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ABSTRACT

Current epidemiological and experimental studies support a beneficial role of dietary 

polyphenols in several gastrointestinal diseases, including inflammatory bowel disease. 

The aim of this study was to gain a better understanding of the effects of a naturally 

occurring polyphenol, ellagic acid, present in some fruits such as pomegranate, 

raspberries and nuts among others, in an experimental murine model of Crohn's disease

by intra-colonic administration of TNBS in rats. Analysis of the lesions were carried out 

by macroscopic and histological technics. Inflammation response was assessed by 

histology and myeloperoxidase activity. iNOS and  COX-2 are upregulated by MAPKs 

and NF-κB nuclear transcription factor in intestinal epithelial cells thus, we determined 

the expression of iNOS, COX- 2 and the involvement of the p38 , JNK, ERK1/2  

MAPKs and NF-κB signalling in the protective effect of EA by western blotting. Oral 

administration of EA (10-20 mg/kg) diminished the severity and extension of the 

intestinal injuries induced by TNBS although there was no observed a significant dose-

response. In addition, EA increased mucus production in goblet cells in colon mucosa, 

decreased neutrophil infiltration and  pro-inflammatory proteins COX-2 and iNOS  

overexpression. Also EA was capable of reducing the activation of p38, JNK and 

ERK1/2 MAPKs, preventing the inhibitory protein IκB-degradation and inducing an 

inhibition of the nuclear translocation level of p65 in colonic mucosa. In conclusion, EA 

reduces the damage in a rat model of Crohn's disease, alleviates the oxidative events and 

returns pro-inflammatory proteins expression to basal levels probably through MAPKs 

and NF-B signalling pathways. 

Keywords: Ellagic acid, TNBS, oxidative stress, COX-2, MAPK, NF-κB.
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1. INTRODUCTION

Inflammatory bowel disease (IBD) represents a socially and clinically relevant 

disorder, characterized by intestinal chronic inflammation. The major forms of 

idiopathic IBD, include ulcerative colitis and Crohn's disease. Although the aetiology of 

IBD is unclear, both UC and CD are believed to be T-cell-driven process with 

inflammatory resulting inappropriate cytokine production by subsets of CD4+ T-helper 

(Th) cells. Specifically, UC is associated with Th2 cells whereas CD is associated with 

Th1 and Th17 cytokines profile. Besides, many authors have reported that T-regulatory 

(Treg) cells expressing fork-head box P3 (FOXP3) and or IL-10 have a fundamental 

role in maintaining gut immune homeostasis. Furthermore, defects in the T-cell-

mediated regulatory processes have been suggested in prevention of inflammatory 

responses [1]. A complex system of intracellular signalling molecules such as mitogen-

activated protein kinases (MAPKs) or the transcription factor nuclear factor B (NF-

B), influences this uncontrolled immune system activation and inflammation by 

ultimately modulating gene transcription [2].

Predominantly innate immune cells such as neutrophils, monocytes, 

lymphocytes  and macrophages are the main protagonists. Migration and activation of 

these into target mucosal tissues depends on the expression of Th-1 and Th-2 cytokines,

several chemokines and adhesion molecules [3]. These cells generate an arsenal of 

aggressive metabolites and inflammatory mediators, key effectors of the increase of 

epithelial permeability and inflammation, resulting in tissue damage. Such mediators 

comprise histamine, reactive oxygen species (ROS), matrix metalloproteinases, and 

other proteases [4]. Likewise, the upregulation of certain proteins, i.e. cyclo-oxygenase 
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(COX)-2 and inducible nitric oxide synthase (iNOS) has also been implicated and 

considered important determinants of colonic damage [5,6].

Current epidemiological and experimental studies support a beneficial role of 

dietary polyphenols in several gastrointestinal diseases, including IBD. Polyphenols 

have indeed shown anti-inflammatory properties and thus, could contribute, as 

complementary approaches to the conventional already existing therapeutic strategies

(i.e. non-steroidal anti-inflammatory drugs) to the management of IBD. 

Ellagic acid (EA) is a naturally occurring plant phenol found in certain fruits, 

nuts and vegetables, for example berries and pomegranate. Over the last few years, a 

number of in vivo and in vitro  studies have provided evidence of important

pharmacological properties including antioxidant, anti-inflammatory [7,8,9,10,11] and 

anticarcinogenic activities [12,13,14].

Previous reports, have documented that microspheres of ellagic acid [15] and a 

Punica granatum extract in addition to its ellagic acid rich fraction [16] decreased the 

degree of inflammation associated with experimental dextran sulphate sodium (DSS)-

induced colitis. Intra-colonic administration of trinitrobenzene sulfonic acid (TNBS) is 

one of standardized methods to produce an experimental model of IBD, which closely 

mimic the clinical and morphological features of IBD in particular Crohn's disease [17]. 

