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Abstract. Data broadcasting services are required to provide user interactivity 

through connecting additional contents such as object information to audio-

visual contents. H.264/AVC-based metadata authoring tools include functions 

which identify and track position and motion of objects. In this work, we 

propose a method for tracking the target object by using partially decoded 

texture data and motion vectors extracted directly from H.264/AVC bitstream. 

This method achieves low computational complexity and high performance 

through the dissimilarity energy minimization algorithm which tracks feature 

points adaptively according to these characteristics. The experiment has shown 

that the proposed method had high performance with fast processing time. 

Keywords: Object Tracking, H.264/AVC, Dynamic Programming, Neural 

Network. 

1   Introduction 

H.264/AVC does not handle video objects directly while MPEG-4 contains object-

based encoding scheme. However, the interactive broadcasting service should provide 

additional object information as the form of MPEG-7 metadata to support user 

interactivity. The metadata authoring tool includes object tracking function which 

generates the position information of the predefined target object in all frames. 

Unlike pixel-based object tracking approaches, object tracking algorithms for 

H.264/AVC videos can achieve lower computational complexity by using block-

based motion vectors or residual data extracted directly from encoded bitstream; these 

are called compressed domain approaches. One difficulty in these approaches is that 

motion vectors do not always coincide with the true motion or optical flow. 

To overcome the above difficulty, many researchers have proposed a variety of 

object tracking algorithms for MPEG videos. These can be classified as two 

categories as the motion-based method and the residual-based method. The motion-

based methods rely on the probabilistic properties of the motion vector field. Babu et 

al. [1] predicted the motion of objects corresponding to affine motion parameters 

which are computed by the expectation maximization (EM) algorithm. Treetasanata-

vorn et al. [2] applied the Bayesian method to separate the significant foreground 

object from the background given the motion vector field. Zeng et al. [3] assigned the 

object label to blocks with homogeneous motion through the Markovian labeling 
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procedure. On the other hand, the residual-based methods use the statistical properties 

of DCT coefficients such as histogram. Aggarwal et al. [4] found the target object by 

histogram matching and motion interpolation. However, these algorithms have great 

tracking error in long image sequences due to block-based information. Moreover, 

motion-based methods tend to have high computational complexity or low perfor-

mance in cases of deformable objects. Also, the residual-based methods are not 

applicable for H.264/AVC videos since residual data of intra-coded blocks is 

transformed from spatially intra-predicted values instead of original pixel values. 

In this paper, we propose the dissimilarity energy minimization algorithm which 

uses motion vectors and partially decoded luminance signals to perform tracking 

adaptively according to properties of the target object in H.264/AVC videos. It is one 

of the feature-based approaches that tracks some feature points selected by a user. 

First, it roughly predicts the position of each feature point using motion vectors 

extracted from H.264/AVC bitstream. Then, it finds out the best position inside the 

given search region by considering three clues such as texture, form, and motion 

dissimilarity energies. Since just neighborhood regions of feature points are partially 

decoded to compute this energy, the computational complexity is scarcely increased. 

The set of the best positions of feature points in each frame is selected to minimize 

the total dissimilarity energy by dynamic programming. Also, weight factors for 

dissimilarity energies are adaptively updated by the neural network.  

This paper is organized as follows. First, we describe the proposed object tracking 

algorithm at Section 2 and 3. Then, experimental results are presented in Section 4 

and finally the conclusion is drawn in Section 5. 

2   Forward Mapping of Backward Motion Vectors 

The motion vectors extracted directly from H.264/AVC bitstream can be used to 

predict roughly the motion of feature points. Since all motion vectors in P-frames 

have backward direction, it should be changed to have forward direction. Following 

Porikli and Sun [5], the forward motion field is built by the region-matching method. 

First, motion vectors of blocks with various sizes are dispersed to 4x4 unit blocks. 

After each block is projected to the previous frame, the set of overlapping blocks is 

extracted as shown at Fig. 1. 

