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Mean variance hedging under defaults risk

Sébastien CHOUKROUN *,  Stéphane GOUTTE *# AND Armand NGOUPEYOU *#

July 20, 2012

Abstract

We solve a Mean Variance Hedging problem in an incomplete market where multiple
defaults can appear. For this, we use a default-density modeling approach. The global market
information is formulated as progressive enlargement of a default-free Brownian filtration
and the dependence of default times is modeled by a conditional density hypothesis. We
prove the quadratic form of each value process between consecutive defaults times and solve
recursively systems of quadratic backward stochastic differential equations. Moreover, we
obtain an explicit formula of the optimal trading strategy. We illustrate our results with some
specific cases.

Keywords: Mean variance hedging; default-density modeling; Quadratic backward stochastic
differential equation (BSDE); Dynamic programming.

MSC Classification (2010): 60J75, 91B28, 93E20.

Introduction

In this paper, we study the problem of mean variance hedging in a financial market model
subject to defaults and contagion risk. We consider multiple defaults events corresponding for
example of a succession of crisis periods for a country or a succession of bad annual financial
results for a firm. These defaults could induce loss or gain on the asset price. A classic approach
to model this is to use an Itd process governed by some Brownian motion W for the asset price
S and jumps appearing at random default times, associated to a marked point process p. Hence
the mean variance hedging problem in this incomplete market framework may be then studied
by stochastic control and dynamic programming methods in the global filtration G generated by
W and p. This leads in principle to Hamilton-Jacobi-Bellman integro-differential equations in a
Markovian framework, and more generally to Backward Stochastic Differential Equations (BS-
DEs) with jumps, and the derivation relies on a martingale representation under G with respect
to W and p, which holds under intensity hypothesis on the defaults, and the so-called immersion
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property (or (H)-hypothesis). Such an approach was used in [4] for the multiple defaults case or
in [3]] for the mean variance hedging problem under G for defaultable claims.

The mean variance hedging problem was introduced in [2]] and many papers have followed
and developed this approach. In most of these papers, this problem was solved with continuous
filtration [11]], [12]]. The authors use the dual’s approach to show the existence of the variance
optimal measure (VOM). Moreover, they can write the solution of the primal problem using Back-
ward Stochastic Differential Equations (BSDEs) whose existence of solutions are deduced by the
existence of the VOM. In the case of discontinuous filtration, the VOM is not always a probability
measure (see [[1] for conditions), so we cannot use the previous approach to solve our problem.
That is why, in general, in the case of discontinuous filtration, the authors make the assumption
the VOM is a true probability measure as [9] and then deduce the solution of the primal problem
using BSDEs. They so prove the existence of the solution of each BSDE using the VOM. Indeed,
without the fact that the VOM is a true probability, it is difficult to show the existence of solution
of the corresponding BSDEs with jumps since these BSDEs coefficients are not standard.

In a general model with discontinuous filtration generated by a continuous process and a dis-
continuous process, the author in [[10]] proved the existence of the solution of the BSDEs for the
mean variance problem assuming that the coefficients of its asset are adapted with respect to the
continuous filtration . This strong assumption allows him not to assume that the VOM is a true
probability and leads him to solve directly the main BSDE without any assumption on the VOM.

In this paper we work also in the case of a discontinuous filtration G. In our model, jumps are
generated by default times. So, we cannot use the same technics as [[10]], since his strong assump-
tion is not well satisfied in our framework. Indeed, our assets coefficients depend on the jumps
(defaults) . Therefore, we use a different approach than the one mentioned previously. Indeed,
we use an approach initiated and studied in [5]. By viewing the global filtration G as a progres-
sive enlargement of filtrations of the default-free filtration I generated by the Brownian motion
W, with the default filtration generated by the random times, the basic idea is to split the global
mean variance problem, into sub-control problems in the reference filtration F and corresponding
to mean variance problems in default-free markets between two default times. More precisely, we
derive a backward recursive decomposition by starting from the mean variance problem when all
defaults occurred, and then going back to the initial mean variance problem before any default.
The main point is to connect this family of stochastic control problems in the F-filtration, and
this is achieved by assuming the existence of a conditional density on the default times given the
default-free information IF. So we will use the approach of [5] to show that between each default
time, using dynamic programming method, we can first characterize each dynamic version of the
mean variance hedging problem in a quadratic decomposition form. These decompositions will
depend explicitly on the parameters and default times of our model. Secondly, we will express the
three terms appearing in this quadratic decomposition form as solution of three explicits backward
stochastic differential equations (BSDEs). Then, starting after the last default event and then going
back to the initial mean variance problem we will obtain for this each subset a system of recursive
BSDEs. We will prove explicitly the existence and uniqueness of the solution of theses systems of
quadratic BSDEs which is not trivial and we will find the optimal mean variance hedging strategy.