Thus, the aim of this study has been to gain a better understanding of the effects and 

mechanisms of action of ellagic acid during early colonic inflammation in rats caused 

by TNBS instillation in rats. Inflammation response was assessed by histology and 

myeloperoxidase activity (MPO), an index of neutrophil infiltration in the mucosa. We 

also determined the expression of iNOS, and COX-2 in colon mucosa by western 

blotting.
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NF-κB dimers are kept in an inactive cytoplasmic complex by inhibitory 

proteins, the inhibitor protein kappa B (IκB) family, in resting cells. Phosphorylation of 

IκB generally leads to the rapid dissociation of the complex accompanied by proteolytic 

degradation of IκB and release of NF-κB that subsequently transmigrate from cytoplasm 

into the nucleus. Furthermore, we studied IB degradation as well as nuclear 

translocation levels of p65 and also the role of MAPKs (p38 MAPK, JNK and ERK1/2)

signalling pathways in the beneficial effects of ellagic acid on acute colonic 

inflammation.

2. MATERIAL AND METHODS

2.1. Experimental animals 

Male Wistar rats supplied by Animal Services, Faculty of Medicine, University of Seville, 

Spain, and weighing 180-220 g, were placed in a controlled room (temperature 24-25 C, 

humidity 70-75%, lighting regimen of 12L/12D) and were fed a normal laboratory diet 

(Panlab, Barcelona, Spain). Rats were deprived of food for 24 h prior to the induction of 

colitis, but were allowed free access to tap water throughout. They were randomly 

assigned to groups of 10-11 animals. Experiments followed a protocol observed by the 

Animal Ethics Committee of the University of Seville and all experiments were in 

accordance with the recommendations of the European Union regarding animal 

experimentation (Directive of the European Counsel 86/609/EC).

2.2. Induction of colitis

Colitis was induced according to the procedure described by Morris et al. [18]. Briefly, 

rats were slightly anaesthetised with 12% chloral hydrate by intraperitoneal route 
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following a 24 h fast, and then a medical-grade polyurethane canal for enteral feeding 

(external diameter 2 mm) was inserted into the anus and the tip was advanced to 8 cm 

proximal to the anus verge. TNBS (Sigma-Aldrich Company Ltd. Spain) dissolved in 

50 % ethanol were instilled into the colon through the cannula (10 mg in a volume of 

0.25 ml to induce acute colitis). Following the instillation of the hapten, the animals 

were maintained in a head-down position for a few minutes to prevent leakage of the 

intracolonic instillate. Different control groups were created for comparison with 

TNBS/ethanol instillation: rats in the sham group received an enema of physiological 

saline instead of the TNBS solution, and ethanol group received 0.25 ml of 50 % 

ethanol. Ellagic acid (10 –20 mg/kg p.o; Sigma-Aldrich Company Ltd. Spain) was 

suspended in 0.1 Normal (N) NaOH solution and administered by gavage 48, 24 and 1 h 

prior to the induction of colitis and 24 h later. Control groups received vehicle in a 

comparable volume (10 ml/kg animal). The rats were checked daily for behaviour, body 

weight, and stool consistency. Finally, animals were sacrificed, using an overdose of 

chloral hydrate 48 h after induction of colitis.

2.3. Assessment of colitis

The severity of colitis was evaluated by an independent observer who was blinded to 

the treatment. For each animal, the distal 10 cm portion of the colon was removed and 

cut longitudinally, slightly cleaned in physiological saline to remove faecal residues and 

weighed. Macroscopic inflammation scores were assigned based on clinical features of 

the colon [6]. The presence of adhesions (score 0-2), and/or stool consistency (score 0-

1) were evaluated according to the criteria of Bobin-Dubigeon et al. [19]. Pieces of 

inflamed colon were collected and frozen in liquid nitrogen to measure biochemical 

parameters.
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2.4. Histological studies

For examination with the light microscope we used tissue samples from the distal colon 

of each animal fixed in 4 % buffered paraformaldehyde, dehydrated in grade ethanol, 

and embedded in paraffin. Thereafter, sections of tissue were cut at 5 µm on a rotary 

microtome (Leica Ultracut), mounted on clean glass slides and dried overnight at 37 ºC. 

Sections were cleared, hydrated, and stained with haematoxylin and eosin, Giemsa, and 

Alcian blue for histological evaluation of colonic damage, cell infiltration and mucus 

content , respectively, according to standard protocols, and the slides were coded to 

prevent observer bias during evaluation. All tissue sections were examined in an 

Olympus BH-2 microscope for characterization of histopathological changes.

