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ABSTRACT

We develop and implement a methodology for automatic abstrac-
tion of systems defined as networks of timed components modeled
by timed automata. The abstraction technique yields an abstract
model with much less clocks and states which over-approximate
the timed behavior of the concrete system. Using this technique we
can analyze timed system of size beyond the capabilities of con-
temporary analysis tools for timed automata.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification; B.7.2
[Integrated Circuits]: Design Aids; F.1.1 [Computation by ab-

stract devices]: Models of Computation

General Terms

Theory, Verification

Keywords

timed automata, abstraction, reachability analysis, compositional
generation

1. INTRODUCTION
The only way to master the complexity of large systems is to

apply a hierarchical/compositional design methodology. The basic
principle of such a methodology is that a subsystem treated at one
level of abstraction as a model M of some detail, is encapsulated
as a component M ′ when a higher level is considered. The ma-
jor difference between M and M ′ is that the latter abstracts away
from the internal details appearing inM and focuses on the observ-
able input-output (interface) behavior of the component which de-
termine its high-level functionality. To take an illustrative example,
consider the process of submitting a paper to a conference. Viewed
from the perspective of the authors, the model M is a complex
network or processes involving ideas, model formulation, proving
theorems, implementation, experiments, literature survey and type-
setting, admitting complex inter dependencies. On the other hand,
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from the perspective of the program chair all this internal details are
irrelevant and the abstract model M ′ only specifies whether a sub-
stantial contribution has been submitted by the deadline, regardless
of the respective timing of the sub processes.

ForM ′ to be useful in the analysis at the higher level it should be
significantly less complex than M and since there is no free lunch,
the price of the abstraction is that M ′ is less precise than M in
terms of the observable behaviors it admits. We work in the con-
text of set-theoretic nondeterminism where the abstract model, by
ignoring certain variables, allows more observable behaviors than
a detailed model would. To be more concrete, think of M as an
automaton whose state space consists of vectors of valuations to
variables. Projecting away some variables will make the automa-
ton more nondeterministic and will enlarge the set of observable
sequences it can generate. In the verification context, this over-
approximation of the semantics guarantees that correctness proofs
obtained using the abstract model are valid for the concrete model.
For the purpose of performance evaluation, which is one of the cen-
tral issues in embedded systems, performance guarantees obtained
using M ′ will hold for the detailed model M as well.

In this work we develop a novel methodology, supported by a
tool chain, where M is a network of timed components, represent-
ing processes that respond to input events by emitting the corre-
sponding output events within some time delay which is known
to be bounded within a given interval. Such timed components
may represent the execution times of software modules in a stream-
ing application, communication delays in a network, the response
times of servers or propagation delays in digital gates. Each com-
ponent is modeled as a timed automaton with variables (a variant of
the timed automaton of [3] adapted for the compositional context)
and the whole network is equivalent to a global timed automaton
with at least one state variable and one clock1 per component. Al-
though major analysis problems for timed automata are decidable,
and despite of a lot investment and engineering innovation in timed
automata tools over the last decade, the analysis of such networks
remains infeasible beyond a modest amount of components. The
essence of our work is the automatic generation of a smaller timed
automaton M ′ with less states and less clocks which preserves
the observed qualitative semantics of M and over-approximates its
timed semantics. The reduced model M ′ can then replace M as a
component in a higher level.

The core idea behind our technique is to use the clocks associ-
ated with the internal processes in M in order to analyze the possi-
ble time-dependent behaviors of the system. To do that we need to

1To avoid confusion with hardware or real-time operating systems
and emphasize that clocks in timed automata are fictitious clocks
used to model the elapse of time and have nothing to do with the
implementation of the system.
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Figure 1: (a) A network of 2 components; (b) The automaton

with an auxiliary clock; (c) The automaton after projection on

the auxiliary clock; (d) The semantics of the network; (e) The

approximate semantics after projection.

restrict the number of components in M to the capabilities of ex-
isting verification tools (5-20 components) and treat larger systems
in a divide-and-conquer fashion by decomposing them into smaller
chunks, applying the abstraction technique and composing the re-
sulting abstract models. Before diving into the formal details of
the chain of transformations leading from M to M ′ let us illustrate
informally the nature of the abstraction via an example (see also
[8]).

The network in Figure 1 has two components, B1 which re-
sponds to input x by emitting output z1 within a delay in the in-
terval [l1, u1] and B2 which reacts to z1 within t ∈ [l2, u2] time.
We assume that x occurs at time zero and that both z1 and z2 are
considered observable. The range of possible behaviors is illus-
trated in Figure 1-(d) where z2 is constrained to occur between l2
and u2 time after z1. As a first step we augment the timed automa-
ton representing the composition B1||B2 with an additional clock
ĉ which measures the time elapsed since event x, see Figure 1-(b).
This clock does not participate in the transition guards and hence
does not influence the behavior of the automaton, it only adds time
stamps to the runs. We then compute the interpreted timed automa-
ton based on forward reachability2 and obtain an equivalent au-
tomaton where transition guards are expressed as constraints over
clocks {c1, c2, ĉ} in the form of zones. We then get rid of the in-
ternal clocks, after they have served us to restrict the behaviors of
the automaton, and project the zones on ĉ to obtain the abstract
automaton of Figure 1-(c). In this automaton z1 is constrained to
occur in the absolute time interval [l1, u1] (which is exact) while z2
is allowed to take place in the interval [l1 + l2, u1 + u2] regardless
of the occurrence time of z1 (which is an over-approximation, see
Figure 1-(e)).

This example is too small to illustrate the role of timed reacha-
bility computation in restricting the range of behaviors of the au-
tomaton, it only give an intuition concerning the effect of clock

2These notions will be explained in the sequel.

projection. Another simplifying aspect was the fact that we han-
dled only one input event. In this work we address the challenging
problem of adapting this idea to infinite streams of input events that
may occur at arbitrary time points. We let each input event generate
its own clock, reset to zero upon arrival, and after the reachability
analysis we get rid of the internal clocks and project the timing
constraints on the input clocks. Doing so, we generate a reduced
abstract model in which the timing of each output event is condi-
tioned on the time elapsed since the input event that has triggered
it. We restrict ourselves to acyclic networks of timed components
in which every component admits a finite upper-bound on its re-
action time. In such networks, each input event triggers a wave

of activity along the network, a wave which progresses from in-
puts to outputs and leaves the network within a bounded amount of
time. This fact, together with bounded frequency assumptions on
the inputs, guarantees that the number of co-existing waves is al-
ways bounded and, consequently, so is the number of input clocks.
Whenever the processing of an event terminates, its clock can be
reused by subsequent events. Indeed, the adaptation of the IF tool-
box [10] to handle those dynamic clocks with varying denotations
was the major implementation challenge in this work which goes
all the way from conception to realization.