The paper is so structured as follows: In section 1, we will introduce our model and the
corresponding mean variance hedging problem. We will give the systems of BSDEs. Then, in
section 2, we will give the solution to the mean variance hedging problem. For this, firstly, we will
begin by giving a proof of the existence of a solution of the recursive system of BSDEs. Secondly,



we will give the BSDEs characterization by a verification theorem. Finally, in section 3, we will
give some numerical illustrations.

1 Multiple defaults model

1.1 Market information

We adopt in this paper the same model and notations as in [S]. Let 7 = (7y,...,7,) be now a
vector of the n random times and L = (L, ..., L, ) be a vector of the n marks associated to 7, L;
being a G-measurable random variable taking values in £ C R and representing for example the
loss given default at time 7;. We denote, for k = {1,...,n}, D¥ = (Df)te[o,T} where Df = D,
and Df = o(1,,<s,5 < t) V o(Lyls.<s,s < t) the filtrations generated by the associated jump
processes. Then G = (gt)te[oﬂ will be the enlarged progressive filtration F v D! v ... v D",
representing the structure of the global information available for the investors over [0, 7']. In other
words, G is the smallest right-continuous filtration containing IF such that forany 1 < k < n, 73, is
a G-stopping time and Ly, is G;,_-measurable. We shall assume that the default times are ordered
(i.e. 1 < ... < 7,)and so valued in A,, on {#,, < T'} where, for k = 1, ..., n, we denote

Ay = {01, 00) € R)F: 01 < .. <O}

This means that we do not distinguish specific credit names and only observe the successive default
times. For any (01, ...,0,) € Ay, ({1, ...,0,) € E™, wedenote by 0 = (01, ...,0,), L = (I1, ..., 1),
and 0 = (61, ...,0k), Ly = (L1, ..., ) for 0 < k < n with the convention 6y = Iy = (). We also
denote 74, = (71, ..., %) and Ly, = (Ly, ..., L1,). Moreover, for 0 < ¢t < T, the set QF denotes the
event

Of = {n <t <7},

(with QY = {t < 7} and QF = {7,, < t}) and represents the scenario where k defaults occur
before time . We call QF the k-default scenario at time t. We define similarly QF = {7, <t <
Tr+1}- We denote by P(IF) the o-algebra of F-predictable measurable subsets on R x €2, and by
Pr(AF, E*) the set of indexed F-predictable processes Z*(.,.), i.e. s.t. the map (¢,w, 0}, 1;,) —
ZF(w, 0, 1) is P(F) ® B(Ay) ® B(EF)-measurable. We also denote by O (A, E¥) the set
of indexed F-adapted processes Z%(.,.), i.e. s.t. forall 0 < ¢t < T, the map (w,0y,1l;) —
ZF(w, Oy, ly) is F; @ B(Ar) @ B(E*)-measurable. Hence we have that any G-predictable process
Z = (Z)o<t<T has a decomposition in the form

n
Zy =) Lok ZF(m, L), 0<t<T
k=0

where ZF lies in Pr(Ay, EF). We assume also the density hypothesis which is given in multiple
defaults case by the following statement:

Assumption 1.1 (Density hypothesis). There exists o € Op(Ay, E™) such that for any Borel
Sunction fon Ay x E"and 0 <t <T:
E[f(r,L)|F] = /A B f(0, ) (0,1)dOn(dl) a.s., (1.1)
7L>< "

where d@ = df);...d0,, is the Lebesgue measure on R™, and n(dl) is a Borel measure on E™ in
the form n(dl) = n1(dly) Hz;% Nk+1 (g, dli41), with m1 a nonnegative Borel measure on E and
Ny 1(Lg, dlg41) @ nonnegative transition kernel on E* x E.



Remark 1.1. The condition (1.1)) implies that in the case that o is separable in the form o (0,1) =
o (0)ak (1) that the random times and marks are independent given F.

