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CHARACTERISING OCONE LOCAL

MARTINGALES WITH REFLECTIONS

Jean Brossard and Christophe Leuridan

August 1, 2012

Abstract

Let M = (Mt)t>0 be any continuous real-valued stochastic process
such that M0 = 0. Chaumont and Vostrikova proved that if there
exists a sequence (an)n>1 of positive real numbers converging to 0
such that M satisfies the reflection principle at levels 0, an and 2an,
for each n > 1, then M is an Ocone local martingale. They also asked
whether the reflection principle at levels 0 and an only (for each n > 1)
is sufficient to ensure that M is an Ocone local martingale.

We give a positive answer to this question, using a slightly different
approach, which provides the following intermediate result. Let a and
b be two positive real numbers such that a/(a+ b) is not dyadic. If M
satisfies the reflection principle at the level 0 and at the first passage-
time in {−a, b}, then M is close to a local martingale in the following
sense: |E[MS◦M ]| 6 a + b for every stopping time S in the canonical
filtration of W = {w ∈ C(R+,R) : w(0) = 0} such that the stopped
process M·∧(S◦M) is uniformly bounded.

MSC 2000: 60G44, 60G42, 60J65.
Keywords: Ocone martingales, reflection principle.

1 Introduction

Let (Mt)t>0 denote a continuous local martingale, defined on some probabil-
ity space (Ω,A, P ), such that M0 = 0. Let FM denote its natural filtration
and H the set of all predictable processes with respect to F

M with values in
{−1, 1}. Then for every H ∈ H, the local martingale

H ·M =

∫ ·

0
Hs dMs
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has the same quadratic variation as M . In particular, if M is a Brownian
motion, then H ·M is still a Brownian motion.

A natural problem is to determine when H · M has the same law as
M for every H ∈ H. Ocone proved in [4] that a necessary and sufficient
condition is that M is a Gaussian martingale conditionally on its quadratic
variation 〈M〉. Such processes are called Ocone local martingales. Various
characterisations of these processes have been given, by Ocone himself, by
Dubins, Émery and Yor in [3], by Vostrikova and Yor in [6]. We refer to [2]
for a more complete presentation.

The following characterisation, given by Dubins, Émery and Yor, is par-
ticularly illuminating: M is an Ocone local martingale if and only if there
exists a Brownian motion β (possibly defined on a larger probability space)
which is independent of 〈M〉 and such that Mt = β〈M〉t for every t. Loosely
speaking, Ocone local martingales are the processes obtained by the com-
position of a Brownian motion and an independant time-change.

Another characterisation of Ocone local martingales is based on their
invariance with respect to reflections. For every positive real r, call hr the
map from R+ to {−1, 1} defined by

hr(t) = 1[t6r] − 1[t>r].

Then hr · M = ̺r ◦M , where ̺r is the reflection at time r. Let W denote
the set of all continuous functions w : R+ → R such that w(0) = 0. The
transformation ̺r maps W into itself and is defined by

̺r(w)(t) =

{

w(t) if t 6 r,
2w(r)− w(t) if t > r.

The functions hr are sufficient to characterise Ocone local martingales: The-
orem A of [4] states that if hr ·M has the same law as M for every positive
r, then H · M has the same law as M for every H ∈ H. In other words,
if the law of M is invariant by the reflections at fixed times, then M is an
Ocone local martingale. Note that it is not necessary to assume that M is a
local martingale since the invariance by the reflections at fixed times implies
that for every t > s > 0, the law of the increment Mt − Ms is symmetric
conditionally on F

M
s .

The celebrated reflection principle due to André [1] shows that it may
be worthwhile to consider reflections at first-passage times, which we now
define. For every real a and w ∈ W, note Ta(w) the first-passage time of w
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at level a. The reflection at time Ta transforms w into ̺Ta
(w) where

̺Ta
(w)(t) =

{

w(t) if t 6 Ta(w),
2a− w(t) if t > Ta(w).