The problem we address is central to the development of embed-
ded systems and no wonder it has attracted many research groups
representing different communities and approaches [22, 18], some
of which we mention very briefly below. The work around the
real-time calculus and similar formalisms [24, 26, 14] attempts to
adapt analytic tools taken from domains such as queueing theory
or max-plus algebra and adapt them to the more irregular setting of
embedded systems admitting phenomena such as jitter, burst and
discrete decisions of schedulers which are not easily modeled in
the classical frameworks. The work and the tools developed in this
framework share with ours the overall goal, namely give an abstract
and approximate characterization of the timed “transfer function"
of components as a transducer of timed streams, however the pro-
posed techniques are radically different. Our approach does not
start with clean algebraic framework which scale-up well but is
very approximate to start with, but rather starts from the opposite: a
state based model represented as a timed automaton which is much
stronger in expressive power but is notorious for not scaling up be-
yond toy problems.3 It is this clock-explosion challenge that we
try to meet in this work. Compositional reasoning has been applied
to timed automata in [23] and is advocated for timing and perfor-
mance issues in the context of interface automata [1, 15] which
offers a formal framework for checking whether the performance
that a component provides matches the performance expected by
other components. The major differences with respect to our work
is that we attempt to generate the description of the abstract perfor-
mance characterization of the component automatically from the
more detailed model.

The rest of the paper is organized as follows. In Section 2 we
present all the prerequisite material on timed automata. In Section 3
we add state variables and additional structure to the automata to
facilitate compositional discourse. Section 4 is the core of the pa-
per where we introduce all the steps in our abstraction techniques,
namely, the introduction of dynamic events clocks, the reachabil-
ity computation, the projection of internal clocks and variables and
the minimization. In Section 5 we demonstrates the application of
the tool chain to a case study consisting of a network of 36 com-
ponents, modeling a sequential circuit used to illustrate the concept
of wave pipelining. We apply our technique to find bounds on the

3We mention [17] as a recent attempt to reconcile these two ap-
proaches for cyclic components.



input frequency which guarantee that no elementary component re-
ceives an input event before having digested the previous event.

2. TIMED AUTOMATA
In this section we define the variant of timed automata that we

use. Notable deviations from the classics, made to fit our model-
ing and analysis needs, are that we make clock inactivity explicit4

and that we allow clock copying, not only resets to zero, during
transitions. We start with preliminary definitions of clocks, zones,
etc., then define timed automata and their semantics and conclude
with forward reachability computation over zones, the method of
choice in contemporary tools [16, 12, 19, 10], and its byproduct,
the interpreted timed automaton which plays an important role in
our analysis technique.

2.1 Preliminary Definitions
Let R

⊥
denote R+ ∪ {⊥} were ⊥ is a special symbol meaning

inactive. We extend addition to R
⊥

by letting ⊥ + d = ⊥. Let
C = {c1, ..., cn} be a finite set of variables called clocks ranging
over R

⊥
. A clock valuation is a function v : C → R

⊥
and the set

of possible valuations of C is R
n
⊥

. A clock c is said to be active in
valuation v iff v(c) 6= ⊥. Due to the distinction between active and
inactive clocks, we have to deal with clock valuations of varying
dimensionality. Given some C′ ⊆ C, we use VC′ to denote the set
of valuations in which v(c) 6= ⊥ iff c ∈ C′. Elements of VC′ are
then non-negative real vectors (points) of dimension |C′| ≤ n. The
projection operation v′ = v/C′ maps elements of VC to elements
of VC′ by letting v′(c) = v(c) if c ∈ C′ and v′(c) = ⊥ otherwise.

In timed automata clock valuations change due to two types of
activities: time progress which happens inside a discrete state and
clock assignments which take place during discrete transitions. For
d ≥ 0, we say that clock valuation v′ is the result of applying d-

time-progress to v, denoted by v′ = v + d, if for every clock c,
v′(c) = v(c) + d. Note that inactive clocks do not change their
value. A clock assignment is a function γ : R

n
⊥
→ R

n
⊥

indicating a
transformation of clock values upon a transition. Assignments are
restricted to compositions of one or more of the following basic as-
signments: ci := 0 (resetting to zero), ci := ⊥ (clock deactivation)
and ci := cj (clock copying). We use v′ = γ(v) to denote the fact
that v′ is the result of applying γ to v and use γ1 ◦ γ2 for compo-
sition of assignments. The set of all assignments thus obtained is
denoted by ΓC . We use the shorthand rC′ to denote resetting all
the clocks in some C′ ⊆ C and killC′ for their deactivation.

Clocks constraints are used to express the influence of clock val-
ues on the behavior of the automaton. We use a family of con-
straints denoted by ΨC , defined by the following grammar:

ψ ::= true | ci ≺ k | ci − cj ≺ k |ψ ∧ ψ

where ci, cj ∈ C, k ∈ N and ≺∈ {<,≤,=,≥, >}. Constraints of
the form x ≺ k and x−y ≺ k are called atomic. The restriction of
some ψ ∈ ΨC to a set of clocks C′ ⊆ C, denoted by ψ/C′ , is the
constraint obtained by deleting all atomic constraints that mention
a clock outside C′.

We use v |= ψ to denote the fact that valuation v satisfies a clock
constraint ψ. We will always assume (and guarantee) that con-
straints evaluated in a state of the automaton mention only clocks
active in that state. The set Zψ of valuations satisfying ψ is a sub-
set of R

m
+ where m ≤ n is the number of clocks active in the state.

For any ψ, Zψ is a convex polyhedron defined as the intersection
of half-spaces which are either orthogonal (ci ≺ k) or diagonal

4Unlike [13] where clock activity analysis was used to reduce di-
mensionality.

(ci − cj ≺ k) with integer k. The set of all such polyhedra that we
call timed zones will be denoted by ZC and its cardinality is finite
in any bounded subset of R

n.
Zones are closed under intersection and under the operations de-

fined below. The timed convex hull of two zones is

Z1 ⊔ Z2 = min{Z ∈ ZC | (Z1 ⊆ Z) ∧ (Z2 ⊆ Z)}

which can be used as an over-approximation of Z1 ∪ Z2. The for-

ward projection Z
ր

= {v ∈ VC | ∃d ≥ 0, v − d ∈ Z} consists
of all clock valuations that can result from applying arbitrary time
progress to elements of Z. The projection of Z on C′ ⊆ C is
Z/C′ = {v/C′ | v ∈ Z}, and γ(Z) = {γ(v) | v ∈ Z} is the ap-
plication of clock assignment γ to all elements of Z. In particular
rC′(Z) is the resetting of the clocks in C′ and killC′ (Z) is the de-

activation of clocks in C′. Note that killC′ (Z) = Z/C\C′ . The

difference between rC′(Z) and killC′ (Z) is that applying killC′

may reduce the dimensionality of the space on which the zone is
defined while applying rC′ may reduce the dimensionality of the
set but not of the space on which it is defined,and after some time
progress the set will regain its reduced dimensions. These opera-
tion are computed efficiently on a DBM representation of the zones.
More details can be found, for example, in [27].