Photographs taken from colon samples were digitised using Kodak D290 Zoom 

camera Eastman Kodak Co., U.S.A. and Motic Images 2000 release 1.1 (MicroOptic 

Industrial Group CO., LTD; B1 Series System Microscopes). Analysis of the figures 

was carried out by AdobePhotoshop Version 5.0 (Adobe Systems) image analysis 

program.

2.5. Assessment of leukocyte involvement

MPO activity was assessed as a marker of neutrophil infiltration according to the 

methods of Grisham et al. [20] with slight modifications. In all animals one sample 

from the distal colon was obtained. Samples were excised from each animal and rapidly 

rinsed with ice-cold saline, blotted dry, and frozen at –70 ºC. The tissue was thawed, 

weighed and homogenized in 10 volumes 50 mM PBS, pH=7.4. The homogenate was 

centrifuged at 20.000g, 20 min, 4 ºC. The pellet was again homogenized in 10 volumes 

50 mM PBS, pH=6.0, containing 0.5% hexadecyl-trimethylammonium bromide 
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(HETAB) and 10 mM ethylenediamine tetraacetic acid (EDTA). This homogenate was 

subjected to one cycle of freezing/thawing and a brief period of sonication. The 

homogenate were diluted in 50 volumes of 50mM PBS, pH 6. Then it was added 

consecutively 50ml of Odianisidine dihydrochloride (0.067%), of HETAB (0.5%) and 

of hydrogen peroxide (0.003%). Each well containing the complete reaction mixture 

was incubated for 5min in darkness. The changes in absorbance at 450nm were 

measured with a microplate reader (Labsystem Multiskan EX, Helsinki, Finland).

Results were quantified as U MPO/mg tissue. 

2.6. Isolation of cytoplasmic and nuclear proteins and immunoblotting detection

Frozen colonic tissues were weighed and homogenized in ice-cold hypotonic buffer (1.5 

mM MgCl2, 10 Mm KCl, 0.2 mM phenylmethylsulfonyl fluoride (PMSF), 1.0 mM 

dithiothreitol (DTT) and 10 mM Hepes, pH 7.9). Homogenates were incubated for 10 min 

on ice and centrifuged (25,000 ×g, 15 min, 4 °C). Cytoplasmic proteins were collected 

from the supernatants and nuclear proteins from the pellets. These were washed once and 

centrifuged at 10,000 ×g, 15 min, 4 °C) after which they were suspended in ice-cold low-

salt buffer (25% v/v glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 0.2 mM PMSF, 1.0 mM 

DTT, KCl, Hepes, pH 7.9). Nuclear proteins were released by adding a high-salt buffer 

(25% glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 0.2 mM PMSF, 1.0 mM DTT, 1.2 M 

KCl, 20 mM Hepes, pH 7.9) drop by drop to a final concentration of 0.4 M KCl. Samples 

were incubated on ice for 30 min, with smooth shaking. Soluble nuclear proteins were 

recovered by centrifugation (25,000 ×g, 30 min, 4 °C) and proteins were stored at −80 °C.

 Protein concentration of the homogenate was determined following Bradford’s 

colorimetric method [21]. Aliquots of supernatant contains equal amount of protein (50 

µg) were separated on 10% acrilamide gel by sodium dodecyl sulfate-polyacryamide gel 



Page 9 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

electrophoresis. In the next step, the proteins were electrophoretically transferred onto a 

nitrocellulose membrane and incubated with specific primary antibodies: rabbit 

polyclonal anti-COX-2 and anti-i-NOS (Cayman Chemical, USA) at dilution of 1:3000,

rabbit polyclonal anti-IB (Cell Signalling Technology, USA) at dilution of 1:1000,

rabbit polyclonal p65 (Santa Cruz Biotecnology, Inc) at dilution of 1:200, rabbit 

polyclonal anti-p-ERK1/2and  mouse anti-ERK1/2 (Cell Signalling Technology, USA) at 

dilution of 1:2000, mouse polyclonal anti- JNK and anti-pJNK (Santa Cruz Biotecnology, 

Inc) at dilution of 1:200, and mouse polyclonal anti-p38 and anti-pp38 (Santa Cruz 

Biotecnology, Inc) at dilution of 1:100 and 1:1000,  respectively, overnight at 4 ºC. After

that, each filter was washed three times for 15 min and incubated with a horseradish 

peroxidise-labelled (HRP) secondary antibody anti-rabbit (Pierce Biotechnology, IL, 

USA) or anti-mouse (Dako Cytomation, USA) containing blocking solution for 1-2 h at 

room temperature.  To prove equal loading, the blots were analyzed for β-actin expression 

using an anti-β-actin antibody (Sigma-Aldrich, MO, USA). Immunodetection was 

performed using enhanced chemiluminiscence light-detecting kit (SuperSignal® West 

Femto Chemiluminescent Substrate, Pierce, IL, USA). Densitometric data were studied 

following normalization to the control (housekeeping gene). The signals were analyzed 

and quantified by a Scientific Imaging Systems (KODAK 1D, Image Analysis Software).