Note that ̺Ta
(w) = w if Ta(w) is infinite.

Chaumont and Vostrikova recently established in [2] that any continuous
process whose law is invariant by the reflections at first-passage times is an
Ocone local martingale. Actually, their result is even stronger.

Theorem 1 (Theorem 1 of [2]). Let M be any continuous stochastic process
such that M0 = 0. If there exists a sequence (an)n>1 of positive real numbers
converging to 0 such that the law of M is invariant by the reflections at times
T0 = 0, Tan and T2an , then M is an Ocone local martingale. Moreover, if
Ta1 ◦M is almost surely finite, then M is almost surely divergent.

We note that the assumption that the law of M is invariant by the
reflection ̺0 is missing in [2] and that it cannot be omitted: consider for
example the deterministic process defined by Mt = −t. However, if inf{t >
0 : Mt > 0} is 0 almost surely, the invariance by ̺0 is a consequence of the
invariance by the reflections ̺Tan

.

To prove Theorem 1 above, Chaumont and Vostrikova establish a discrete
version of the theorem and they apply it to some discrete approximations
of M . The discrete version (Theorem 3 in [2]) states that if (Mn)n>0 is a
discrete time skip-free process (this means that M0 = 0 and Mn −Mn−1 ∈
{−1, 0, 1} for every n > 1) whose law is invariant by the reflections at times
T0, T1 and T2, then (Mn)n>0 is a discrete Ocone martingale (this means that
(Mn)n>0 is obtained by the composition of a symmetric Bernoulli random
walk with an independent skip-free time change).

The fact that the three invariances by the reflections at times T0, T1,
and T2 are actually useful (two of them would not be sufficient) explains
the surprising requirement that the law of (Mt)t>0 is invariant by reflections
at times Tan and T2an in Theorem 1 of [2]. Chaumont and Vostrikova ask
whether the assumption on T2an can be removed. Their study of the discrete
case could lead to believe that it cannot. Yet, we give in this paper a positive
answer to this question. Here is our main result.

Theorem 2. Let M be any continuous stochastic process such that M0 = 0.
If there exists a sequence (an)n>1 of positive real numbers converging to 0
such that the law of M is invariant by the reflections at times T0 = 0 and
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Tan , then M is an Ocone local martingale. Moreover, if Ta1 ◦M is almost
surely finite, then M is almost surely divergent.

We provide a simpler proof of this stronger statement (the final steps in
the approximation method of [2] were rather technical). Let us now indicate
the steps of the proof and the plan of the paper.

Our proof first uses some stability properties of the set of all stopping
times T such that ̺T preserves the law of M . These properties are estab-
lished in section 2.

In section 3, we show that for any positive real numbers a and b such
that a/(a + b) is not dyadic, if the reflections ̺0 and ̺T−a∧Tb

preserve the
law of M , then M is close to a local martingale in the following sense: for
every stopping time S in the canonical filtration of W such that the stopped
process M·∧(S◦M) is uniformly bounded, |E[MS◦M ]| 6 a+ b. To prove this,
we build a nondecreasing sequence (τn)n>0 of stopping times, increasing
while finite (τn < τn+1 if τn < +∞), starting with τ0 = 0, such that the
reflections ̺τn preserve the law of M and such that the increments of M on
each interval [τn, τn+1] are bounded by a+ b.

The proof that the reflections ̺τn actually preserve the law of M is given
in section 4. The final step of the proof of theorem 2 is in section 5.

To prove these results, it is more convenient to work in the canonical
space. From now on, W denotes the σ-field on W generated by the canonical
projections, X = (Xt)t>0 the coordinate process on (W,W), and F

0 its
natural filtration of the space W (without any completion). Moreover, Q
denotes the law of M and EQ is the expectation whith respect to Q.