2.2 Timed Automata and their Analysis

DEFINITION 1 (TIMED AUTOMATON). A timed automaton is

a tuple A = (Q, q0, C, I,∆) where Q is a finite set of discrete

states, q0 ∈ Q is the initial state, C is a finite set of clocks, I :
Q → ΨC associates a staying condition (invariant) with every

state q such that the automaton may stay at q as long as the clock

constraint I(q) is satisfied, ∆ ⊆ Q × ΨC × ΓC × Q is the tran-

sition relation consisting of elements of the form δ = (q, g, γ, q′)
where q, q′ ∈ Q are, respectively, the source and the target of the

transition, g ∈ ΨC is the transition guard restricting the execution

of the transition to clock valuations that satisfy it and γ ∈ ΓC is a

clock assignment occurring upon a transition.

Note that in this definition we do not have a specific alphabet of
transition labels. We view each transition as a distinct type of event
and postpone transition labeling to the next section where we dis-
cuss state variables and composition. Timed automata define infi-
nite transition systems whose states are configurations of the form
(q, v) ∈ Q×VC . The initial configuration is (q0,⊥) with all clocks
inactive and the transitions are either discrete transitions of the au-
tomaton or time-passage transitions, formalized via the notion of a
step.

DEFINITION 2 (STEPS). A step of A is one of the following:

• A discrete step: (q, v)
δ

−→ (q′, v′), for some δ = (q, g, γ, q′)
∈ ∆ such that v |= g and v′ = γ(v),

• A time step: (q, v)
d

−→ (q, v + d) for some d ∈ R+ such

that v + d |= I(q).

Note that the concatenation of two time steps of durations d1 and
d2 is a time step of duration d1 +d2. A compound step is a discrete
step followed by a time step (possibly of zero duration):

(q, v)
δ,d
−→ (q′, v′ + d) ≡ (q, v)

δ
−→ (q′, v′)

d
−→ (q′, v′ + d)

A run of the automaton A starting from a configuration (q, v) is a

sequence of compound steps.We use the notation (q, v)
ξ

−→ (q′, v′)
for runs. The untiming of ξ, denoted by µ(ξ), is the sequence of



transitions taken, regardless of the time durations. The semantics of
A, denoted by [[A]], is the set of runs it may generate from the initial
state and its qualitative semantics is µ([[A]]) = {µ(ξ)|ξ ∈ [[A]]}.

2.3 From Timed Automata to Reachability Graphs
The verification of this infinite-state system is done symbolically

by computing the reachability graph, also known as the simulation

graph, whose nodes are symbolic states of the form (q, Z) ∈ Q×
ZC which are closed under the following operations:

• The time successor of (q, Z) is (q, Z′) where Z′ is the set of
clock valuations reachable from Z by letting time progress
without violating the staying condition I(q):

postt(q, Z) = (q, (Z
ր

∩ I(q)))
= {(q, v + d) | (v ∈ Z) ∧ (d ≥ 0) ∧ ((v + d) |= I(q))}

• The δ-transition successor of (q, Z) via a transition δ =
(q, g, γ, q′) ∈ ∆ is the set of configurations reachable by
taking this transition.

postδ(q, Z) = {(q′, v′) | ∃v ∈ Z, v |= g ∧ v′ = γ(v)}
= (q′, (γ(Z ∩ g)))

• The δ-successor of (q, Z) is the set of configurations reach-
able from (q, Z) by a δ-transition followed by a time step:

succδ(q, Z) = postt(postδ(q, Z)) = (q′, (γ(Z∩g)
ր

∩I(q′))

PROPOSITION 1 (SUCCESSORS). A configuration (q′, v′) be-

longs to (q′, Z′) = succδ(q, Z) if and only if it is the endpoint of

a compound step (q, v)
δ,d
−→ (q′, v′) for some (q, v) ∈ (q, Z) and

some d ≥ 0.5

The analysis of timed automata is done via a forward reachabil-

ity algorithm which starts with (q0, {⊥}) and computes successors
until a fixed point is reached, a fact guaranteed by the finiteness of
ZC in any bounded subset of R

n
⊥

. As a byproduct, the algorithm
produces the reachability graph which can be viewed as the finite
state automaton defined below.

DEFINITION 3 (REACHABILITY GRAPH). The reachability

graph associated with a timed automaton A = (Q, q0, C, I,∆) is

a finite automaton G = (∆, S, s0, h) such that S is the smallest set

of symbolic states containing the initial state s0 = (q0, {⊥}) and

closed under {succδ}δ∈∆. The transition relation h ⊆ S × ∆ ×
S consists of all triples of the form ((q, Z), δ, (q′, Z′)) such that

(q′, Z′) = succδ(q, Z).

The fundamental property of the reachability graph is that it pre-
serves the qualitative semantics in the sense that it may generate a
sequence of transitions w ∈ ∆∗ iff w ∈ µ([[A]]). This implies that
any (untimed) linear-time property verified on G holds also for A.
Note that this is not true for the automaton obtained by taking A
and removing its clocks. The reachability process excludes behav-
iors that cannot be realized due to timing constraints and only after

that it is safe to remove the clocks. Our technique is inspired by
this insight, and provides different levels of relaxation of the timing
constraints after reachability. To this end we define the interpreted

5Note, however, that not all elements of (q, Z) are the start points
of such compound steps because they do not necessarily satisfy g.

timed automaton which enjoys the properties of the reachability
graph, but preserves also the quantitative timing information and
is semantically equivalent to the timed automaton A from which it
was derived.

DEFINITION 4 (INTERPRETED TIMED AUTOMATON).
Let A = (Q, q0, C, I,∆) be a timed automaton and let G =
(∆, S, s0, h) be its reachability graph. The interpreted timed au-

tomaton for A is Ar = (S, s0, C, I
r,∆r) such that Ir(q, Z) =

Z and for every transition ((q, Z), δ, (q′, Z′)) ∈ h, correspond-

ing to a transition δ = (q, g, γ, q′) ∈ ∆ we define a transition

((q, Z), g ∩ Z, γ, (q′, Z′)) ∈ ∆r.

Clearly, the semantics of A and of Ar are identical and even if we
later relax the timing constraints in Ar and introduce more behav-
iors, we do not introduce any new qualitative behavior.

