Densité des orbites des trajectoires browniennes sous l'action de la transformation de Lévy

Abstract : Let T be a measurable transformation of a probability space $(E,\mathcal {E},\pi)$, preserving the measure π. Let X be a random variable with law π. Call K(⋅, ⋅) a regular version of the conditional law of X given T(X). Fix $B\in \mathcal {E}$. We first prove that if B is reachable from π-almost every point for a Markov chain of kernel K, then the T-orbit of π-almost every point X visits B. We then apply this result to the Lévy transform, which transforms the Brownian motion W into the Brownian motion |W| − L, where L is the local time at 0 of W. This allows us to get a new proof of Malric's theorem which states that the orbit under the Lévy transform of almost every path is dense in the Wiener space for the topology of uniform convergence on compact sets.
Document type :
Journal articles
Complete list of metadatas

Cited literature [26 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00722138
Contributor : Christophe Leuridan <>
Submitted on : Wednesday, August 1, 2012 - 11:13:26 AM
Last modification on : Tuesday, February 20, 2018 - 11:10:02 AM
Long-term archiving on : Friday, November 2, 2012 - 2:21:10 AM

Files

Levy-hal.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Jean Brossard, Christophe Leuridan. Densité des orbites des trajectoires browniennes sous l'action de la transformation de Lévy. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institute Henri Poincaré, 2012, 48 (2), pp.477-517. ⟨10.1214/11-AIHP463⟩. ⟨hal-00722138⟩

Share

Metrics

Record views

207

Files downloads

306