2 Stability properties

Call TQ the set of all stopping times T of the filtration F
0 such that the

reflection ̺T preserves Q. In this section, we establish some stability prop-
erties of TQ. Let us begin with a preliminary lemma.

Lemma 1. Let S and T be F
0-stopping times. If w1, w2 ∈ W coincide on

[0, T (w1) ∧ T (w2)], then

• T (w1) = T (w2);

• either S(w1) = S(w2) or S(w1) ∧ S(w2) > T (w1) = T (w2).
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Thus, the random times S and T are in the same order on w1 as on w2.

Proof. The first point is an application of Galmarino’s test (see [5], chap-
ter I, exercise 4.21). The second follows by the same argument, since the
inequality S(w1) ∧ S(w2) 6 T (w1) = T (w2) would imply that w1, w2 ∈ W

coincide on [0, S(w1) ∧ S(w2)].

Corollary 1. Let T be an F
0-stopping time. Then

1. T ◦ ̺T = T

2. ̺T is an involution.

3. for every A ∈ F
0
T , ̺

−1
T (A) = A. In particular, if S is another stopping

time, the events {S < T}, {S = T} and {S > T} are invariant by ̺T .

Proof. The first point is a consequence of the application of the application
of lemma 1 to the paths w and ̺T (w). The secund point follows. The
third point is another application of Galmarino’s test (see [5], chapter I,
exercise 4.21) since w and ̺T (w) coincide on [0, T (w)].

The next lemma states that TQ is stable by the optional mixtures.

Lemma 2. Let (Sn) be a (finite or infinite) sequence of F0-stopping times
and (An) a measurable partition of (W,W) such that An ∈ FSn

for every n.
Then

T :=
∑

n

Sn1An

is an F
0-stopping time. If Sn ∈ TQ for every n, then T ∈ TQ.

Proof. Note that T is an F
0-stopping time since for every t ∈ R+,

{T 6 t} =
⋃

n

(An ∩ {Sn 6 t}) ∈ Ft.

Fix any bounded measurable function φ from W to R. Since for each n, the

5



event An and the probability Q are invariant by ̺Sn
, one has

EQ[φ ◦ ̺T ] =
∑

n

EQ[(φ ◦ ̺Sn
)1An

]

=
∑

n

EQ[(φ1An
) ◦ ̺Sn

]

=
∑

n

EQ[φ1An
]

= EQ[φ].

Hence ̺T preserves Q.

Corollary 2. For every S and T in TQ, S ∧ T and S ∨ T are in TQ.

Proof. As the events {S < T}, {S = T} and {S > T} belong to FS ∩ FT ,
the result is a direct application of lemma 2.

The following lemmas will be used to prove a subtler result: if S and T
are in TQ, then S ◦ ̺T is in TQ.

Lemma 3. Let S and T be F
0-stopping times. Then the following holds.

• For every t > 0, ̺−1
T (Ft) = Ft.

• S ◦ ̺T is an F
0-stopping time.

Proof. Fix t > 0. Then ̺−1
T (Ft) is the σ-field generated by the random

variables Xs ◦ ̺T for s ∈ [0, t], and the equality

Xs ◦ ̺T = (2XT −Xs)1[T6s] +Xs1[T>s]

shows that these random variables are measurable for Ft. Thus ̺−1
T (Ft) ⊂

Ft. Since ̺T is an involution, the reverse inclusion follows, which proves the
first statement.

For each t > 0, {S ◦ ̺T 6 t} = ̺−1
T ({S 6 t}) ∈ Ft, which proves the

second statement.

Lemma 4. Let S and T be F
0-stopping times and w ∈ W.

If S(w) 6 T (w), then S(̺T (w)) = S(w) and ̺S◦̺T (w) = ̺S(w).
If S(w) > T (w), then T (̺S(̺T (w))) = T (w) and ̺S◦̺T (w) = ̺T (̺S(̺T (w))).
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Proof. If S(w) 6 T (w), then w and ̺T (w) coincide on [0, S(w)], thus
S(̺T (w)) = S(w) and ̺S◦̺T (w) = ̺S(w).