1.2 Asset price model under default risk

The trading asset S is a G-adapted process which admits (as in [3]]) the following decomposed
form
n
S =3 1osSF(Th: L), (1.2)
k=0
where S*(0y,11), 0r = (01,...,0;) € Ap, I, = (I1,...,1x) € E*, is an indexed process in
Or(Ay, E¥), valued in R, representing the asset value in the k-default scenario, given the past
default events 7 = 0%, and the marks at default L; = [;. Notice that S; is equal to the value
SF only on the set QF, that is, only for 7, <t < 741. The dynamic of the indexed process S* is
given by

dSF(0r, 1) = SF(O,1p) (uF (O, Lp)dt + oF (0, 1,)dWy), 6, <t <T (1.3)

where W is a one-dimensional (P,F)-Brownian motion, ;* and ¢* are indexed processes in
Pr(Ay, E¥), valued in R. We make, as in the one default case, the usual no-arbitrage assumption
that there exists an indexed risk premium process \* € Pp(Ay, E¥) s.t. forall (0, 1;,) € Apx E¥,

R (0, L)NF (O, 1) = ¥ (05, 1:), 0<t<T. (1.4)

Moreover, in this contagion risk model, each default time may induce a jump in the assets port-
folio. This is formalized by considering a family of indexed processes 7%, 0 < k < n — 1, in
PF(Ak, Ek, E), and valued in [—1, OO) For (Gk, lk) € A, X Ek, and lk+1 e F, ’)/tk(ek, Ly, lk+1)
represents the relative vector jump size on the asset at time ¢t = 6,1 > 6 with a mark [y, given
the past default events (7, L) = (0, lx). In other words, we have :

Set (O, lepr) = Sy (O, 1) (1 + Vb, (O L lk+1)) (1.5)

Ok11 et

1.3 Strategy and wealth process

The trading strategy is a G-predictable process 7, hence decomposed in the form

n
= Lok (i, L), 0<t<T (1.6)
k=0
where 7 is an indexed process in Pg(Ay, E), and 7% (04, 1}) is valued in closed set A* of R

containing the zero element, and representing the amount invested continuously in the asset in the
k-default scenario, given the past default events 7, = 0} and the marks at default L; = li, for
(Ok, 1) € Ay x E¥. We shall often identify the strategy 7 with the family (7%)o<x<, given in
and we require the integrability conditions : for all 8, € Ay, l;, € E¥,

T T
/wa(ek,lk)uf(ak,lk)de/ |7F (O, U)o (O, 1) |?dt < 00, a.s. (1.7)
0 0

Given a trading strategy 7 = (7* )o<k<n. the corresponding wealth process is given by

n
X, = Z1Q§Xf(7-k,Lk), 0<t<T (1.8)
k=0

4



where X* (7, Ly), 0, € Ay, l;, € E*, is an indexed process in Op(Ay, EF), representing
the wealth controlled by 7%(8;,1},) in the price process S*(0y,1;), given the past default events
T}, = 0}, and the marks at default Ly, = lj,. From the dynamics (1.3)) and under (1.7)), it is governed
by

AX{(Ok, l) = 7F (O, ) (uf (O, L) dt + o (O, Lk)dW,), O <t <T. (1.9)

Moreover, each default time induces a jump in the asset price process, and then also on the wealth
process. From (I.3), it is given by

Xg,:l (Ok+1,lk11) = ng—H (O, 1k) + 70, Ok L) V6,,, (O Ly Ly

Finally, the payoft is a bounded Gr-measurable random variable H which admits the decom-
position form given by

n
Hr =) lop Hf(ty, L), (1.10)
k=0

where HE(.,.) is Fr ® B(Ag) ® B(E*)-measurable and represents the payoff when & defaults
occurred before maturity 7.

