of this
solution is equal to 15.9 (0.0342 Hz), about half of the values measured during the exponential
growth, i.e. 32.1 (0.0690 Hz). The amplitudes of the oscillations are then extracted and drawn for
unsteady flows at various Rayleigh numbers, (Ra2.15 16 in Fig. 8). The exponential
development of a perturbation is clearly highlighted with a linear growth rate, obtained by a least
mean square fit of the logarithm of the amplitudes, equal to 1.68. At dimensionless>tigés t

the amplitudes of the oscillations become constant (a(f).= a

Similar amplitude analyses performed for various Rayleigh numbers allow the time variation
of the growth rates in the exponential regime to be plotted (Fig 9, left axis) and the amplitudes of
the oscillations for the asymptotic flows (Fig 9, right axis) as a function of Ree positive
growth rates were obtained by starting the computations for a fluid initially at rest and at the

12



uniform temperature o] whereas oscillatory solutions were used to initialize the computations
and calculate the negative values. From the growth rate analysis, the linear stability threshold
Ra., for the steady symmetric flow is found to be slightly greater tharRa16. On the other

hand, numerical simulations indicate that oscillatory solutions are also predicted foiR&a,

until Ra. = 1,75 16. For Ra < 1.7 106, the flow always converges toward a symmetrical, steady
solution. From this study, it can be concluded that the steady solution is stable for finite
amplitude perturbations if R& Ray, a critical Rayleigh number value located within the range
[1.7 10 - 1.75 168]. For Ra,< Ra < Ray, two established flows (periodic or steady) are thus
possible according to the choice of the initial conditions. A hysteretic behavior for the fluid flow
is therefore expected. It should be noted that the asymptotic mono-periodic regime is
characterized by a dimensionless frequency which decreases linearly from 15.7 (0.0338Hz) at
Ra = 2.5 16 to 14.4 (0.0310Hz) at R& 3.5 16.

4.2.2. Effects of radiation

As depicted previously for stable steady flows, increases in the effect of surface radiation lead
to strengthen the intensity of the circulation cells along the vertical walls owing to the decrease in
wall temperatures. Therefore, the circulation cells along the vertical walls increase with the wall
emissivity and prevent the top cells from periodically moving from one side of the cavity to the
other side. It can be concluded that surface radiation leads to larger critical Rayleigh numbers for
the onset of the first bifurcation, as shown in Fig. 10 for emissivites of the cavity wallgset to
¢s = 0.1. The transitions between steady and oscillatory flows are shifted fran2 R& and
1.7 10 < Ray< 1.75 16for pure natural convection (Fig. 9) todR8.15 10 and to 2.85 10<
Ra,< 2.9 16 for ¢ = &s = 0.1 (Fig. 10), namely an increase of 50% in the stability threshold

values.

4.3. Effects of the inner body size

Changes in the size of the inner body lead to large modifications in the flow structure. For a
small body size, say A 0.2, Rayleigh-Bénard cells cannot develop aboveédheside and the

flow turns into buoyant plume convection with interaction with the boundaries: for small enough
Rayleigh numbers, the flow pattern is characterized by two counter-rotating, recirculating flows
spreading over most of the flow domain, and separated by an ascending thermal plume which
raises above the top wall. The results are thus similar to those discussed in Desrayaud and
Lauriat [25] and Bouafia and Daube [7], with transition to unsteady flows beyond a critical value

of the Rayleigh number. On account of the value of the Rayleigh number considered here (Ra
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2. 10), the flow is unsteady for A = 0.2 because Rd2,800. The breaking of the reflection
symmetry induces a swaying motion of the thermal plume which oscillates horizontally.
Increases in the inner body size lead to smaller effective top and side Rayleigh numlzerd (Ra
Ra). Therefore, the fluid motions decrease along the side walls as well as in the top part of the
cavity. The computations carried out for 8.3 < 0.8 confirmed these predictions. For A = 0.3,

the flow exhibits a periodic behaviour. On the other hand, an almost pure conductive régime is
obtained for A = 0.8 since Ra 200. In that case, Figure 1la shows that the fluid is fully
thermally stratified below and above the inner body, and it is almost uniformly hot along the side

walls.