If S(w) > T (w), then S(̺T (w)) > T (̺T (w)) = T (w) by corollary 1, thus
̺S(̺T (w)), ̺T (w) and w coincide on [0, T (w)], thus T (̺S(̺T (w))) = T (w).
But, to get ̺T ◦ ̺S ◦ ̺T (w) from w, one must successively:

• multiply by −1 the increments after T (w);

• multiply by −1 the increments after S(̺T (w));

• multiply by −1 the increments after T (̺S(̺T (w))).

Since T (̺S(̺T (w))) = T (w), one gets ̺S◦̺T (w) = ̺T ◦ ̺S ◦ ̺T (w).

Lemma 5. For every S and T in TQ, S ◦ ̺T belongs to TQ.

Proof. By lemma 4 and corollary 1, one has, for every B ∈ W,

Q[̺−1
S◦̺T

(B)] = Q[̺−1
S◦̺T

(B) ; S 6 T ] +Q[̺−1
S◦̺T

(B) ; S > T ]

= Q[̺−1
S (B ∩ {S 6 T})] +Q[(̺T ◦ ̺S ◦ ̺T )

−1(B ∩ {S > T})]

= Q[B ∩ {S 6 T}] +Q[B ∩ {S > T}] = Q[B].

Thus S ◦ ̺T belongs to TQ.

Here is a simple application of our last lemmas.

Corollary 3. For every a ∈ R, T−a = Ta ◦ ̺0 and ̺T−a
= ̺0 ◦ ̺Ta

◦ ̺0.
Thus, if 0 ∈ TQ and Ta ∈ TQ, then T−a ∈ TQ.

Proof. The first equality is obvious and the second equality follows from
lemma 4. One can deduce the last point either from the first equality by
lemma 5 or directly from the second equality.

3 Reflections at 0 and at the hitting time of {−a, b}

We keep the notations of the previous section and we fix two positive real
numbers a, b such that a/(a+b) is not dyadic. Note that T = T−a∧Tb is the
hitting time of {−a, b}. This section is devoted to the proof of the following
result.
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Proposition 1. Let Q be a probabiliy measure on (W,W). If 0 ∈ TQ and
T ∈ TQ, then, for every finite stopping time S in the canonical filtration of
W such that the stopped process X·∧S is uniformly bounded, one has

|EQ[XS ]| 6 a+ b.

Note that the process X may not be a local martingale. The law of
any process which stops when its absolute value hits min(a, b) fulfills the
assumptions provided it is invariant by T0.

The requirement that a/(a + b) is not dyadic may seem surprising, and
one could think that it is just a technicality provided by the method used
to prove the result. In fact, proposition 1 becomes false if this assumption
is removed. A simple counterexample is given by the continuous stochastic
process (Mt)t>0 defined by

Mt =

{

tξ if t 6 1,
ξ + (t− 1)η if t > 1,

where ξ and η are independent symmetric Bernoulli random variables. In-
deed, the law Q of M is invariant by reflections at times 0 and T−1∧T1 since
T−1 ∧ T1 = 1 Q-almost surely. Yet, for every c > 1, the random variable
XT−2∧Tc

is uniform on {−2, c} and its expectation (c− 2)/2 can be made as
large as one wants.

The proof of proposition 1 uses an increasing sequence of stopping times
defined as follows. Call D the set of c ∈]− a, b[ such that (c+ a)/(b + a) is
not dyadic. For every x ∈ D, set

f(x) =

{

2x+ a if x < (b− a)/2,
2x− b if x > (b− a)/2.

This defines a map f from D to D. Conjugating f by the affine map which
sends −a on 0 and b on 1 gives the classical map x 7→ 2x mod 1 restricted
to the non-dyadic elements of ]0, 1[.