Remark 1.2. We have between each default time (i.e. in each time events Qf = {7, <t <
Tkt1}, t € [0,T)) that the market is complete.
1.4 The mean variance problem

On our problem of mean variance hedging (MVH), the performance of an admissible trading
strategy 7 € Ag started with an initial capital x € R is measured over the finite horizon T by

Ji (x,7) = E[(Hr — X77)?] (1.11)
and the MVH problem is formulated as

Vil(z) = inf JH .
0 (7) Wgh@ o (@, m)

1.4.1 Value functions
We define, first, the corresponding multiple defaults admissible trading strategies set:

Definition 1.1. For 0 < k < n, AL denotes the set of indexed processes T in Pp(Ay, E¥), valued
in A¥ satisfying (I77), and such that

T
EV 17* (O, 1) |Pds | < oo (1.12)
Ok

We then denote by Ag = (A]’fr)ogkgn the set of admissible trading strategies m = (ﬂ'k)ogkgn.

Under the density hypothesis let us define a family of auxiliary processes a* € Op(Ay, EF),
0 < k < n, which is related to the survival probability and is defined by recursive induction from

n

o = a,

af(Ok,lk)Z/t /Eaf+1(9k,9k+1,liwlk+1)d9k+mk+1(lk,dlk+1)7 (1.13)

5



for0 <k <n—1sothatPlryi1 > t|FR] = [u, oo of (g, 11,)d0xn(dly) and Pty > t|F;] =
a?, where d@y, = db;...d0, n(dl) = m(dly)..m,(l_1,dly). Given 7% € AE, we denote by
Xk (@y,,1;,) the controlled process solution to (T.9) and starting from  at ;. We now give our
model hypothesis:

Assumption 1.2. We assume for all t € [0}, T] and 0 < k < n that uf, of,~F and the family
processes o € Op(Ay, EF) are uniformly bounded. Moreover, we assume for 0 < k < n that
the measure N (dly) is uniformly bounded too.

1.4.2 The mean variance hedging problem

The value function to the global mean variance G-problem (I.T1) is then given, in the multiple
defaults case, in a backward induction from the [F-problems (see [3] for more details) :

V'(2,0,1) = essinfE |(HE — X7"(6,1))%ar(0,1)| 7, (1.14)

TEAR

V(2,01 0k) = essinf E[(Hf — X777 (8y, 1)) o (0x, 1) +
TR e AR

(1.15)

T
/9 /EVkH(Xg’ﬁ Ok, lk) + 7o Ok k)4, Ok Uiy lig1), Okt L)t (Ui Al 1) dB 1| Fp,
k

k+1
where we recall that ,, = 0,1, =1,0y) =60y = 0 and Iy = [y = (.

Remark 1.3. If there exists, for all 0 < k < n, some m"* € Aﬁ} attaining the essential infimum
in the previous equations, then the strategy " = (Wk’*)ogkgn € Ag is optimal for the MVH

problem.

2 Solution to the mean variance hedging problem

We exploit the quadratic form of the mean variance hedging problem in order to characterize by
dynamic programming methods the solutions to the stochastic optimization problems (I.14)) and
(T.13)) in terms of a recursive system of indexed BSDEs with respect to the filtration F. We use a
verification approach in the following sense:

1. Firstly, we derive formally the system of BSDEs associated to the [F-stochastic control prob-
lems (1.14)) and (I.15) using dynamic programming principle.

2. Secondly, we obtain the existence of the solutions of the corresponding system of BSDEs
(see Theorem [2.1)).

3. Finally, in a verification Theorem (see Theorem @]), we prove that these BSDEs solutions
are unique and provide the solution to our mean variance hedging problem. We prove also
that the strategy found in step 1 is optimal and admissible. Moreover, we prove that the
quadratic representation form of our value function are true.

So let’s begin with point 1: For t € [0,,T], v" € AR, let us introduce the set of controls
coinciding with strategy v until time ¢:

Ag(t, ") ={n" € Ap : wly = v}



We can now define the dynamic version of (I.14) by considering the family of F-adapted pro-
cesses:

Vi'(2,0,L,v") = essinf E[(H} — Xp"(0,0)%ar(0,0)|F], >0, (2.16)

mnEAD (tun)

so that Vi (z,0,1,v") = V"(x,0,1) for any v" € AR. From the dynamic programing prin-
ciple, one should have the submartingale property on {V;"(x,0,l,v"™) ,0, <t <T}, for any
v € A, and if an optimal strategy exists for (2.16)), we should have the martingale property of
{V"(z,0,l,7%™),0, <t <T} for some 7*" € Af. Moreover, since we work on a quadratic
minimization approach, the value process V,"(x, 8,1, v™) should admit the quadratic form decom-
position given by

2
Vi (z,0,1,0") = o PN X 0,1) - YO+ et e 19, T

We search a triple (v™%!, Y0l ¢80y in the form

dvn,B,l
t _ _gn797l7(1) (,U:L707l n707l)dt + ﬁ?velth,

n,0l t g
Uy
En 2.17
(En) dYt”’e’l _ _gf,e,z,@) (Y;n,@,l7 Ztn,B,l)dt n Zzl,e,lth (2.17)

de = —gr Ot GO RP Ot 1 R aw.