When the effects of surface radiation are taken into account (in the case of a cavity with four
black walls as in the experimental set-up used by Ménard [16] and Leplat [17]), the view factors
between the horizontal and vertical black walls are reduced by increasing A, and the effect of
radiation exchanges amongst these surfaces decreases. On the other hand, the view factors
between the hot vertical surfaces of the inner body and the cavity walls increases. However, the
inner body emissivity being, = 0.05, the radiation exchanges between the adiabatic walls and
the hot vertical surfaces have a rather weak influence on the flow field. The overall result is that
the side recirculation cells are strengthened whatever the aspect ratio provided that Kor

A = 0.3, a complex unsteady flow was predicted without radiation: the Rayleigh-Bénard cells
oscillate and then merge into one or the other of the two side cells to produce a periodic fluid
circulation around the inner body. A Fourier analysis of the signals at pGo2R, 0.35) yields

a fundamental frequency of this periodic flow equal to f = 5.11 (0.011 Hz) with numerous
harmonics. When surface radiation is taken into account, the flow is steady and exhibits then a
symmetric motion about the vertical centerline of the cavity with two stable Rayleigh-Bénard
cells below the top wall. Figure 11b shows the effect of surface radiation on the conductive
regime predicted for the largest aspect ratio considered (A = 0.8): the small temperature
differences between the vertical walls produce weak recirculation cells. The largest effects of
radiation occur at the four corner regions where the decreases in the adiabatic wall temperatures

are the origin of the vertical fluid motion.

The averaged heat flux density at the inner body surfaces is reported in Table 3{ar<0(B8,

with and without radiation taken into account. For A = 0.3 without radiation, the value reported
in Table 3 is a time averaged heat flux obtained by integrating instantaneous data over one
period. The increase in heat flux due to radiation is about 50% for A = 0.3 and 30% for A = 0.8.

That is due in part to the radiation exchanges between the surfaces of the inner body and the
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cavity walls. However, the most significant result to be considered is the increase in the
convective heat flux induced by the decrease in the temperatures of the adiabatic walls. The third
line of Table 3 shows that effects of radiation on the increase in the convective part of the
Nusselt number are reduced as the size of the inner body is increased, because the view factors
between the cold horizontal walls and the vertical walls become smaller. However, it is clear that
there is a critical aspect ratio above which the conductive heat transfer becomes dominant, as it is
for A=0.8.

The above results show that surface radiation exchanges strengthen the recirculation cells along
the vertical side walls which, in turn, stabilize the flow fields. However, it should be underlined
that these results are valid for the specific configuration studied here. By just changing the
thermal boundary conditions, radiation exchanges could produce opposite effects (Mezrhab et al.

[12]).

5. Conclusion

A numerical study of combined natural convection and surface radiation has been carried out
with the aim at demonstrating the influence of radiation on the first transition to periodic flows
which occurs in air-filled cavities when the Rayleigh number is increased. To this end, we have
modeled an experimental set-up recently used to study the flow and heat transfer characteristics
in a square cavity with an inner heated body. For this particular case, the stabilizing effect of
radiation has been clearly demonstrated.

This work underlines that discrepancies between experimental and numerical results for gas-
filled cavities may be explained just by having neglected the influence of surface radiation. We
can conclude that it is highly difficult to properly interpret experimental results for gas-filled
cavities with non isothermal boundary conditions. We believe that the present results can be
extended for 3D flows as well as for turbulent natural convection flows (Ampofo and
Karayiannis [26]).

References

[1] M. Rabhi, H. Bouali, A. Mezrhab, Radiation-natural convection heat transfer in inclined
rectangular enclosures with multiple partitions. Energy Conversion and Management 49 (2008)
1228-1236.

[2] J.M. House, C. Beckerman, T.F. Smith, Effect of a centered conducting body on natural
convection heat transfer in an enclosure. Numerical Heat Transfer Part A 18 (1990) 213-225.

15



[3] Q.H. Deng, G.F. Tang, Numerical visualization of mass and heat transport for conjugate
natural convection/heat conduction by streamline and heatline. International Journal of Heat and
Mass Transfer 45 (2002) 2373-2385.