3. TIMED AUTOMATA WITH STATE VARI-

ABLES
The timed automaton model presented so far was based on a

flat state space, without mentioning state variables nor a Cartesian
product structure. For the compositional treatment of networks of
automata we need a richer formalism that will facilitate the discus-
sion of composition, hiding of internal actions and the like. To this
end we associate with the automata state variables so that each tran-
sition is associated in a change in the valuation of a variable and the
semantics consists of the evolution of these valuations over time.

3.1 Variables, Valuations and Assignments
Let X = {x1, . . . , xm} be a finite set of variables ranging over

a domain D. An X-valuation is a function v : X → D assign-
ing to each xi a value v(xi). The set of X-valuations, which are
just elements of D

m, is denoted by VX . Every X ′ ⊆ X defines
a projection function /X′ : VX → VX′ such that v

′ = v/X′

if v
′(x) = v(x) for every x ∈ X ′. When states are associ-

ated with X-valuations, transitions correspond to changes in one
or more state variables, formalized as assignments.

DEFINITION 5 (ASSIGNMENTS). Let v and v
′ be two valu-

ations. The function fv : VX → VX is the constant function

defined for every u ∈ VX as fv(u) = v. The function fv,v′ :
VX → VX is such that for every u,u′ ∈ VX , u

′ = fv,v′ (u)
when

u
′(x) =



v
′(x) if v(x) 6= v

′(x)
u(x) if v(x) = v

′(x)

In other words, fv,v′ acts as the identity on all the variables on
which v and v

′ agree and assigns to the other variables their value
in v

′. Needless to say, v
′ = fv,v′ (v). In the sequel we re-

strict ourselves to the Boolean domain and use the notation x↓ for
x := 0 and x↑ for x := 1. For example if v = (0, 1, 1, 0) and
v
′ = (1, 1, 0, 0), then fv′ = {x1

↑, x2
↑, x3

↓, x4
↓}, and fv,v′ =

{x1
↑, x3

↓}. We denote the set of X-assignments by FX . The pro-
jection f/V′ of an assignment f on a subset X ′ of the variables
is defined naturally via restriction. When valuations and assign-
ments are associated with states and transitions we need to check,
when composing automata, the compatibility between valuations
over two non-disjoint sets of variables.

DEFINITION 6 (COMPATIBILITY). LetX1 andX2 be two sets

of variables and let X = X1 ∪X2 and X = X1 ∩X2. Two valu-

ations v
1 ∈ VX1 and v

2 ∈ VX2 are said to be compatible if they

agree on shared variables, that is, v
1
/X = v

2
/X . From two such



compatible valuation one can naturally construct a joint valuation

v
1 ‖ v

2 : X → VX which agrees with v
1 and v

2 on all vari-

ables. Likewise, two assignments f1 ∈ FX1 and f2 ∈ FX2 are

compatible if f1
/X = f2

/X and one can construct from them a joint

assignment f1 ‖ f2 : VX → VX .

3.2 Signals
As timed behaviors of a system defined over X we consider sig-

nals, functions from the time domain R+ to VX .6

DEFINITION 7 (X -VALUED SIGNALS). A signal over a set

X of variables ranging over a discrete domain is a partial function

ξ : R+ → VX defined over some interval [0, t), t ∈ R+ ∪ {∞},

which can be partitioned into a countable sequence of left-closed

right-open intervals J = J1, J2, J3, . . . each of the form Jk =
[tk−1, tk), such that ξ(t) = ξ(t′) = ξ(J) if t and t′ belong to the

same interval J .

We denote the set of finite and infinite X-signals by S∗(X) and
Sω(X), and let S(X) = S∗(X) ∪ Sω(X). The concatenation

operation ξ1 · ξ2 is defined naturally for any ξ1 ∈ S∗(X), ξ2 ∈
S(X), as it is defined for sequences. Signals can be represented in
a state-based fashion, as a concatenation of constant signals where
v
r1
1 · vr22 · vr33 · · · representing a signal which has value v1 for

duration r1, then value v2 for duration r2, etc. or in an event-based
fashion as a concatenation of time durations and assignments: fv1 ·
r1 · fv1,v2 · r2 · fv2,v3 · r3 · · · , which is the representation we will
use. For example, signal which in state-based representation looks
like

ξ =

 

1

0

0

!2

·

 

0

1

0

!5

·

 

0

0

0

!3

·

 

1

0

1

!7

· · · ,

will be written in an event-based form as:

ξ = {x1
↑, x2

↓, x3
↓}·2 ·{x1

↓, x2
↑}·5 ·{x2

↓}·3 ·{x1
↑, x3

↑}·7 · · ·

The projection ξ′ = ξ/X′ of an X-signal ξ on some X ′ ⊆ X
is defined naturally by deleting variables outside X ′ from the as-
signments. This operation is a natural part of the process of hiding
internal actions and may results in eliminating certain discrete steps
and merging time steps. The projection of ξ on {x1, x3}, is repre-
sented as

ξ′ = {x1
↑, x3

↓} · 2 · {x1
↓} · 5 · {} · 3 · {x1

↑, x3
↑} · 7 · · · ,

and since the assignment which involved only a change in x2 be-
came silent we can merge two time steps into one and obtain

ξ′ = {x1
↑, x3

↓} · 2 · {x1
↓} · 8 · {x1

↑, x3
↑} · 7 · · ·

The untiming of a signal is the sequence µ(ξ) = fv1 · fv1,v2 ·
fv2,v3 · · · , that is, the qualitative behavior described previously.

3.3 Timed Automata with Variables
We associate every timed automaton with a set X of variables,

partitioned into disjoint subsets of input and state variables X =
Xin ⊎Xst. The difference between them is that those in Xin are
controlled by the external environment of the automaton which fol-
lows their evolution passively, reacting to changes in their values.

6We use signals in this paper because our case study is a circuit for
which signals are more appropriate. More theoretical background
on the relation between signals and the alternative semantic domain
for timed systems, time-event sequences consisting of events sep-
arated by time durations (which are also equivalent to the timed
traces of [3]) can be found in [4].

On the other hand, variables in Xst are owned exclusively by the
automaton which controls their values. A subset Xou ⊆ Xst of
the state variables, called output variables, are observable to the
outside and may serve as inputs for other components. The inter-

face variables of the automaton are its input and output variables
Xio = Xin ⊎Xou.

The connection between states and valuations is defined via the
function λ : Q→ VX associating with every state an X-valuation
v = λ(q). The projections of λ on the interface variables is de-
noted by λio. Two points are worth mentioning: 1) we allow mul-
tiple states to be mapped to the same valuation to accommodate
for future use in the interpreted timed automaton which may have
several symbolic states corresponding to the same discrete state; 2)
We consider the values of input variables to be part of the state,
hence every change in the input will cause a transition to a differ-
ent state, and there will be only one input valuation associated with
each state. This amounts to composing every automaton with an
unconstrained generator of its inputs. At a first glance this looks
like an unnecessary blow up of the state space, but, when analyzed,
the automaton should be composed anyhow with a generator of its
inputs, so this overhead is an illusion.