Forward motion vectors of overlapped blocks in the previous frame are updated 

with respect to the ratio of the overlapping area to the whole block area. Assuming  

 

 

Fig. 1. The region-matching method for constructing the forward motion field 
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that the jth 4x4 block bk,j in the kth frame is overlapped with the ith 4x4 block bk-1,i in 

the k-1th frame, the forward motion vector fmvk-1(bk-1,i) is given by 

( ) ( )
( )
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1, ,1 161

N S i jk
fmv b mv bkk i k jk
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⎛ ⎞−∑= − ⋅⎜ ⎟−− ⎜ ⎟
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where Sk-1(i,j) stands for the overlapping area between bk,j and bk-1,i, and mvk(bk,j) 

denotes the backward motion vector of bk,j with i,j=1,2,…,N. We assume that 

H.264/AVC videos are encoded in the baseline profile which each GOP contains just 

one I-frame and several P-frames. It should be noticed that the above region-matching 

method cannot be applied in the last P-frame in one GOP since the next I-frame does 

not have backward motion vectors. Assuming that the motion of each block is 

approximately constant within a small time interval, the forward motion vector of any 

block in the last P-frame can be assigned as a vector with the reverse direction of the 

backward motion vector as expressed by 

( ) ( )11, 1,1fmv b mv bkk i k ik = − −− −−

JJJJG JJJG
. (2) 

Thereafter, positions of feature points in the next frame are predicted using forward 

motion vectors. If the nth feature point in the k-1th frame has the displacement vector 

fk-1,n=(fxk-1,n,fyk-1,n) and is included in the ith block bk-1,i, the predicted displacement 

vector pk,n=(pxk,n,pyk,n) in the kth frame is defined as 

( )1,, 1, 1p f fmv bk ik n k n k= + −− −

JG JG JJJJG
. (3) 

3   Moving Object Tracking in H.264/AVC Bitstream 

Since the predicted position of any feature point is not precise, we need the process of 

searching the best position of any feature point inside the search region centered at the 

predicted position pk,n= (pxk,n,pyk,n). It is checked whether each candidate point inside 

the search region is the best position using the dissimilarity energies related to texture, 

form, and motion. The set of candidate points with the minimum total dissimilarity 

energy is selected as the optimal configuration of feature points. 

3.1   Texture Dissimilarity Energy  

The similarity of texture means how the luminance property in neighborhood of a 

candidate point is similar with that in the previous frame. The set of candidate points 

inside the square search region is denoted as Ck,n={ck,n(1), ck,n(2),…, ck,n(L)} with L= 

(2M+1)×(2M+1) in the case of the nth feature point in the kth frame. Then, the texture 

dissimilarity energy EC for the ith candidate point ck,n(i)=(cxk,n(i),cyk,n(i)) is defined as 

( )
( )

( ) ( )( ) ( ) ( )( )
1

; , , ,, , 1 , ,2
2 1

W W
E k n i s x cx i y cy i s x cx i y cy ik k n k n k k n k nC
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 (4) 

where sk(x,y) stands for the luminance value in a pixel (x,y) of the kth frame, and W is 

the maximum half interval of neighborhood. The smaller EC is, the more the texture of 

its neighborhood is similar with that of the corresponding feature point in the previous 
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frame. This energy forces the best point to be decided as the position with the most 

plausible neighbor texture as far as possible. Fig. 2 shows how the search region and 

the neighborhood of a candidate point are applied to calculate EC. 

 

 

Fig. 2. The search region is centered at the predicted point located by a forward motion vector. 

A candidate point inside the search region has its neighborhood of square form to compute EC. 

Only necessary blocks can be partially decoded in P-frames to reduce the 

computational complexity. On the other hand, intra-coded blocks are impossible to be 

partially decoded since these are spatially intra-coded from these neighbor blocks. 