Then, by using the above submartingale and martingale property of the dynamic programming
principle and since V2(z,0,1,v™) = (X1"(0,1) — HE(6,1)) ar(8,1) by @.16), we see from
Itd calculus (see Proposition 3.5 of Goutte and Ngoupeyou [3] for more details) that the triple
(v 0t YOl ¢nb.) satisfies (Z.17) for all t € [6,,, T] with terminal conditions vgﬁ’a’l = ar(0,1),
Y, O — H%(0,1) and &' 01 — 0. The corresponding coefficients of the BSDEs are given by the
following equations:

n 2 n
n,0,1,(1) (1"(0,1) + o™(8,1)8,""") 17,6,1,(2) ©(6,1) P

g _ g _ n,0,1,(3)
! (07(8,1))> rot o (0,1)°"

and g, = 0.

We have, also, that the optimal strategy 7'* (such that V;*(z, 8,1, 7™*) is a true martingale) is
given for all t € [0, T] by

0,0 = X0 + f0h (2.18)

where

n767l’1 R n707l n,e,l n,0,l
Tt : (Mt +o0.7 B )

1
Gl

n,0,1,2 1 n,0,l —n,0,l n,0,l n,0,l n,0,l ,m,0,1l
t = 2 {Ut Zy7 4 Y, (Ht +07 By )}
n,0,l

Hence, the optimal strategy is linear in X which is the case in the no default model. We will refer

and

in the sequel to this problem as the (En) problem.



Next, consider the problem (I.15]) and define similarly the dynamic version by considering the
value function process given by:

ViE(x, 00,1, V5 = ke%nf )E[(HT(Bk,lk) XK (04, 1)) (05, 1) + (2.19)
c t.vk

k,x
/ /Vglf:: Xoois O, 1) + W§k+1(0k7lk)~7§k+1(9k,lk,lk+1),9k+17lk+1)77k+1(lk,dlk+1)d9k+1!]:t]

for 0, < t < T, where AL(t,1%) = {7F € AL . 7k, = vE,}, for vF € AL so that
V(,{Z (z, 0,11, vF) = V¥(x,0y,1;). Similarly, we will refer in the sequel to this problem as (Ek)
problem for £ = 0,...,n — 1. The dynamic programming principle for (2.19) formally implies
that the process

VF(x, 05, 1y, v +/ / Vo (X g™ (O, o) 47, (O L) A6, Oy Ui Lieg), Ot Lot )it (Ui iy ) dBpn

k+1 9k+1

for t € Ay, T] is a submartingale for any v* € A[]} and a true martingale for 7%

if it is an optimal
strategy for (2.19). Again, since we work on a quadratic minimization approach, the value process

V¥ (x, 0,1, vF) should admit the quadratic form decomposition given by

Vi (2, O ey VF) = o Ol (X0 (0, 1) — YPOR)" b Ol =0, 0~ 1

We search also a triple (vk’ok’lk, Yk’ak’lk,ﬁk’e’“lk) forallk =0,...,n — 1, in the form
dpf-Orle kOl (1) , kOrle ok.Orl k05,1
keklk :7gt’k’k7 (,Ut7k?k,ﬁt7kvk)dt+ﬁt7kvdet
'l)t’ b
Ek (2.20)
(Ek) dY;kygk’lk _ _gfagkylk,(2)(}/tk70k>lk’ Zfﬂk,lk)dt + Zf’gk’ldet

k0.1 k01 lis(3) ) kBl kOl k00,1
defOrle — _gh k k()(ft whe pROeley gy 1 REORL gy,

Then, by using the above submartingale and martingale property of the dynamic programming