[4] M.Y. Ha, H.S. Yoon, K.S. Yoon, S. Balachandar, I. Kim, J.R. Lee, H.H. Chun, Two-
dimensional and unsteady natural convection in a horizontal enclosure with a square body.
Numerical Heat Transfer Part A 41 (2002) 183-210.

[5] J.R. Lee, M.Y. Ha, A numerical study of natural convection in horizontal enclosure with a
conducting body. International Journal of Heat and Mass Transfer 48 (2005) 3308-3318.

[6] J.R. Lee, M.Y. Ha, Numerical simulation of natural convection in a horizontal enclosure with
a heat-generating conducting body. International Journal of Heat and Mass Transfer 49 (2006)
2684-2702.

[7] M. Bouafia, O. Daube, Natural convection for large temperature gradient around a square
solid body within a rectangular cavity. International Journal of Heat and Mass Transfer 50
(2007) 3359-3615.

[8] H. Bouali, A. Mezrhab, H. Amaoui, M. Bouzidi, Radiation-natural convection heat transfer in
an inclined rectangular enclosure. International Journal of Thermal Sciences 45 (2006) 553-566

[9] D.R. Chenoweth, S. Paolucci, Natural convection in an enclosed vertical air layer with large
horizontal temperature differences, Journal of Fluid Mechanics 169 (1986) 173-210.

[10] G. Lauriat, G. Desrayaud, Effect of surface radiation on conjugate natural convection in
parially open enclosures. International Journal of Thermal Sciences 45 (2006) 335-346.

[11] A. Mezrhab, S. Amraqui, C. Abid, Modelling of surface radiation and natural convection in
a vented « T » form cavity. International Journal of Heat Fluid Flow 31 (2010) 83-92.

[12] A. Mezrhab, H. Bouali, H. Amoui, M. Bouzidi, Computation of combined natural-
convection and radiation heat-transfer in a cavity having a square body at its center. Applied
Energy 83 (2006) 1004-1023.

[13] G. Colomer, M. Costa, R. Consul, A. Oliva, Three-dimensional numerical simulation of
convection and radiation in a differentially heated cavity using the discrete ordinates method.
International Journal of Heat and Mass Transfer 47 (2004) 257-269.

[14] G. Cesini, M. Paroncini, G. Cortelle, M. Manzan, Natural convection from a horizontal

cylinder in a rectangular cavity. International Journal of Heat and Mass Transfer 42 (1999) 1801-
1811.

[15] G. Leplat, Ph. Barricau, Ph. Reulet, P. Millan, Natural convection around a heated square-
section cylinder in an enclosure: visualization and dynamic characterization of instabilities by
Particle Image Velocimetry. Proceedings of the ASME Summer Heat Transfer Conference,
Jacksonville, USA (2008) Paper number 56219.

[16] V. Ménard, Convection naturelle dans une cavité contenant une source de chaleur. PhD
thesis, Université de Toulouse (2005).

[17] G. Leplat, Stabilité d’'un écoulement de convection naturelle en milieu confiné. PhD thesis,
Université de Toulouse (2009).

[18] G. Leplat, E. Laroche, Ph. Reulet, P. Millan, Numerical simulation of an unsteady confined
natural convection flow. Proceedings of the ASME Summer Heat Transfer Conference, San
Francisco, USA (2009) Paper number 88001.

[19] R.B. Bird, W.E. Steward, E.N. Lightfoot, Transport PhenomeMfaE@.,Wiley & Sons
(2002) Chap. 16, 487-512

[20] M.F. Modest, Radiative Heat Transfet? Bd., Academic Press (2003) Chap. 5, 162-197
[21] Ansys Fluent 12 User'Guide (n.d), www.fluentusers.com

16



[22] B.P. Leonard, A stable and accurate convection modelling procedure based on quadratic
upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19(1) (1979)
59-98

[23] R.I Issa, Solution of the implicitly discretized fluid-flow equations by operator-splitting.
Journal of Computational Physics 62(1) (1986) 40-65.

[24] X. Shan, Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method.
Physical Review E 55(3) (1997) 2780-2788.

[25] G. Desrayaud, G. Lauriat, Unsteady confined buoyant plumes. Journal of Fluid
Mechanics. 252 (1993) 617-646.