By hypothesis, 0 ∈ D, so one can define an infinite sequence (cn)n>0 of
elements of D by c0 = 0, and cn = f(cn−1) for n > 1. By definition, cn−1 is
the middle point of the subinterval [cn, dn] of [−a, b], where

dn =

{

−a if cn−1 < (b− a)/2,
b if cn−1 > (b− a)/2.

Note that |cn − cn−1| = d(cn−1, {−a, b}).
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We define a sequence (τn)n>0 of stopping times on W by setting τ0 = 0,
and for every n > 1,

τn(w) = inf{t > τn−1(w) : |w(t) − w(τn−1(w))| = |cn − cn−1|}.

Note that cn 6= cn−1 for every n > 1, hence the sequence (τn(w))n>0 is
increasing. Moreover, since (|cn− cn−1|)n>1 does not converge to 0, the con-
tinuity of w forces the sequence (τn(w))n>0 to be unbounded. By convention,
we set τ∞ = +∞.

Note that if a = −1 and b = 2, then cn = 0 for every even n and cn = 1
for every odd n and the sequence (τn)n>0 is similar to the sequences used
in [2].

The proof of proposition 1 relies on the following key statement.

Proposition 2. If 0 ∈ TQ and T ∈ TQ, then τn ∈ TQ for every n > 0.

This statement, that will be proved in the next section, has a remarkable
consequence.

Corollary 4. If 0 ∈ TQ and T ∈ TQ, then the sequence (Yn)n>0 of random
variables defined on the probability space (W,W, Q) by

Yn(w) = XτDn
(w) where Dn(w) = max{k 6 n : τk(w) < +∞}.

is a martingale in the filtration (F0
τn)n>0.

Proof. Fix n > 0. The equality

Yn(w) =

n−1
∑

k=0

1[τk(w)<+∞ ; τk+1(w)=+∞]Xτk(w) + 1[τn(w)<+∞]Xτn(w),

shows that Yn is measurable for F0
τn . Moreover, from the equality

Yn+1(w)− Yn(w) = (Xτn+1(w)−Xτn(w))1[τn+1(w)<+∞],

we deduce that (Yn+1 − Yn) ◦ ̺τn = −(Yn+1 − Yn). Take A ∈ F
0
τn
. Then

̺−1
τn

(A) = A, since every w ∈ W coincide with ̺τn(w) on [0, τn(w)]. Since
the reflection ̺τn preserves Q, we get

EQ[(Yn+1 − Yn)1A] = EQ

[(

(Yn+1 − Yn)1A
)

◦ ̺τn
]

= −EQ[(Yn+1 − Yn)1A],

which shows that EQ[Yn+1 − Yn|F
0
τn
] = 0.
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We are now ready to prove proposition 1.

Proof. Fix C ∈ R+ such that |Xt∧S(w)| 6 C for every t ∈ R+ and w ∈ W.
For each w ∈ W, set N(w) = inf{n > 1 : τn(w) > S(w)}. Since S(w) is
finite and τn(w) is unbounded as n → +∞, N(w) is finite.

For every n > 0, {N 6 n} = {τn > S} ∈ F0
τn
. Thus N is a stopping time

and (Yn∧N )n>0 is a martingale in the filtration (F0
τn
)n>0. Note that:

• for all n < N(w), one has τDn
(w) < S(w) hence |Yn(w)| = |XDn(w)| 6

C,

• and |YN (w)| 6 |YN−1(w)|+ |YN (w)− YN−1(w)| 6 C + (a+ b)/2.

This shows that the martingale (Yn∧N )n>0 is uniformly bounded, hence it
converges in L1(Q) to YN and EQ[YN ] = EQ[Y0] = 0.

Note that τN−1 < S < +∞, hence YN = XτN or YN = XτN−1
. The

inequalities τN−1 < S 6 τN and the fact that the increments of X are
bounded by a+ b on each interval [τn−1, τn[ yield |XS − YN | 6 a+ b. This
completes the proof.