2
principle and since V& (z, O, Iy, v*) = (X{,‘i’z(Ok, ly) — H{,‘Z(Ok,lk)> ok (05, 1) by @-19), we
see from It6 calculus (see again Proposition 3.5 of Goutte and Ngoupeyou [3] for more details)
that the triple (vk’e’f’lk,Yk79k’lk7§k70k’lk) satisfies (2.20) for all ¢ € [0y, T] with terminal con-

ditions U?o’“’l’“ = ok (0,11, lef’gk’l’“ = H}(04,1;) and {?’gk’l’“ = 0. And the corresponding
coefficients of the BSDEs are given by the following equations:

kOl (1 ,
g " L) /E(l‘i‘vjkek 51 (L dlisr)

2
(Nt +oF B0 [ (1 4 o] O (O, Uy D) e (L dlk+1))
(0F)2 + [5(1 4+ 0] O (Y (O, Uy L)) 201 (L, i)

)

k01,11, (2) k.01 k,0,1 Jk,0,1 J, k0,1
9t = BRIz 4 Ut R+ o ) gger (L, )

(=0 J“’kv’k(w o O O, U, L) (L, ) — oF 200
(o) + Jo(1 + 25

<Mt + ok gftel 4 / (14 o POty F (O 1, L1 )i (L dlk+1)>

YE Ok Uis Lot 1)) 201 (L dliy1)

X
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9t

(O, 1)

and

kO i (3 O, Ol 2 ; Ok,
B O [ ORI i (U ) + (200

2
(_ S+ o ROt T RO ek (0, 1y 1t s (Ui, i) — athk’ek’lk)
(0} ) + fE(l + UJk oklk)(% Ok, Uy ot 1)) N1 (Ui, A1)

]

where

okt 10,4150k

J7k70k »lk .
1+v = T Ronh
Uy

and UPFO0le — yE+1.0k11lki1 _ ykOrdy

The optimal strategy 7%* (such that V¥ (x, 8y, Iy, ™) is a true martingale) is given by

1 k05,1 k05,1 k05,1
)|:0.th7 k7k:_Kt7 kyk(uf+af/3t7 k:’k)

]
(0F)2 + [p(1+ v O )y (0, U, T )20t (Ui, dljin
o (X (0% T e R Y

Ok Uy U1 )Mot (T, Al 1)

+
,Uf7ek L

with K00t .— x5 (9, 1) — Y*Oulk Again, we obtain a linear form of the optimal strategy
with respect to X. We will refer in the sequel to this problem as the (Ek) problem, k& € {0,...,n—

1.

Remark 2.4. For all (EK) problems, k € {0,1,...n}, we work in the time interval given for all
t € [0k, T). Hence for the particular case where we take the value function for t = 0y, we obtain
that Vtk:(ak (z, 0, 1), VF) = Vg"; (z, 04,11, vF) = V*(x, 0y, 11.), where we recall that x is the value
oka in 0y, so ng = 1.

Hence, (Ek) and (En) define thus a recursive system of families of BSDEs, indexed by (6,1) €
A, (T) x E™, and the rest of this paper is devoted first to prove the existence of a solution of these
system of BSDEs, and then to its uniqueness via verification theorem relating the solution to the

value function and

2.1 Existence of a solution of the recursive system of BSDEs

The generators of our recursive system of BSDEs and (2.20) are not trivial since the co-
efficients g"fxbx | € {0,...,n} are not standards. Hence, we give a Theorem to insure that
recursive BSDEs solutions exist and stay in their own solution’s space for all k£ € {0,1,...,n}.
Let consider the family {Q(0), (0,1) € [0,T] x E™} of probability measures such that the Radon
Nikodym density of (6, 1) with respect to P on Fr is given by

dQ(0,1
S TR L I Y X Py

Theorem 2.1. Forall k € {0,1,...,n} andt € [0k, T], we have that

3] . (2.22)

1. There exists a couple ( kOl k’a’“’lk) € 8 x BMO of the first BSDE of [2.20) (if
k #n)and @I7) (if k = n) and there exists constants 6% and 6% such that

0 < &F < offrle < gk

2.21)



Moreover, for the case k = n, we have an explicit solution which is

z20,0\> 1 -
PO =R (| 25 F 2.23
o ( (ZtQ(a,l)) aT(G,l)’ t]) 229

2. There exists a couple (Yf’g’“’l’“, Zf’o’“’lk) € 8% x BMO solution of the second BSDE of

2.20) (if k # n) and @.17) (if k = n). Moreover, for the case k = n, we have an explicit
solution which is

Z20,1) ., _ wQO0) [
ZtTQ(MHT(G,l)’]-}] = E®D [1(0,1)| 7] (2.24)

)

Y;nﬂ,l -F [

3. There exists a couple (ff’ek’lk, Rf’gk’l’“) € 8 xBMO solution of the third BSDE of (2.20))
(if k # n) and 2.17) (if k = n). Moreover, for the case k = n, we have an explicit solution
which is &' 0L — 0 since the market is complete (i.e. we are after the last default).