2.7. Data analysis

All values in the figures and text are expressed as arithmetic means ± standard error 

(S.E.M.). Data were evaluated with Graph Pad Prism Version 2.01 software. The 

statistical significance of any difference in each parameter among the groups was 

evaluated by one-way analysis of variance (ANOVA), using Tukey-Kramer multiple 

comparisons test as post hoc test. P values of <0.05 were considered statistically 
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significant. In the experiment involving histology the figures shown are representative of 

at least six experiments performed on different days.

3. RESULTS

3.1 Protective effects of ellagic acid in acute TNBS-induced colitis in rats.

48 h after intracolonic administration of TNBS, rats showed postration, piloerection and 

hypo motility. Macroscopic inspection of the cecum, colon and rectum showed evidence 

of severe colonic mucosal damage, with edema, deep ulcerations and haemorrhage. 

Lesions in the distal colon were quantified using a macroscopic damage score (mean: 

9.1 ± 0.54) (Fig. 1). Control animals underwent severe anorexia with a marked body 

weight loss compared with the sham animals. A significant increase of weight/length of 

the rat colon, an indicator of inflammation, and presence of adhesions to adjacent 

organs were frequently observed in TNBS-treated rats (Table 1).

Treatment of TNBS-rats with ellagic acid reduced the loss in body weight. There was a 

significant decrease in the weight/length relation of the ellagic acid-treated rats colon 

(Table 1) compared with TNBS-treated rats. In addition, the polyphenol at both doses 

assayed (10 and 20 mg/kg), significantly attenuated the extent and severity of the 

colonic injury (Fig. 1).

3.2. Histological studies of the colon after ellagic acid treatment on acute 

experimental TNBS model.

On histological examination of the colon from sham-treated rats, the histological 

features of which were typical of a normal structure (Figs. 2A, 2B and 3A). The 

histopathological features included transmural necrosis, edema and diffuse 
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inflammatory cells (polymorphonuclear leukocytes, lymphocytes, and eosinophils) 

infiltration in the mucosa (Fig. 3B). We assessed focal ulceration of the colonic mucosa 

extending through the muscularis mucosae as well as desquamated areas or loss of the 

epithelium (Figs. 2C, 2D and 3B). The architecture of the crypts was distorted and the 

lamina propria was thickened in peripheral areas of distorted crypts, especially in basal 

areas (Figs. 2C and 3B); some areas showed accumulation of mucus and cell remnants; 

however, Alcian blue-positive cells were less numerous. In addition, the mucin layer of 

the epithelium had disappeared (Fig. 2D).

Ellagic acid treatment caused an attenuation of morphological signs of cell damage and 

inflammatory cells were not found in lamina propria (Figs. 3C and 3D).  In some areas, 

the epithelium remained intact (Fig. 2E) and the mucin layer was clearly visible with 

alcian blue-positive cells; these observations suggest the beginning of a reepithelization 

and healing process in ellagic acid- treated rats (Fig. 2F).

3.3. Effect  of ellagic acid on colonic leukocyte involvement in acute TNBS-induced 

colitis in rats.

As shown in Fig. 4, a significant increase in MPO activity, an established marker for 

inflammatory cell infiltration, also characterized the colitis caused by TNBS (7.63 ±

0.92 U MPO/mg tissue, p<0.001 vs sham group). Ellagic acid treatment (10 and 

20mg/kg) showed a significant reduction in the degree of polymorphonuclear neutrophil 

infiltration. These results are consistent with histological findings.

3.4. COX-2 and iNOS protein expressions are inhibited in colon tissue of TNBS-

induced colitis by ellagic acid treatment.
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Cytosolic COX-2 and iNOS expression levels were measured by western blotting from 

colonic mucosa. Exposure of colon to TNBS caused strong expression of COX-2 and 

iNOS (p<0.001), indicating that these proteins expression could be induced at the acute

stage of colonic lesion caused by TNBS. Nevertheless, oral administration of ellagic 

acid was able to diminish significantly the up-regulation of both COX-2 and iNOS 

proteins (Figs. 5A, 5B).

3.5. Ellagic acid prevents p38, JUNK and ERK1/2 MAPKs phosphorylation in 

acute TNBS-induced colitis in rats.