General partial decoding takes long time since decoding particular blocks in P-

frames requires many reference blocks to be decoded in the previous frames. We can 

predict decoded blocks to reduce the computation time. To predict decoded blocks in 

the kth P-frame, we assume that the velocity inside one GOP is as uniform as the 

forward motion vector of the k-2th frame. For the ith frame with i=k,k+1,…,K, the 

predicted search region Pk,n(i) is defined as the set of pixels which are necessary to 

calculate the texture dissimilarity energies of all possible candidate points for the nth 

feature point. Then, the half maximum interval Tk,i of Pk,n(i) is Tk,i=(i-k+1)×M+W+γ 
where γ denotes the prediction error. Then, Pk,n(i) is given as follows: 

( ) ( ) ( )( ) ( )1 , , ; , ,...,, ,2 2, 1,,
P i p p i k fmv b f m f m x y x y T Tm m m m k i k ik k n k nk n

⎧ ⎫
= = − + + + = =−⎨ ⎬− − −⎩ ⎭

JG JG JJJJG JG JG JG JG
 (5) 

where b(fk-2,n) stands for the block which includes the nth feature point fk-2,n. The 

decoded block set Dk,n(i) is defined as the set of blocks which should be decoded to 

reconstruct Pk,n(i). Using the motion vector of the k-1th frame, Dk,n(i) is given by 

( ) ( ) ( ) ( )( ) ( ),1 ,1,,
D i b d d i k mv b f p p P ik k nk nk n

⎧ ⎫
= = − + ∈⎨ ⎬− −⎩ ⎭

JG JG JJJG JG JG JG
. (6) 

Assuming that there exist F feature points, the total decoded block set Dk in the kth 

frame can be finally computed as 

( ),
1

F K
D D ik nk

n i k

=
= =

∪ ∪ . (7) 

Fig. 3 shows how partial decoding is performed in the first P-frame of one GOP 

which contains one I-frame and three P-frames. It should be noticed that the time for 

calculating the total decoded block set is proportional to the GOP size. 
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Fig. 3. The structure of partial decoding in the first P-frame of a GOP which contains one  

I-frame and three P-frames. Two decoded block sets Dk,n(k+1) and Dk,n(k+2) in the first P-

frame are projected from two predicted search regions Pk,n(k+1) and Pk,n(k+2). 

3.2   Form Dissimilarity Energy 

The similarity of form means how the network of candidate points is similar with the 

network of feature points in the previous frame. Each feature point is jointly linked by 

a straight line like Fig. 4. After a feature point is initially selected, it is connected to 

the closest one among non-linked feature points. In this way, the feature network in 

the first frame is built by connecting all feature points successively. 

 

 

Fig. 4. The network of feature points in the previous frame and the network of candidate points 

in the current frame 

To calculate the form dissimilarity energy of each candidate point, we assume that 

each feature point is arranged in the order named at the first frame. The feature point 

fk-1,n in the k-1th frame has its difference vector fdk-1,n(i)=fk-1,n(i)-fk-1,n-1(i) as shown at 

Fig. 4. Likewise, the ith candidate point of the nth feature point in the kth frame has 

its difference vector cdk,n(i)=ck,n(i)-ck,n-1(j). Then, the form dissimilarity energy EF for 

the ith candidate point of the nth feature point (n>0) is defined as follows: 

( ) ( )
1/ 2

; , , 1,E k n i cd i fdk nF k n= − −

JJG JJG
. (8) 

All candidate points of the first feature point (n=0) have zero form dissimilarity 

energy EF(k;0,i)=0. The smaller EF is, the less the form of the feature network will be 

transformed. The form dissimilarity energy forces the best position of a candidate 

point to be decided as the position where the form of the feature network is less 

changed as far as possible. 
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3.3   Motion Dissimilarity Energy  

The reliability of a forward motion vector means how it is similar with true motion 

enough to get a predicted point as exactly as possible. Following Fu et al. [6], if the 

predicted point pk,n which has located by the forward motion vector fmvk-1 returns to its 

original location in the previous frame by the backward motion vector mvk, fmvk-1 is 

highly reliable. Assuming that pk,n is included to the jth block bk,j, the reliability R can 

be given as follows: 