DEFINITION 8 (TIMED AUTOMATA OVER VARIABLES).
A timed automaton over a set X of variables is a triple AX =
(A,X, λ) where A = (Q, q0, C, I,∆) is a timed automaton, X is

a set of variables, and λ : Q → VX maps states to X-valuations.

This function induces a mapping between transition labels and X-

assignments where every transition δ = (q, g, γ, q′) such that λ(q)
= v and λ(q′) = v

′ is labeled by λ(δ) = fv,v′ .

We impose some additional properties that hold, for example, for
the automata introduced in [20] for modeling Boolean circuits with
delays, on which our example in Section 5 is based, and other au-
tomata obtained by well-structured composition of timed compo-
nents.

1. Every transition in ∆ changes the value of exactly one vari-
able. Consequently we can partition ∆ into sets of input and
state transitions ∆ = ∆in ⊎ ∆st.

2. The automata are input-enabled (or receptive) in the sense
that every change of an input variable is possible in every
state and all transitions in ∆in are guarded by true.

3. All transitions in ∆st are guarded by clock constraints of the
form c ∈ [l, u] involving only a single clock.

The semantics of AX is defined in terms of steps and runs, inher-
ited from the definition of A, and in terms of the signals carried by

these runs. With each compound step (q, v)
δ,t
−→ (q′, v′) such that

λ(q) = v and λ(q) = v
′, we associate the X-signal fv,v′ · t. The

signal carried by a run is the concatenation of the signals carried
by its steps. We denote by [[A]] ⊆ S(X) the set of signals car-
ried by all runs of A and use [[A]]in , [[A]]ou and [[A]]io for the sets
of their projections on the respective sets of variables. In particu-
lar, [[A]]io ⊆ S(Xio) is the observable behavior of A. Likewise
we will use µ([[A]]) and µ([[A]]io) for the untiming of those signal
languages.

Given two timed automata A and A′ having the same set Xio of
interface variables, we say that A′ is an over approximation of A,
denoted by A ⊑ A′, if [[A]]io ⊆ [[A′]]io. This will always be the
case when A′ is obtained from A by relaxing some of the timing
constraints, or by merging two or more discrete states.



3.4 Composition
We now define the composition of two automata with variable

setsX1 andX2 such thatX1
st∩X

2
st = ∅ where interaction between

components is realized via the shared variables

X = X1 ∩X2 = (X1
in ∩X2

in) ⊎ (X1
ou ∩X2

in) ⊎ (X2
ou ∩X1

in).

When one automaton takes a transition that changes the value of a
shared variable, the other automaton must take a similar transition
as well. If the variable is an input for both it remains an input of the
composed system. On the other hand, a variable which is an output
variable of one automaton and an input for the other, becomes a
state variable of the composed system.

A composition is cyclic is there are loops of influence between
components: (X1

out∩X
2
in 6= ∅)∧(X2

out∩X
1
in 6= ∅). Cyclic com-

position may introduce, in certain circumstances, unstable behav-
iors consisting of spontaneous oscillations between values without
any external stimulus. Our implementation uses the algorithm of
[21] to check stability of cyclic compositions, but to simplify the
presentation we restrict ourselves to acyclic composition.

DEFINITION 9 (COMPOSITION: VARIABLE CLASSIFICATION).
The set of variables in a composition of two timed automata over

variable sets X1 and X2, is X = X1 ∪X2, where Xst = X1
st ⊎

X2
st,Xin = (X1

in−X
2
ou)∪(X2

in−X
1
ou), andXou ⊆ X1

ou⊎X
2
ou.

Note that the definition ofXou is not unique, permitting any subset
of X1

ou ⊎ X2
ou to reflect the liberty in deciding which variables in

a component are to be exposed to the external world. We do not
include this choice of Xou in the formal definition of the composi-
tion in order to keep it associative. When we apply it in practice we
compose all the automata together and specify explicitly the set of
output variables of the product. The following definition identifies
global states of the product as pairs of states whose valuations are
compatible.

DEFINITION 10 (CONSISTENT GLOBAL STATES).
Let AX1 = (A1, X1, λ1) and AX2 = (A2,X2, λ2) be two timed

automata. We say that a pair of states (q1, q2) ∈ Q1 ×Q2 is con-

sistent if λ1(q1)/X = λ2(q2)/X . We denote the set of consistent

global states by Q1 ×Q2.

DEFINITION 11 (COMPOSITION OF TIMED AUTOMATA).
Let AX1 = (A1,X1, λ1) with A1 = (Q1, q10 , C

1, I1,∆1) and

AX2 = (A2,X2, λ2) with A2 = (Q2, q20 , C
2, I2,∆2), be two

timed automata with variables, such that (q10 , q
2
0) is consistent.

Their composition is AX1 ‖ AX2 = AX = (A,X, λ) with

A = (Q, q0, C, I,∆) where X = X1 ∪ X2, classified accord-

ing to Definition 9, Q = Q1 ×Q2, q0 = (q10 , q
2
0), C = C1 ⊎ C2,

I((q1, q2)) = I1(q1) ∧ I2(q2)) for every (q1, q2) and the transi-

tion relation consists of all transitions of the form δ = ((q1, q2), g,

γ, (q′1, q′2)) for which one of the following holds:

1. q′2 = q2 and there is a transition δ = (q1, g, γ, q′1) ∈ ∆1

such that λ1(δ) = f and f/X is the identity function

2. q′1 = q1 and there is a transition δ = (q2, g, γ, q′2) ∈ ∆2

such that λ2(δ) = f and f/X is the identity function

3. there are two transitions δ1 = (q1, g1, γ1, q′1) ∈ ∆1 and

δ2 = (q2, g2, γ2, q′2) ∈ ∆2 such that λ1(δ1) = f1, λ2(δ2) =
f2, f1

/X = f2
/X is not the identity function, g = g1 ∧ g2 and

γ = γ1 ◦ γ2

The mapping λ : Q → X is defined for every global state as

λ((q1, q2)) = λ1(q1) ‖ λ2(q2).

The first two cases in the definition of ∆ correspond to local transi-
tions of A1 and A2 that do not touch shared variables and to which
we apply the interleaving semantics. The third case corresponds to
two transitions, one in each automaton, whose respective assign-
ments change the values of a shared variable in a consistent way.
It is not hard to see that state consistency as well as properties 1-3
above are preserved under composition. We mention a special class
of timed automata which is closed under acyclic composition.

DEFINITION 12 (INPUT-DEPENDENT TIMED AUTOMATA).
A timed automaton A is input dependent if every non-trivial cy-

cle in its transition graph involves at least one transition which

changes the value of some input variable.

PROPOSITION 2 (CLOSURE UNDER ACYCLIC COMPOSITION).