Mitogen-activated protein (MAP) kinases transmit extracellular inflammatory signals 

into intracellular responses. These molecules play a key role in inducing gene 

expression which initiates inflammatory responses. We investigated the effect of ellagic 

acid on the TNBS-induced colitis activations of MAPKs (ERK, JNK, and p38). We 

investigated the effect of ellagic acid on the TNBS-induced colitis activations of 

MAPKs (ERK, JNK, and p38). TNBS was found to activate MAPKs. However, ellagic 

acid inhibited potently the activation of MAPKs. JNK, p38 and ERK1/2 MAPK protein 

activation was also detected in cytosolic extracts of normal colon mucosa by western 

blot using phosphospecific MAPK antibodies (Figs. 6A, 6B). To standardize protein 

loading in each line, blots were stripped and re-probed with the corresponding 

antibodies against both proteins. In the present study, phosphorylation of JNK and 

ERK1/2 protein was not detected in cytosolic extracts of normal colon mucosa, whereas 

a high expression appeared in colon mucosa from control TNBS-treated rats (p<0.001 

vs. sham group), indicating that both JNK and ERK1/2 protein activation could be 

induced at the acute stage of colonic lesion caused by TNBS. Nonetheless, upon 

treatment with ellagic acid the protein expression of p-JNK and p-ERK1/2 was 
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significantly amielorated after 5 days of treatment (p<0.05 and p< 0.01 vs. TNBS 

group) (Figs. 6A, 6B). According to p38 MAPK protein was highly increased by TNBS; 

nevertheless, oral administration of EA was able to diminish the upregulation of p38 

MAPK protein (Figs. 6A, 6B).

3.6. Ellagic acid inhibits NF-ҚB-mediated transcriptional activation and IKK-Bα 

degradation in colonic mucosa of rats with acute TNBS-induced colitis.

Since NF-B activity is controlled by the steady state level of IB, we further 

investigated the effect of ellagic acid on IB degradation in rat’s colonic mucosa. As 

shown in Figure 7, protein extracts of colon tissues showed that intestinal inflammation 

of TNBS group induced a significant IB degradation which is consistent with an up-

regulation of the NF-kappaB-binding activity. However, this was blocked by ellagic 

acid treatment. Moreover, ellagic acid treatment caused a significant inhibition of NF-

ҚB-mediated transcriptional activation. The nuclear translocation levels of p65 protein 

were increased in rats treated with TNBS. However, treatment with the polyphenolic 

compound prevented the TNBS-induced nuclear translocation level of p65 in colonic 

mucosa.

4. DISCUSSION

The results of the present study have revealed for the first time the beneficial 

effects of the ellagic acid, a polyphenol present in some fruits such as pomegranate, 

raspberries and nuts among others, in an experimental murine model of Crohn's disease. 

The administration of ellagic acid (10-20 mg/kg) diminished the severity and extension 

of the intestinal injuries induced by TNBS although there was no observed a significant 

dose-response. The reduction in the extension of the colitis accompanied a decrease in 
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the loss of weight and a decrease in the relative weight/length of the colon. Likewise, an 

attenuation of relationship between the morphologic alterations associated with cellular 

injury, a good maintenance of the glandular architecture and an important decrease of 

inflammatory cells infiltrate were observed.

Ellagic acid also increased the amount of mucus stained by Alcian blue in colon 

mucosa. The protective effect of mucus as an active barrier may be largely attributed to 

its viscous and gel-forming properties which are derived from mucin glycoprotein 

constituents. Alcian blue-positive cells seem to be associated with regenerative 

processes of the mucosa [22] while reduction in the amount stained has been related to 

decreased resistance of the mucosa and paralleled by alterations in the normal pattern of 

maturation of the mucin in globbet cells [23].

Infiltration of leukocytes into the mucosa has been suggested to contribute 

significantly to the tissue necrosis and mucosal dysfunction associated with colitis as 

they represent a major source of reactive oxygen and nitrogen species in the inflamed 

colonic mucosa [24,25]. Reactive oxygen species and peroxynitrite induce cellular 

injury and necrosis via several mechanisms including peroxidation of membrane lipids, 

protein denaturation and DNA damage. Activated neutrophils produce superoxide 

anion, the main free radical in tissues, through NADPH oxidase which reduces 

molecular oxygen to the superoxide anion radical, and through the enzyme MPO which 

catalyzes the formation of such potent cytotoxic oxidants as hypochlorous acid from 

hydrogen peroxide and chloride ions and N-chloramines. In addition, neutrophils can 

also release proteases, lactoferrin and lipid mediators that can contribute to gastric 

injury [6]. 