[26] F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural
convection in an air filled square cavity, International Journal of Heat and Mass Transfer 46
(2003) 3551-3572.

17



Table captions

Table 1 Effect of the grid resolution on the average Nusselt numbers at the isothermal surfaces
(see Fig. 1) in the case A = 0.4, Ra = 2{b® pure natural convection.

Table 2 Average convective Nusselt numbers at the various surfaces (see Fig. 1) in the case A =
0.4, Ra = 2.10for pure natural convection and for combined natural convection and radiation.
The last column is for cold isothermal side walls.

Table 3 Effect of the body size on the average Nusselt number at the inner body surface in the
case Ra = 2.£qANuis the increase in the convectiMesselt number due to surface radiation).
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Figure captions

Figure 1 Schematic of the system of interest: a square, heated inner-body centred within a
square cavity.

Figure 2 Comparisons between streamlines and isothermal patterns for pure natural
convection at Ra= 2.1 (a), combined convection and surface radiation §).05,es =1

and (c)ec= & =1] and for cold vertical side walls (d). Isotherms and streamlines equally
spaced ¥,=0.3856 + nx0.7713 for the streamline contours, the dashed lines indicate
clockwise circulations).

Figure 3 Effect of surface radiation on the dimensionless temperature distributions along the
vertical, adiabatic side-walls at Ra 2.10.

Figure 4 Variation of the maximum streamfunctiéor theside wall circulations as a function
of emissivity of the cavity wallse{ = &s = €) at Ra = 3.10. The continuous line is for steady,
symmetric flow structures.

Figure 5 3D-isothermal patterns (= 299.15 K in red, §=297.15 K in dark blue) for three
cross sections (z* = -4.50 cm, z* = 0, z* = 4.5 cm) of the parallelepipedic cavity (10 cm x10cm
x18 cm) at Ra= 2.1C (a): pure natural convection, (b): combined convection and surface
radiation €= es=1).

Figure 6 Characteristic flows and temperature patterns over a period for supercritical pure
natural convection (A = 0.4, Ra& 2.15 10) Isotherms and streamlines equally spaced
(¥,=0.3856 _+nx0.7713 for the streamline contours, the dashed lines indicate clockwise
circulations).

Figure 7 Time variation of the difference between the vertical velocity components at point
P, and B shown in Fig. 1 (Ra = 2.15 30 = 0.4, pure natural convection).

Figure 8 Variation of the logarithm of the amplitude disturbance, a(t), versus dimensionless
time for Ra = 2.15 18 and A = 0.4 pure natural convectionjg is the linear growth rate and

a, the amplitude of the asymptotic periodic flo@pen circles denotes numerical results, the
full line is the least mean square fit.

Figure 9 Linear growth rate of the disturbances (left axis, filled square) and amplitude of the
disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh number
for pure natural convection.

Figure 10 Linear growth rate of the disturbances (left axis, filled square) and amplitude of the
disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh number
for combined surface radiation and natural convectipn ¢s = 0.1).

Figure 11 Comparisons between streamlines and isothermal patterns for pure natural
convection in the case A = 0.8 and Ra2.10 (a), combined convection and surface radiation
for e = es = 1 (b) W= + 0.07713 for the streamline contours, the dashed lines indicate
clockwise circulations).
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Highlights:

Heat transfer in cavities cooled from below and above with an inner heated body.>Effects of
radiation on the transitions to unsteady flows are numerically studied.>The surfaces are grey and
diffuse and the temperature differences are from 1K to 5K.>Critica Rayleigh numbers are
considerably increased by radiation.>According to the therma boundary conditions, combined
analyses are required.



TABLES

Mest 100x10( | 150x15( | 200x20( | 250x25(
Side AB'or C'D’ 3.704¢ | 3.710; | 3.714: | 3.716
Side AD’ (bottom | 5.655( | 5.645¢ | 5.640: | 5.637:
Side B'C’ (top 9.506¢ | 9.476¢ | 9.465; | 9.460¢
Bottom wall (AD! | 2.533¢ | 2.534f | 2.534¢ | 2.535;
Top wall (BC 6.494¢ | 6.4€29 | 6.479( | 6.477:

Table 1 Effect of the grid resolution on the average Nusselt numbesr at the isothermal surfaces
(see Fig. 1) in the case A = 0.4, Ra = 2{b® pure natural convection.