If both AX1 and AX2 are input-dependent, so is their acyclic com-

position A = AX1 ‖ AX2 .

PROOF. Suppose, without loss of generality, that X1
ou ∩X

2
in 6=

∅. Suppose A does have a non-trivial cycle without change in its
input. Then, at least one of its projections on A1 or A2 must be a
non-trivial cycle. Such a cycle in A1 will contradict the fact that
A1 is input-dependent. Otherwise, the projection on A1 is a trivial
cycle without a change in its output, and the induced cycle in A2

contradicts the fact that A2 is input-dependent.

An important property of input-dependent automata is that there
is a constant k such that the number of output events is at most k
times the number of input events.

4. THE ABSTRACTION TECHNIQUE
At this point we can describe our abstraction procedure, starting

with the automaton AX modeling a network of timed components
and applying the following sequence of steps

AX ⇒ A+Ĉ
X ⇒ Ar

X ⇒ AĈ
X ⇒ AXio

⇒ Am
Xio

.

1. FromAX we construct A+Ĉ
X by adding auxiliary input clocks

that do not participate in transition guards or invariants, but
only observe the dynamics of the automaton and measure
the time elapsed since each input event. An input clock is
discarded after a finite amount of time when the chain of re-
actions triggered by its event terminates.

2. We apply the forward reachability algorithm to A+Ĉ
X to ob-

tain the interpreted timed automaton Ar
X having the same

semantics as AX . It is however, annotated with additional
(redundant) timing constraints involving clocks in Ĉ .

3. We relax the timing constraints of Ar
X by projecting them on

clocks in Ĉ to obtain AĈ
X . To be more precise, each transi-

tion guard is projected on the clock associated with the input
event that has triggered it.

4. We project AĈ
X on the interface variables to obtain AXio

thus making some internal transitions silent.

5. We then reduce the discrete state space of AXio
by merging

states which are equivalent in terms of the untimed behaviors
they admit and after merging transitions guards we obtain the
reduced automaton Am

Xio
.



At the end of the process we have the following relationships be-
tween the observable semantics of these automata:

[[AX ]]io = [[A+Ĉ
X ]]io = [[Ar

X ]]io ⊆ [[AĈ
X ]]io = [[AXio

]] ⊆ [[Am
Xio

]]

and the following relation between the qualitative semantics

µ([[AX ]]io) = µ([[A+Ĉ
X ]]io) = µ([[Ar

X ]]io) = µ([[AĈ
X ]]io) =

µ([[AXio
]]) = µ([[Am

Xio
]]).

In other words, we preserve the qualitative semantics of the au-
tomaton and relax, to some extent, its timing constraints.

4.1 Adding Input Clocks
The most original and hard to implement part of our procedure

is the construction of A+Ĉ which requires monitoring the propa-
gation of input events in an acyclic network of timed components.
When an input event occurs it excites one or more of the compo-
nents to which it is a direct input. Each of those components will
react within some t ∈ [l, u] and emit an output event, which may
trigger reactions in some further components, and so on. Due to
acyclicity, a component which has reacted to an input event can-
not be influenced anymore by that event. Consequently all input
events leave the system within a finite amount of time, bounded by
d · u∗, where d is the depth of the network, the maximal number of
serially-connected components, and u∗ is the maximal delay upper
bound of the components.

For an input event to be alive in the system there must be at least
one active clock triggered by it, and since each clock is reset by
one event, the number of live events is bounded by the number of
clocks in the system which is equal to the number of timed compo-
nents. This is an upper bound and in practice the maximal number
of live events can be much smaller due to logical interference or
additional bounded-variability assumptions concerning the exter-
nal environment. In the sequel we assume m to be the upper bound
on the number of live input events for each input variable.

For every transition δ ∈ ∆ we let χ(δ) be the set of clocks re-
set to zero by the transition. We say that a transition is exciting if
χ(δ) 6= ∅. An exciting transition is a transition which triggers pro-
cesses that will eventually be concluded by transitions guarded by
clocks in χ(δ). We will augment every discrete state of the automa-
ton with additional machinery that keeps track of the events which
are alive in this state, and relates pending changes of states (rep-
resented by active clocks) to these events. Let M = {0, . . . ,m}
where m is the maximal number of live events in the automaton.
The additional structure consists of:

• An event-recording table (ℓ, θ) consisting of

– A live-event counter ℓ : Xin → M indicating for each
input variable x how many of its events are alive.

– An association function θ : C → (Xin ×M) ∪ {⊥}
relating each active clock to the input event responsible
for its activation. Event (x, i) is understood to be the
ith-oldest x-event still alive in the system.

We denote the (finite) set of event-recording tables by E .

• A set of auxiliary input clocks: Ĉ = {cx[i] | x ∈ Xin, i ∈
M} with the intended meaning that cx[i] is the time elapsed
since the occurrence of event (x, i). A valuation of these

clocks is a function v̂ : Ĉ → R⊥. We will refer to the
original clocks of the components as internal clocks.

Computing ∆+Ĉ

Input: An extended state (q, ℓ, θ) ∈ Q+Ĉ

and a transition δ = (q, g, γ, q′) ∈ ∆

Output: A transition δ+Ĉ = ((q, ℓ, θ), g, γ̂, (q′, ℓ′, θ′)) ∈ ∆+Ĉ

γ′ := γ; ℓ′ := ℓ; θ′ := θ

if χ(δ) 6= ∅

if δ ∈ ∆in changing input variable x /* new event creation */
ℓ′(x) := ℓ′(x) + 1
e := (x, ℓ′(x))
γ′ := γ′ ∪ {cx[ℓ(x)] := 0}

elsif δ ∈ ∆st guarded by clock c /* event propagation */
e := θ(c)

for each c′ ∈ χ(δ)
θ′(c′) := e

for every non-resetting clock assignment in γ /* book keeping */

if of the form c := ⊥
θ′(c) := ⊥

elsif of the form c1 := c2
θ′(c1) := θ(c2)

for each x ∈ Xin /* clock killing and shifting */

for i = 1 to ℓ′(x)
if θ′−1(x, i) = ∅

for j = i to ℓ′(x) − 1
γ′ := γ′ ∪ {cx[j] := cx[j + 1]}
for each c ∈ θ′−1(x, j + 1)
θ′(c) := (x, j)

ℓ′(x) := ℓ′(x) − 1

Table 1: The algorithm for computing ∆+Ĉ .

We can now proceed to the construction of the automaton. Since
this construction does not affect the mapping of states to variable
valuations we define it in terms of A from which we construct
A+Ĉ = (Q+Ĉ, q+Ĉ0 , C ∪ Ĉ, I+Ĉ ,∆+Ĉ) where Q+Ĉ = Q × E

and q+Ĉ0 = (q0, ℓ0, θ0) where ℓ0(x) = 0 for every x, all clocks in

Ĉ are inactive and θ0(c) = ⊥ for every c ∈ C.