In this respect, the injury associated with the instillation of the hapten was 

related to a significant increase of the activity MPO, indexed as neutrophil infiltration. 
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On the contrary, the acute administration of ellagic acid significantly minimized the 

above mentioned parameter which might contribute, in addition to its antioxidant 

capacity, to an attenuation in the formation of oxygen and nitrogen free radicals. Our 

results are in agreement with previous reports from Ogawa et al. [15] and Singh et al.

[16] with microspheres of ellagic and an ellagic acid rich fraction of Punica granatum 

extract in dextran sulphate sodium-induced colitis. In a similar way, there has also been 

described the protective effect of ellagic acid on gastric damage induced in ischemic rat 

stomachs following ammonia or reperfusion [26]. 

The antiinflammatory capacity of ellagic acid also has been revealed in allergic 

lung inflammation using a murine model of ovalbumin-induced asthma [8] and in 

pancreatic fibrosis in male Wistar Bonn/Kobori rats in which the protective effects were 

confirmed by an increase in pancreatic weight and decreases in myeloperoxidase 

activity [11].

Abnormal signalling pathways play an important role in the inflammatory 

process and can lead to dysregulation of the inflammatory response being crucial in the 

pathogenesis of IBD. The signalling pathways mainly include MAPKs, PI3K/Akt and 

NF-kappaB signalling pathways [27]. Three major groups of MAPKs have been 

identified in mammalian cells: the extracellular signal-regulated protein kinases 

(p42/44, also known as ERK), the p38 MAPK and the JNK [28]. These MAPKs require 

activation by phosphorylation to perform their intracellular signalling task.

In particular, p38 MAPK is a key modulator of several target genes that 

ultimately control infiltration of monocytic cells, acute intestinal inflammation and 

intestinal electrolyte and water secretion. They also regulate cytokine production in 

response to a variety of stimuli and up-regulate COX-2 expression in intestinal 

epithelial cells [29]. In addition to controlling the activity of leukocytes, MAPKs play a 
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crucial role in the control of the activity of non-immune cells suggesting that their 

blockade could offer a molecular target for blockade of leukocyte recruitment to the 

intestine [30]  

In particular, the importance of p38 MAPK in ulcerative colitis is supported by 

recent experiments where the use of p38 MAPK inhibitors abrogated colitis [31]. 

Moreover, a recent study has demonstrated that it can be effective for human IBD [32].

On the other hand, the JNK enzymes are regulated by Map/Erk kinase4 (MEK4) 

and MEK7 and they subsequently phosphorylate c-Jun enabling the activation of the 

activator protein 1 (AP-1) transcription factor that is known to be involved in the 

expression of many inflammatory genes [33]. Although their role in IBD is not well 

understood, there are recent reports of their activation in IBD tissue. For instance, 

Waetzig et al. [31] demonstrated that the activated form of JNK is up-regulated in 

patients with IBD. Mitsuyama et al. [34] presented similar findings, except that they 

identified the nucleus of epithelial and lamina propria mononuclear cells as the major 

source of activated MAPK in patients with IBD. 

In further support of a direct role for JNK in intestinal pathophysiology, PARP-

1–/– mice were noted to have less severe TNBS-induced colitis in association with 

reduced JNK and AP-1 DNA binding activity [35]. Besides, previous data from our 

research group found that the expression and activity of p38 and JNK were increased in 

rats with TNBS-induced colitis. This signal was significantly attenuated by curcumin, a 

component of the spice turmeric [36]. Recently it has been demonstrated that JNK 

inhibition using SB203580 was effective in reducing disease in dextran sulphate sodium 

-induced colitis [37]. Likewise Mitsuyama et al. [34] also described the ability of the 

JNK inhibitor SP600125 to prevent dextran sodium sulfate (DSS)-induced colitis in 

rats, suggesting a possible application of this category of drugs in the treatment of IBD. 
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Our data are in agreement with the above studies providing new information regarding 

the role of activation of MAPK in the response of non-immune gut cells during mucosal 

inflammation such as that seen in patients with IBD.

The transcription factor NFκB consists of p50 and p65 heterodimer, which is 

retained in the cytoplasm by masking nuclear localization signal (NLS) by the inhibitor 

IκBα. Upon activation, IκBα kinase (IKK) phosphorylates IκBα, promotes its 

ubiquitination and degradation, thus allowing p50-p65 to translocate to the nucleus, 

bind to its consensus sequence, and induces transcription of genes essential for 

inflammation, immunoregulation, cell proliferation and survival. In addition, IκBα I is 

also able to enter the nucleus by itself and subsequently mediate the blockade of DNA-

binding of NFκB and promote the nuclear export of NFκB [38].