4 Proof of proposition 2

We keep the notations of the previous section, and we introduce for every
n > 1,

εn =
Yn − Yn−1

cn − cn−1
=

Xτn −Xτn−1

cn − cn−1
1[τn<+∞].

For every e = (en)n>1 ∈ {−1, 0, 1}∞, set

m0(e) = inf{n > 1 : en = 0}, m(e) = inf{n > 1 : en = −1}.

Call Σ the set of all sequences e = (en)n>1 ∈ {−1, 0, 1}∞ such that en = 0
for all n > m0(e). Then ε = (εn)n>1 can be seen as a random variable with
values in Σ.

The first key point is that T is always one of the times (τn)n>1.

Lemma 6. One has T = τm◦ε (remind the convention τ∞ = +∞). Thus,
for every n > 1, {m ◦ ε = n} = {T = τn < +∞}.
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Proof. Fix w ∈ W and set m = m(ε(w)) and m0 = m0(ε(w)).

For every n > 1, by definition of τn and εn, one has

εn(w) = ±1 if τn(w) < +∞,
εn(w) = 0 if τn(w) = +∞.

In particular, τn(w) = +∞ for every n > m0 since the sequence (τn)n>0 is
non decreasing. Thus, whether m 6 m0 or m > m0, one has τm∧m0(w) =
τm(w).

For every k < m ∧ m0, εk(w) = 1 hence w(τk(w)) − w(τk−1(w)) =
ck − ck−1. A recursion then gives w(τk(w)) = ck ∈] − a, b[. Moreover, for
τk(w) 6 t < τk+1(w),

|w(t) − ck| = |w(t) − w(τk(w))| < |ck+1 − ck| = d(ck, {−a, b}).

Hence for every t ∈ [0, τm(w)[, w(t) /∈ {−a, b}. This proves that T (w) >

τm(w).

If m is infinite, then T (w) is infinite.

If m is finite, the equality

w(τm(w)) − w(τm−1(w)) = −(cm − cm−1) = dm − cm−1

implies w(τm(w)) = dm ∈ {−a, b}, hence T (w) = τm(w).

The proof of the first statement is complete. Since the sequence (τn(w))n>0

is increasing and unbounded, the second statement follows.

We can now describe the effect of the reflection ̺T on the sequence
ε = (εn)n>1. For every e = (en)n>1 ∈ Σ, define r(e) = (fn)n>1 ∈ Σ by

fn =

{

en if n 6 m(e),
−en if n > m(e).

Set g(e) = r(−e) and γ = ̺T ◦ ̺0. Note that g and γ are bijective maps.

Corollary 5. With the notation above, the following properties hold.

1. The reflections ̺0, ̺T and their composition γ = ̺T ◦ ̺0 preserve the
stopping times τn.

2. One has ε ◦ ̺0 = −ε, ε ◦ ̺T = r ◦ ε and ε ◦ γ = g ◦ ε.
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Proof. Let w ∈ W. The trajectories w and ̺T (w) have the same increments
on [0, T (w)] and have opposite increments on [T (w),+∞[. Since T (w) =
τm◦ε(w), the results on ̺T follow immediatly. The other statements are
obvious.

For n ∈ N, note 1n = (1, . . . , 1) ∈ {−1, 1}n. For (e1, . . . , en) ∈ {−1, 1}n

and σ ∈ Σ, note (e1, . . . , en, σ) ∈ Σ the sequence obtained by concatenation.
The next formula will play the same role as lemma 1 of [2].

Lemma 7. Let N = a0 +2a1 + · · ·+2n−1an−1 be a natural integer written
in base 2 with n digits (the digit an−1 may be 0). Then for every σ ∈ Σ,

gN (1n, σ) = ((−1)a0 , . . . , (−1)an−1 , σ).