The transition relation ∆+Ĉ consists of transitions of the form
δ′ = ((q, ℓ, θ), g, γ̂, (q′, ℓ′, θ′)) based on transitions of the form

δ = (q, g, γ, q′) ∈ ∆ where γ̂ is a clock assignment on C ∪ Ĉ
whose projection on C is γ. The updated event recoding table
(ℓ′, θ′) and the extended assignment γ̂ are computed from (ℓ, θ),
g and γ according to the algorithm in Table 1. This procedure has
four major parts.

1. Initialization: γ′ inherits the clock assignments for the inter-
nal clocks from γ and the initial event-recording table is the
same as in the source state.

2. Treatment of excitation: when a transition triggers a new in-
ternal processes by resetting clocks, these clocks should be
associated with the input event responsible for their excita-
tion. There are two cases:

(a) New event generation: the transition is due to a new
input event on x and in this case we increment the x
event counter, initialize a new input clock and keep the
responsible event in a temporary variable e.

(b) Event propagation: the exciting transition is not related
to a new input event, and in this case the responsible



input event is inherited from the clock c guarding the
transition.

Then every clock reset by the transition is associated with the
input event in e.

3. Association book keeping: when clocks become inactive or
when they are shifted, their association is updated.

4. Event death detection: if no clock points via θ to event (x, i)
the event is no longer alive and we discard clock cx[i]. To
keep the number of clocks finite we “shift” clocks cx[i +
1], . . . , cx[ℓ(x)] to the left and modify the association func-
tion accordingly. We use kill(x, i) to denote this operation.

This procedure maintains the event-detection table well-formed:

1. Only active internal clocks are associated with input events:
θ(c) 6= ⊥ iff v(c) 6= ⊥.

2. These clocks are associated only with live events: θ(c) =
(x, i) only if i ≤ ℓ(x).

3. Each live event has at least one internal clock associated with
it: i ≤ ℓ(x) only if ∃c θ(c) = (x, i).

4. Only input clocks associated with live events are active: v̂(cx[i])
6= ⊥ iff i ≤ ℓ(x).

4.2 Reachability Computation and Projection
Automaton A+Ĉ is an ordinary timed automaton except for the

fact that the denotation of its input clocks may vary from one state
to another due to clock shifting. Its configurations are of the form
((q, ℓ, θ), (v, v̂)) where (v, v̂) is a joint valuation of C ∪ Ĉ. Af-
ter reachability computation we obtain the interpreted timed au-
tomaton whose states are of the form ((q, ℓ, θ), Z)) where Z is a

zone over C ∪ Ĉ. As described in Section 2, we intersect invari-
ants and transition guards with these zones to obtain the interpreted
timed automaton Ar

X = (Ar,X, λ) with Ar = (Qr,X, qr0 , C ∪

Ĉ, Ir,∆r).

The automaton AĈ = (Qr, qr0 , Ĉ, I
Ĉ ,∆Ĉ) is constructed from

Ar by projecting the timing constraints on clocks Ĉ. For each
state p = ((q, ℓ, θ), Z) ∈ Qr let Ĉ(p) be the set of input clocks

active at p. The invariant of p in AĈ is IĈ(p) = Ir(p)/Ĉ(p).

For every transition δ = (p, g, γ, p′) ∈ ∆r we define a transition

δĈ = (p, gĈ , γĈ , p′) ∈ ∆Ĉ by letting γĈ = γ/Ĉ and

gĈ =



γ/Ĉ if δ ∈ ∆r
in

γ/θ(c) if δ ∈ ∆r
in and is guarded by c

We project AĈ on the set of interface variables Xio = Xin ⊎Xou
to obtain AXio

= (AĈ ,Xio, λio). This operation renders some
transition invisible in the sense of not affecting variables but, un-
fortunately, not all of those can be eliminated. Consider an input
event (x, i) which is responsible for the excitation of an internal
timed component. It may happen that the reaction of that compo-
nent has no further consequence and hence event (x, i) dies and its
clock should be removed. The change in clock denotation due to
shifting should be visible in the reduced model in order to preserve
its intended semantics.

4.3 Minimization
The next step is the reduction of the discrete state space by merg-

ing states which are equivalent in terms of the qualitative behav-
iors they admit. This work is inspired by the minimization with
elimination of silent transitions for the untimed case [9] and its ex-
tension to timed systems [25]. From the previous step we have a
timed automaton whose transitions are decorated by clock assign-
ments on Ĉ and by assignments on Xio. We minimize the au-
tomaton with respect to the alphabet Σ = FXio

× Γ(Ĉ). We use
τ to denote the silent element (f, γ) where both f and γ are the
identity functions and use symbols like a to denote the other ele-
ments of Σ which are visible. To simplify notation we describe the
minimization with respect to a Σ-labeled timed automaton A =
(Σ, Q, q0, Ĉ, I,∆) with transitions of the form (q, a, g, γ, q′). We

use notation q
a

−→ q′ to denote the existence of an a-labeled tran-
sition for q to q′. The minimization is a sequence of three steps
A ⇒ Ao ⇒ Ab ⇒ Am explained below.

1. To remove silent transitions we identify states that are the
target of an observable transition and collapse into them all
their τ -successors to construct a state whose invariant is the
union of all the invariants of these states. Every sequence of
silent transitions is thus replaced by a single time step.

2. We compute the bisimulation relation ∼ with respect to Σ
on states of Ao and let the states of Ab be the equivalence
classes of ∼. The invariant of each class is the convex hull of
the invariants of its members. All transitions are kept.

3. For every pair of states we merge all the transitions between
them having the same a-label into one transition whose guard
is the convex hull of the guards of those transitions.

4.3.1 Eliminating Silent Transitions

A state q in A = (Σ, Q, q0, I,∆) is an observable entry point

if it is the initial state q0 or there is some observable a and state
q′ such that q′

a
−→ q. We denote these states by D(Q) . A state

q′ 6∈ D(Q) is a silent-successor of q ∈ D(q) if there is a path

q
τ

−→ q1
τ

−→ · · · qk
τ

−→ q′ in the automaton. We denote by 〈q〉
the set containing q and all its silent successors. Note that all states
in 〈q〉 admit the same variable valuation over Xio.

DEFINITION 13 (AUTOMATON Ao).
The automaton Ao = (Σ, Qo, qo0 , Ĉ, I

o,∆o) is constructed from

A = (Σ, Q, q0, Ĉ, I,∆) as follows:

• Qo = {〈q〉 : q ∈ D(Q)}, qo0 = 〈q0〉

• Io(〈q〉) =
S

p∈〈q〉 I(p)

• ∆o contains a transition (〈q〉, a, g, γ, 〈q′〉) for every transi-

tion (q′′, a, g, γ, q′) ∈ ∆ such that q′′ ∈ 〈q〉.