Classic activation of NFκB can be initiated by a broad panel of different stimuli 

including bacterial cell wall components like lipopolysaccharide, pro-inflammatory 

cytokines like tumour necrosis factor (TNF)-α or interleukin (IL)-1, viruses and DNA 

damaging agents. Obviously the expression and activation of NFκB is strongly induced 

in the inflamed gut of IBD patients. Especially macrophages and epithelial cells isolated 

from inflamed gut specimens from IBD patients showed augmented levels of  NFκB

p65. Interestingly, the amount of activated NF-κB correlated significantly with the 

severity of intestinal inflammation [39]. As early studies revealed that (TNBS)-induced 

colitis could successfully be treated by local administration of p65 antisense 

oligonucleotides [40] the NFκB pathway soon became an attractive target for 

therapeutic interventions in IBD. Many of the already established immunosuppressive 

drugs in IBD like corticosteroids, sulfasalazine, methotrexate and anti-TNF-α antibodies 

are known to mediate their anti-inflammatory effects at least partly via inhibition of 

NFκB activity [38]. 
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In our study, we describe for the first time that the protective effect of the ellagic 

acid in colonic inflammation was mediated through an inhibition of p38, JNK and 

ERK1/2 MAPKs and NF-κB signalling pathways. Both mechanisms seem to be 

functionally interconnected. Several publications demonstrated both routes converge on 

the control of the expression of genes involved in the inflammation and that p38 MAPK 

activation contributes to NF-κB modulating the capacity of transactivación of its p65 

subunit from the above mentioned factor transcripcional. The p65 subunit activation has 

significance in IBD because it is highly activated in the mucosal biopsy specimens of 

patients with ulcerative colitis and Crohn`s disease [41].

In the present study, we have also demonstrated that i) macroscopic damage was 

associated with both COX-2 and iNOS overexpression and ii) ellagic acid treatment 

reduced COX-2 and iNOS  immunosignals to basal levels. Similar results have been 

obtained in previous in vivo experiments where ellagic acid has been shown to inhibit 

PGE2 release and PG-synthesising enzymes in human monocytes due to a suppressed 

expression of (COX)-2 and mPGEs-1 [9].

COX-2 and iNOS are enzymes that play a pivotal role in mediating 

inflammation [2]. In this regard, COX-2 activation produces excessive PGE2 and TXB2, 

which are important inflammatory mediators that contribute to the intestinal hyperemia, 

edema and even dysfunction, and iNOS activation leads to excessive production of NO 

which may be detrimental to the integrity of the colon based on the generation of 

reactive nitrogen species causing cellular degeneration in various tissues and 

contributing to the development of intestinal damage [42]. Additionally, iNOS acts in 

synergy with COX-2 to promote the inflammatory reaction [43,44]. Furthermore, both 

COX-2 and iNOS expression are upregulated by mitogen-activated protein kinases 

(MAPK) and NF-κB and AP-1 nuclear transcription factors in intestinal epithelial cells 
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[43]. In fact, recent studies have identified IKK/NF-κB signalling in intestinal epithelial 

cells as an mandatory factor for the maintenance of epithelial integrity and immune 

homeostasis in the gut [45].

Altogether, our data suggest that treatment with ellagic acid was capable of 

preventing the degradation of the inhibitory protein IκB-α, which inducing an inhibition 

of the nuclear transcription factor NF-B activation and a subsequent reduction in the 

expression of both COX-2 and iNOS proteins.

In summary, is it possible that one of the underlying mechanisms implicated in 

the ellagic acid antiinflammatory effect in the present rat model of Crohn's disease, is 

comprised of a reduction of the neutrophilic infiltration in the colonic mucous 

accompanied by an increase in the production of mucus in goblet cells, in addition to a 

decrease of the expression of the pro-inflammatory proteins COX-2 and iNOS by 

inhibiting - NF-kappaB-mediated transcriptional activation as well as IKK-Bα 

degradation and preventing p38, JNK and ERK1/2  MAPKs phosphorylation.  Thereby 

suggesting that ellagic acid may be useful in treatment of ulcerative colitis.
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FIGURE LEGENDS 

Figure 1. EA ameliorates acute TNBS-induced rat colitis. Effects of acute 

administration of EA on the colonic damage score. Colonic macroscopic damage 

resulting from TNBS (10 mg/animal) instilled into rat colon was scored as indicated in 

Section 2. Scores were quantified in the absence of treatment, or in the presence of EA 

(10 and 20 mg /kg/day p.o). Data are expressed as the mean ± S.E.M. 