( )
( ) ( )

2
1, ,1

exp, 2
2

fmv b mv bkk i k jk
R pk n

σ

⎛ ⎞
+⎜ ⎟−−
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 (9) 

where σis the variance of reliability. Fig. 5 shows forward motion vectors with high 

and low reliability. In a similar way of Fu’s definition [6], the motion dissimilarity 

energy EM for the ith candidate point is defined as follows: 

( ) ( ) ( ); , ,, ,E k n i R p c i pk nM k n k n= −
JG G JG

. (10) 

With high reliability R, EM has greater effect on finding the best point than EC or EF 

since it is sharply varying according to the distance between a predicted point and a 

candidate point. 

 

 

Fig. 5. The reliability of forward motion vectors. The great gap between a forward motion 

vector and a backward motion vector results in low reliability. 

3.4   Energy Minimization  

The dissimilarity energy Ek,n(i) for the ith candidate point of the nth feature point is 

defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ); , ; , ; ,,E i k E k n i k E k n i k E k n ik n C C F F M Mω ω ω= + +  (11) 

where wC(k), wF(k), and wM(k) are weight factors for texture, form, and motion 

dissimilarity energy. If the configuration of candidate points is denoted as I={ck,1(i1), 

ck,2(i2),…,ck,F(iF)}, the optimal configuration Iopt(k) in the kth frame is selected as what 

minimizes the total dissimilarity energy Ek(I) expressed by 

( ) ( ),
1

F
E I E ik k n n

n

= ∑
=

. (12) 
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When all possible configurations of candidate points are considered, it takes so 

much time Θ((2M+1)
2F

) that causes high computation complexity especially in cases 

of large search region or many feature points. We can reduce the amount of compu-

tations by Θ(F) using the discrete multistage decision process called the dynamic 

programming which corresponds to two steps [7]: 

 

1) The accumulated dissimilarity energy (ADE) Elocal(n,i) for the ith candidate 

point of the nth feature point (n>0) is calculated as follows: 

( ) ( ) ( ), min , 1,,E n i E i j E n jlocal k n local
j
⎡ ⎤= + −⎣ ⎦ . (13) 

The ADE for the first feature point is Elocal(0,i)=Ek,0(i). Then, the point which 

minimizes the ADE is selected among candidate points of the n-1th feature 

point; the index of this point is saved as 

( ) ( ) ( ), arg min , 1,,s n i E i j E n jk n local
j

⎡ ⎤= + −⎣ ⎦ . 
(14) 

2) In the last feature point, the candidate point with the smallest ADE is selected 

as the best point oF. Then, the best point on for the nth feature point is 

heuristically decided as follows: 

( )arg min ,o E F iF local
i

⎡ ⎤= ⎣ ⎦  and ( )1, 1o s n on n= + + . (15) 

The best position for nth feature point fk,n is fk,n=ck,n(on). 

3.5   Adaptive Weight Factors  

The arbitrarily assigned weight factors for texture, form, and motion dissimilarity 

energy can give rise to tracking error since the target object can have various 

properties. In this reason, weight factors need to be decided adaptively according to 

properties of the target object. For instance, for an object which texture is scarcely 

changing, the weight factor wC should be automatically set up as high value. 

Weight factors can be automatically updated in each frame by using the neural 

network as shown in Fig. 6. The dissimilarity energy Ek is transformed to its output 

value Ėk by the nonlinear activation function ξ. The update of weight factors is per-

formed by the backpropagation algorithm which minimizes the square output error εk 

defined as follows: 

( )
21

2
E Ed kk

ε = − � . (16) 

where Ed denotes the ideal output value. If the activation function ξ is the unipolar 

sigmoidal function (ξ(x)=1/(1+e
-x

)), the gradient of a weight factor is calculated as 

( ) ( ) ( ) ( )1k E E E E E kd k kx k x
ω ηΔ = − −� � �  (17) 

where x can be T (texture), F (form), or M (motion), and η is the learning constant [8]. 
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Fig. 6. The neural network for updating weight factors 