It is not hard to see that the invariants thus obtained are convex,
because clocks in Ĉ are never reset by silent transitions. Hence
[[Ao]] and [[A]] coincide. Note also that Ao has the same property as
the reachability graph in the sense that every sequence of transitions
is realizable in the original automaton.

4.3.2 Merging Bisimilar States

Let A = (Σ, Q, Ĉ, q0, I,∆) be a timed automaton without silent
transitions. The qualitative bisimulation relation over Q is the
largest equivalence relation satisfying

q ∼ q′ ≡ ∀a ∈ Σ (q
a

−→ p⇒ ∃p′(q′
a

−→ p′ ∧ p ∼ p′)).



In other words q ∼ q′ if the same qualitative observable behaviors
can be generated from both. We let [q] denote the ∼ equivalence
classes of q and denote the set of such classes by Q/ ∼. All ele-
ments of [q] admit the same variable labeling.

DEFINITION 14 (AUTOMATON Ab).
The automaton Ab = (Σ, Qb, qb0, Ĉ, I

b,∆b) is constructed from

Ao = (Σ, Qo, qo0 , Ĉ, I
o,∆o) as follows:

• Qb = Qo/ ∼, qb0 = [qo0 ]

• Ib([q]) =
F

q′∈[q] I
o(q′)

• ∆b contains a transition ([q], a, g, γ, [q′]) for every transi-

tion (p, a, g, γ, p′) such that p ∈ [q] and p′ ∈ [q′].

This transformation, by definition, preserves qualitative behavior,
and may over-approximate the timed behavior due to the use of
convex hull.

4.3.3 Merging Transitions

The last step is to merge transitions between every pair of states
which agree on the transition label.

DEFINITION 15 (AUTOMATON Am).
Automaton Am = (Σ, Qb, qb0, Ĉ, I

b,∆m) is obtained from Ab =

(Σ, Qb, qb0, Ĉ, I
b,∆b) by letting ∆m consist of transitions of the

form (q, a, g, γ, q′) where

g =
G

{g′ | (q, a, g′, γ, q′) ∈ ∆b}.

As in the previous step, qualitative semantics is preserved while
the timed semantics may grow due to the use of convex hull. Let us
remark that in many cases,

S

g′ is already convex and the timed se-
mantics is preserved by this step. We can guarantee preservation of
timed semantics by this step if we restrict the merging of transitions
and states to those whose corresponding unions are convex.

5. EXPERIMENTAL RESULTS
For lack of space we refer the reader to [6] for some details on

the implementation of the full tool chain starting from high-level
description of the network of timed component down to the real-
ization of all the steps described in the paper (35K lines of C++
code) inside the IF toolbox.

To demonstrate our approach and tool chain consider the circuit
depicted in Figure 2, a part of a multiplier adapted from the tutorial
[11] on wave pipelining, a technique for improving the through-
put of sequential circuits beyond what is possible by a purely syn-
chronous approach. Each tick of a periodic clock defines a tem-
poral window in which each of the inputs may change its value.
Jitter is modeled by the fact that each input may choose a differ-
ent point in that window. Then the changes in the input propagate
through 36 logic gates, each modeled by a timed automaton with
one clock based on the modeling approach of [20] for modeling
circuits with bi-bounded delays. In a purely-synchronous regime
the frequency of input waves should be greater than the worst-case
propagation time of the whole circuit. Wave pipelining allows one
to use a higher frequency and let several waves be present simulta-
neously in different parts of the circuit. A crucial question in this
methodology is to find the highest frequency in which waves do not
interfere, that is, avoidance of situations where an elementary gate
receives an input from wave i+ 1 while it has not yet finished pro-
cessing wave i. Questions of a similar nature exist at higher levels
of abstraction where gates are replaced by software modules and

A

A

A

A

A

A

Figure 2: A wave-pipelining circuit

the effect of inputs arriving at a too high rate can be, for example,
buffer overflow.

We first explore the limits of a non-compositional approach ap-
plied directly to a product of 36 timed automata. The longest delay
path in the circuit is 1086 and we first compose it with an input
generator of period 1200 and jitter of 10 which generates only one
wave through the circuit. In this setting, using our interleaving re-
duction [7] we manage to complete the analysis within 7 minutes
to obtain a reachability graph with more than 26K symbolic states
and 50K transitions. When we slightly reduce the input period to
1000 to allow two simultaneous waves, the analysis gets stuck for
hours and we need to resort to a compositional approach. As can be
seen in the figure, the circuits admits 5 instances of the sub-circuit
denoted by A, two of which are connected to the primary inputs.
We compose this sub circuit, whose longest path is 362 with an
input generator of period 247 and jitter 10 which may induce 2 si-
multaneous waves in the circuit. The reachability graph obtained
has 213/321 states/transtions which are reduced by our technique
to 34/58 from which we deduce an output jitter of 32. To obtain a
model of the third instance of A which is exposed to the output of
the first two, we compose A with an input generator of jitter 32 and
repeat the process, this time going from 270/411 transitions/states
in the reachability graph to an abstract model with 36/62 and out-
put jitter of 54. To treat the last two instances of A we compose
it with an input generator of jitter 54 and get exactly the same re-
sults as the previous step in terms of size or the graph and the re-
duced model. No interference is detected and we can deduce that
the whole circuit is safe with an input frequency with period 247.
When we repeat the same sequence of steps with a input of period
246, an interference is detected.

6. DISCUSSION
We have developed a new original technique for abstracting the

behavior of timed components. The essence of this technique is
to use the internal clocks to compute what the component can and
cannot do and then get rid of these clocks by projecting on the ob-
servable input clocks that we introduce into the model. As a result
we obtain a model which focuses on what the potential users of the
component care about: the relation between the timing of input and

output events. This model is faithful to the qualitative semantics of
the component but may relax the temporal correlation between out-
put events that depend on the same internal event. Such a reduced
model can serve as a specification of the component in a component
library and, as we have demonstrated in the case study, to allow us
to analyze timed automata of unpreceded size and complexity.



Finding ways to evaluate the quality of the abstractions obtained
by our technique is one of the items on our agenda. Over-appro-
ximation of a system by another can be obtained trivially and the
quality of the abstract model should be be judged either by whether
it is sufficiently detailed to prove some properties, or by quantita-
tive means: how many spurious behaviors have been added. For the
first criterion, it is hard to find large examples due to the intractabil-
ity of timed automata analysis, and we intend to take some cases
studied using analytical methods for performance analysis and see
whether we can obtain tighter results. For the second approach,
recent results on volume and entropy of timed languages [5] may
provide a tool for measuring the degree of over-approximation.
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