***
 P<0.001, significantly different from Sham  

+
 P<0.05, significantly different from TNBS 

 

Figure 2. EA reduces histological damage. Histological appearance of rat colonic 

mucosa after haematoxylin and eosin stain (H-E), Alcian Blue stain (AB): Sham (A and 

B), and treated with TNBS 10 mg/animal (C and D), and EA 10 mg/kg p.o (E and F). 

A) and B) No histological modification was present in  Sham animals. C) and D) 

Mucosal injury was produced after TNBS administration, characterized by necrosis of 

epithelium, focal ulceration of the mucoa and diffuse infiltration of inflammatory cells 

in the mucosa and submucosa.  E) Treatment with EA 10 mg/kg p.o reduced the 

morphological alterations associated with TNBS administration protecting the mucosal 

architecture. F) Some areas showed accumulation of mucus and cell remnants; however, 

alcian blue positive- cells were less numerous and the mucin layer of the epithelium was 

missing. Original magnification 20. 

 

Figure 3. EA reduces colonic infiltration in rat colon segments stained with 

Giemsa: Sham (A), and treated with TNBS 10 mg/animal (B), and EA 10 mg/kg p.o (C 

and D). Infiltration of inflammatory cells was highly observed in the colonic mucosa of 

Figure Legends
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TNBS-treated animals. EA prevented development of inflammatory changes. Original 

magnifications 20 and 40. 

 

Figure 4. Inhibitory effect of acute EA treatment on myeloperoxidase activity 

(MPO) in TNBS-induced colitis model in rats. MPO activity (U/mg tissue) was 

increased after TNBS administration when compared with sham group. EA 

administration at both doses assayed, significantly decrease the MPO activity. 
***

 

P<0.001, significantly different from Sham; 
+++

 P<0.001, significantly different from 

TNBS 

 

Figure 5. COX-2 and iNOS protein expressions are inhibed in colon tissue of 

TNBS-induced colitis by EA treatment. COX-2 and iNOS protein expressions were 

increased in TNBS group when compared with Sham animal. EA administration 

treatment diminished the expression of these both proteins. Densitometry was 

performed following normalization to the control (β-actin house-keeping gene). Data 

are expressed as the means ± S.E.M. 
***

 P<0.001, significantly different from Sham; 
++ 

P<0.01 and 
 +++

 P<0.001, significantly different from TNBS 

 

Figure 6. Effects of EA on p-JUNK, p-p38 and p-ERK1/2 MAPKs signalling 

pathways in colon tissue of TNBS-induced colitis. The results are representative of 

three experiments performed on different samples. Densitometry was performed 

following normalization to the control (JUNK, p38 and  ERK1/2 house-keeping genes, 

respectively). Data are expressed as the means ± S.E.M. 
**

 P<0.01 and 
***

 P<0.001, 

significantly different from Sham; 
+
 P<0.05 and

  ++
 P<0.01   significantly different from 

TNBS 
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Figure 7. EA treatment inhibits NF-ҚB-mediated transcriptional activation and 

IKBα degradation in colonic mucosa of rats with acute TNBS-induced colitis. The 

results are representative of three experiments performed on different samples. 

Densitometry was performed following normalization to the control (β-actin house-

keeping gene). Data are expressed as the means±S.E.M. 
**

 P<0.01 and  
***

 P<0.001,  

significantly different from Sham; 
+ 

P<0.05, 
++ 

P<0.01 and 
+++

 P<0.001, significantly 

different from TNBS. 
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Table 1. Quantified parameters after administration of EA (10 and 20 mg/kg p.o) in rats 

with acute colitis induced by TNBS intracolonic instillation (10 mg/animal). 

 

   Group n 

 

Body weight 

changes (g) 

Adhesions 

(score 0-2) 

Diarrhoea 

(score 0-1) 

Colon weight/colon 

length (mg/cm) 

Sham 

 

TNBS 

 

TNBS +EA 10 

 

TNBS + EA 20 

9 

 

10 

 

10 

 

10 

 

27 ± 5.28 

 

-10 ± 4.78 
***

 

 

21.11 ± 7.34
 ++

 

 

39.56 ± 4.76
+++

 

 

 

0 

 

1.4 ± 0.16
 *** 

 

1.3 ± 0.15
 
 

 

1.4 ± 0.26
 
 

 

0 

 

0.81± 0.12
***

 

 

0.9 ± 0.10 

 

0.8 ± 0.13
 
 

0.09 ± 0.01 

 

0.26 ± 0.02
***

 

 

0.20 ± 0.02
+ 

 

0.20 ± 0.01
+
 

 

 

 

 

Data are expressed as mean ± S.E.M. 

*** 
P<0.001, significantly different from sham 

+ 
P<0.05, 

++ 
P<0.01 and 

+++ 
P<0.001, significantly different from TNBS. 

 

Table 1
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