4   Experimental Results 

To demonstrate the performance of the proposed method, the tracking results of 

various objects have extracted from videos such as “Stefan”, “Coastguard” and 

“Lovers” with CIF size. Each video was encoded as the GOP structure of ‘IPPP’ in 

the baseline profile, and included P-frames whose previous frame only can be a 

reference frame. Fig. 7(a) shows the tracking results of a rigid object with slow 

motion in “Coastguard”. Four feature points were well tracked in the uniform form of 

feature network. Fig. 9(b) also shows the tracking result of a deformable object with 

fast motion in “Stefan”. We can observe that tracking is successful even though the 

form of feature network is greatly changing due to fast three-dimensional motion. 

 

   (a) 
 

   (b) 
 

   (c) 

Fig. 7. The object tracking in (a) “Coastguard”, (b) “Stefan” with 100 frames, and (c) “Lovers” 

with 300 frames. Partially decoded regions are shown in “Lovers”. 
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Fig. 8. (a) Dissimilarity energies in “Stefan” and (b) “Coastguard”, (c) the variation of weight 

factors, (d) the average reliability of fmv in “Coastguard”, (e) the processing time in “Lovers” 

Fig. 7(c) represents the visual results of partial decoding in P-frames of “Lovers” 

when the search half interval M and the neighborhood half interval W are assigned as 

10 and 5. Only the neighborhood region of three feature points was partially decoded. 

Even in a sequence “Lovers” with 300 frames, no tracking errors were found. 

Numerical data of tracking from two video samples is shown at Fig. 8. In Fig. 8(a) 

and (b), dissimilarity energies in “Coastguard” are lower than those in “Stefan”. We 

can see from this result that the variation of texture, form, and motion in “Coast-

guard” is smaller than “Stefan”. Fig. 8(d) shows a plot for the average reliability of 

forward motion vectors in “Coastguard”. The average percentage of reliabilities in 

“Coastguard” is 93.9% higher than 12.2% in “Stefan”; it indicates that the motion 

dissimilarity energy is the good measure for the motion property of the target object. 

Through the neural network, the square error of dissimilarity energy is minimized. 

When the learning constant was equal to 5, this error had approximately zero value 

after the 15
th

 frame. Moreover, weight factors converge on optimal values as shown at 

Fig. 8(c). We can observe that weight factor variations and dissimilarity energies 

increase greatly from the 61
th

 frame to the 66
th

 frame in “Coastguard”; it illustrates 

that weight factors are adaptively controlled when another ship is approaching.  
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When the JM reference software was used to read H.264/AVC bitstream, the 

computation time was about 430ms/frame (Intel Pentium 4 CPU 3.2GHz 1GB RAM). 

As shown at Fig. 8(e), most computations are performed at I-frames which are fully 

decoded. In this reason, if faster decoder is used, we can reduce the computation time 

by 230ms/frame maximally. The computation time is nearly similar with Zeng’s 

algorithm [3] which computation time is roughly 450ms/frame in “PIE” sequence. 

However, Zeng’s algorithm cannot track a target object identified by a user since it 

extracts all moving objects. In order to select the target object from all segmented 

objects, it requires more computation. Therefore, the proposed algorithm can track the 

target object in real-time applications with faster speed than Zeng’s algorithm. 

5   Conclusion 

We have proposed a novel object tracking algorithm with low computational com-

plexity and high performance. It finds the best positions of feature points which have 

high similarity in texture, form, and motion. Moreover, the computational complexity 

can be reduced by the partial decoding and the dynamic programming for optimal 

energy minimization. Also, main parameters are adaptively optimized according to 

properties of the target object. We demonstrated that the proposed algorithm can track 

precisely deformable objects or fast-moving objects in small computation time. It can 

be applied to the metadata authoring tool which generates the position information of 

the target object. In future work, we will study the automatic extraction of feature 

points using motion vectors in H.264/AVC bitstream. 
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