Emissivity £c=6s=0 | £=6=0.05| £.=6=01 | £=0058=1 | ec=6=1| Te=T,
Side A'B’or CD’ 3.7174 3.7601 3.9955 41719 6.2773 8.2144
Side A’D’ (bottom) 5.6347 5.6876 5.9172 6.0218 8.0667 11.0136
Side B'C’ (top) 9.4614 9.4726 9.4807 9.5454 9.4448 9.3594
Bottom wall (AD) 2.5346 2.5738 2.4910 2.9873 1.4540 0.6020
Top wall (BC) 6.4778 6.4875 6.4770 6.6339 6.36/3 6.1314
Side Wall 0 -5.4 10° -0.1937 +0.0288 -2.1026 3.7373

Table 2 Average convective Nusselt numbers at the various surfaces (see Fig. 1) in the case A =
0.4, Ra = 2.10for pure natural convection and for combined natural convection and radiation.
The last column is for cold isothermal side walls.



0.2 0.4 0.6 0.
Nu (e = 0) 6.416¢ | 5.630: | 4.232: | 5.898¢
NU e =& = 1) 9.670¢ | 8.548: | 6.418( | 7.893:
ANUg, 2.203( | 1.883f | 1.198¢ | 1.219¢
Nu, (gc = g = 1) 1.051( | 1.034: | 0.987(| 0.774;

* mean value for an oscillatory flow

Table 3 Effect of the body size on the average Nusselt number at the inner body surface in the
case Ra = 2.£qANuis the increase in the convectiMesselt number due to surface radiation).
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Figure 1 Schematic of the system of interest: a square, heated inner-body centred within a
square cavity.
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Figure 2 Comparisons between streamlines and isothermal patterns for pure natural
convection at Ra= 2.1C (a), combined convection and surface radiation §{).05, s =1
and (c)e= & =1] and for cold vertical side walls (d). Isotherms and streamlines equally
spaced ¥,=0.3856 + nx0.7713 for the streamline contours, the dashed lines indicate
clockwise circulations).
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Figure 3 Effect of surface radiation on the dimensionless temperature distributions along the
vertical, adiabatic side-walls at Ra 2.10.
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Figure 4 Variation of the maximum streamfunctidor the side wall circulations as a function
of emissivity of the cavity wallss{ = es =€) at Ra = 3.10. The continuous line is for steady,
symmetric flow structures.
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Figure 5 3D-isothermal patterns (FE 299.15 K -red, §=297.15 K —dark blue) for three cross
sections (z* = -4.50 cm, z* = 0, z* = 4.5 cm) of the parallelepipedic cavity (10 cm x10cm x18
cm) at Ra = 2.10 (a): pure natural convection, (b): combined convection and surface radiation

(ec= &s=1).
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Figure 6 Characteristic flows and temperature patterns over a period for supercritical pure
natural convection (A = 0.4, Ra& 2.15 10) Isotherms and streamlines equally spaced
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Figure 7 Time variation of the difference between the vertical velocity components at point
P, and B shown in Fig. 1 (Ra = 2.15 30A = 0.4, pure natural convection).

Figure 8 Variation of the logarithm of the amplitude disturbance, a(t), versus dimensionless
time for Ra = 2.15 18 and A = 0.4 pure natural convectionjg is the linear growth rate and

a, the amplitude of the asymptotic periodic flo@pen circles denotes numerical results, the
full line is the least mean square fit.
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Figure 9 Linear growth rate of the disturbances (left axis, filled square) and amplitude of
the disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh
number for pure natural convection.
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Figure 10 Linear growth rate of the disturbances (left axis, filled square) and amplitude of the
disturbance for the asymptotic flow (right axis, cross-symbols) versus the Rayleigh number
for combined surface radiation and natural convectpr ¢ = 0.1).
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Figure 11 Comparisons between streamlines and isothermal patterns for pure natural
convection in the case A = 0.8 and Ra2.10 (a), combined convection and surface radiation
for ec = es = 1 (b) W= + 0.07713 for the streamline contours, the dashed lines indicate
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