Moreover, if n > 1,

gN−2n−1
(1n−1,−1, σ) = ((−1)a0 , . . . , (−1)an−1 , σ).

Proof. The first formula will be proved by induction on the number of digits.
If n = 0, then N = 0 and the formula is obvious.

Assume the formula holds for all integers written with n digits. Let
N = a0 + 2a1 + · · ·+ 2nan be an integer written with n+ 1 digits.

If an = 0, then it suffices to write N with n digits and to apply the
induction hypothesis to the sequence (1, σ).

If an = 1, let us apply the induction hypothesis to the integer 2n − 1 =
1 + 2 + · · · + 2n−1 and to the sequence (1, σ). We get

g2
n−1(1n+1, σ) = (−1n, 1, σ).

Applying g once more yields

g2
n

(1n+1, σ) = (1n,−1, σ).

Applying the induction hypothesis to the integer

N − 2n = a0 + 2a1 + · · · + 2n−1an−1

and to the sequence (−1, σ) yields

gN (1n+1, σ) = ((−1)a0 , . . . , (−1)an−1 ,−1, σ),

which achieves the proof of the first formula.
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In particular, if n > 1, g2
n−1

(1n, σ) = (1n−1,−1, σ), hence

g−2n−1
(1n−1,−1, σ) = (1n, σ).

The second formula follows.

Introduce Σn ⊂ {−1, 0, 1}n the subset of n-uples such that each compo-
nent after a 0 is 0. Define the map g from Σn to itself as before.

Corollary 6. For every n > 1 and e = (e1, . . . , en) ∈ Σn, there exists an
integer M(e) such that the event Ae = {(ε1, . . . , εn) = (e1, . . . , en)} belongs
to F

0
T◦γM(e) and τn = T ◦ γM(e) on Ae.

Proof. Set (e1, . . . , en) = ((−1)a0 , . . . , (−1)ad−1 , 0, . . . , 0) with 0 6 d 6 n
and a0, . . . , ad−1 ∈ {0, 1}.

If d = n, set M(e) = 2n−1 − a0 − · · · − 2n−1an−1. Then by lemmas 7
and 6,

Ae = {gM(e) ◦ (ε1, . . . , εn) = (1n−1,−1)}

= {(ε1, . . . , εn) ◦ γ
M(e) = (1n−1,−1)}

= {m ◦ ε ◦ γM(e) = n}

= {T ◦ γM(e) = τn ◦ γM(e) < +∞}

Thus Ae ∈ F
0
T◦γM(e) , and τn = τn ◦ γM(e) = T ◦ γM(e) on Ae.

If d 6 n−1, set M(e) = −a0−· · ·−2d−1ad−1. Then by lemmas 7 and 6,

Ae = {gM(e) ◦ (ε1, . . . , εn) = (1d, 0, . . . , 0)}

= {(ε1, . . . , εn) ◦ γ
M(e) = (1d, 0, . . . , 0)}

= {m0 ◦ ε ◦ γ
M(e) = d+ 1 ; m ◦ ε ◦ γM(e) = +∞}

= {τd ◦ γ
M(e) < +∞ ; T ◦ γM(e) = τd+1 ◦ γ

M(e) = +∞}

Thus Ae ∈ F
0
T◦γM(e) , and τn = τn ◦ γM(e) = +∞ = T ◦ γM(e) on Ae.

The last corollary and the stability properties given in lemmas 5 and 2
show that if 0 ∈ TQ and T ∈ TQ, then τn ∈ TQ for all n > 0 (recall that
τ0 = 0). This ends the proof of proposition 2.
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5 Proof of the main theorem

Let us now prove theorem 2.

Proof. Call Q the law of M as before. The first step of the proof is the
observation that for every integer n > 1, T−an ∈ TQ by corollary 3. Hence
for all integers m,n > 1, T−an ∧ Tam ∈ TQ by corollary 2. Lemma 8, which
will be stated and proved below, ensures that the ratios an/(an + am) are
not dyadic for arbitrarily large m and n. For such m and n, proposition 1
applies and yields EQ[XS ] 6 an + am for every finite stopping time S (in
the canonical filtration W) such that the stopped process X·∧S is uniformly
bounded. Since (an)n>1 converges to 0, this proves that EQ[XS ] = 0, hence
X is a local martingale under Q.

The next arguments are the same as in [2] and we now summarize them.

Q-almost surely, the processX admits a quadratic variation 〈X〉 (defined
as a limit in probability of sums of squared increments), which is preserved
by the reflections ̺0 and ̺Tan

. Consider a regular version of the conditional
law of X with respect to 〈X〉. For any continuous non-decreasing function
f : R+ → R+ such that f(0) = 0, call Qf the law of X conditionally on
〈X〉 = f . Then for almost every f (for the law of 〈X〉), the probability Qf

is invariant by the reflections ̺0 and ̺Tan
.

By the part of the theorem which is already proven, X is a local martin-
gale under Qf . But 〈X〉 = f almost surely under Qf . Calling φ the right-
continuous inverse of f , one gets that the process B = (Xφ(s))06s<f(+∞) is
a Brownian motion with lifetime f(+∞).

Consider, in some suitable enlargement of the probability space (W,W, Q),
a Brownian motion W , independent of X. For almost every f , the Brown-
ian motion W is still independent of X under Qf . Since the local martin-
gale X converges Q-almost surely to a random variable X∞ on the event
{〈X〉∞ < +∞}, one gets a Brownian motion B defined on the whole interval
[0,+∞[ and independent of 〈X〉 by setting

Bs = X∞ +Ws−〈X〉∞ on the event {〈X〉∞ 6 s}.

Since Xt = B〈X〉t almost surely for all t > 0, this shows that X is an Ocone
local martingale under Q.

Assume now that 〈X〉∞ is finite with positive probability. Then for some
s ∈ R+, 〈X〉∞ 6 s with positive probability. But with positive probability,
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B does not visit a1 before time s. By independence of B and 〈X〉,

Q[Ta1 = +∞] > Q[Ta1 ◦B > s] Q[〈X〉∞ 6 s] > 0.

This shows that if Ta1 is finite Q-almost surely, then 〈X〉∞ is infinite Q-
almost surely, hence X is almost surely divergent.

Note that the proof of the last statement (if Ta1 is finite Q-almost surely,
then X is almost surely divergent) given in the discrete case by Chaumont
and Vostrikova (lemma 2 of [2]) is not correct because they prove the impli-
cation

Ta(M) ∨ T−a(M) < +∞ a.s. =⇒ Ta+2(M) ∧ T−a−2(M) < +∞ a.s.,

which is not sufficient to perform an induction. Yet, the same arguments
that Chaumont and Vostrikova used to prove their lemma 1 are sufficient
to prove their lemma 2. Our lemma 7 generalises these arguments, and the
case in which some stopping time Ta is infinite is covered by the possibility
for the sequence of signs σ ∈ Σ to be eventually 0.

Lemma 8. If c > b > a > 0, then at least one of the three following ratios
a/(a+ b), b/(b+ c) and a/(a+ c) is not dyadic.

Proof. The three ratios above belong to ]0, 1/2[. Assume that they are
dyadic. Then

a

a+ b
=

i

2p
,

b

b+ c
=

j

2q
,

a

a+ c
=

k

2r
,

where i, j and k are odd positive integers and p, q and r are integers greater
or equal to 2. Thus

2r − k

k
=

c

a
=

b

a
×

c

b
=

2p − i

i
×

2q − j

j
,

ij(2r − k) = k(2p − i)(2q − j),

2rij + 2qik + 2pjk − 2p+qk = 2ijk.

This is a contradiction since the left-hand side is a multiple of 4 whereas the
right-hand side is not.
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