Proof. For each BSDE, we will proceed in a backward recursive proof.

First BSDE: (En) problem: If £ = n (i.e. we are after the last default), the market is com-

Q 2
plete. Following (2.22) and from Itd calculus, we get that lw

Yt ] t€[0n,T)
= ap(0,1) we finally obtain, for all

is a

P-martingale. Using its terminal condition v;’e’l

t € [0, T, that
720,0\° 1 -
n,0,l T7\Y5
v, " =[E F .
! ( (Z,?(@,l)) aT(O,l)‘ t])

Moreover, under integrability condition the martingale g:gzg W is BMO. This

implies that the family {Q(0,1),(0,1) € A,(T) x E™} of measures of probability,
such that the Radon Nikodym density of Q(0, 1) with respect to P is given by (2.22)),

satisfies the reverse Holder inequality Ro(P). Hence there exists a positive constant
E[ZZ (6.0)%|F]
Z2(01)2
implies in particular that for all ¢ € [0, 7] __Z2O0? > L > (. We conclude
T E[22(0.0)2F] T
by Assumption there exists a constant 67 such that v™%! > §7. Moreover using
Jensen’s inequality and Assumption there exists a positive constant d5 such that

forall t € [0,T): v} < o7,

(EK) problems: Now, assume that the solution exists for k:=k+1withk € {0,1,...,n—
1} (our recursive hypothesis), we have to show that it is still true for E—1:=k We

¢4 such that for all stopping time 7 < T" we have < ¢4. This result

prove that the problem is equivalent to a problem of BSDE with quadratic growth and
bounded terminal condition, therefore using Kobylanski’s results in [8], we will get the
result. Hence, the proof is divided in two parts. Firstly, we will give results for a mod-
ified quadratic BSDE. Secondly, we will use comparison theorem of quadratic BSDE
to show that the first component solution of the modified BSDE is non negative and we

10



will conclude the proof. Let define, so, the modified BSDE for k € {0,1,...,n — 1}
given by:

dvfﬁkylk _ _gfﬂk,lm(l)(vfﬂk,lk’ 6f’ek’lk)dt + Bfﬂk,ldet (2.25)
with generator given by

kOk,lk,(1) k+1,0k41,0k+1
t = E”t

g Mie+1 Uk, dli41)

2
k0l 50 k41,0441,
<Mf|vt S| o BT 4 [T TR k“’Yf(@k,lk,lk+1)77k+1(lk,dlk+1)>

/] s k+1,0 )
(052 O | 4 [ o TEO I (b 0y L 1)) 20k (L, dli 1)

Using our recursive hypothesis that there exists constants ¢ ]fH and 55“ such that

0 < 6lf+1 < vf+110k+lalk+1 < 554—1.
and Assumption[I.2] we have that there exists a constant C' > 0 such that:

- —_— 2
|gf70k,lkv(1)| < Cl1+ |vaak7lk| + |ﬁf’9k’l’“| ) (2.26)

Therefore this coefficient follows a quadratic growth (with respect to 3%:0x:lx) and
linear growth (with respect to Uk’ek’lk), using Kobylanski Theorem [8]], there exists a
pair (vF0kle BROIY) € § x BMO solution of this modified BSDE. Let now find a

suitable lower bound of the coefficient g~:€x.tx:(1), Let first define:

k

koK
k41,0511, g€

ef = /Evt+ FE Y O Ly L) kg1 (s i) ; Iff =2 (ZZ + ;kt> (2.27)
t t

2
ron 1 9k ok k
df:/Eth O (Y (O, Uy Ut 1)) Mgt (U ) and - cf = 'utkt + (% (2.28)

Using (2.26), we find —gk-frte:(1) = KD + K} + K? + K} where

0 k41,011,041
KO = /E o et (L dlisr)

EOoli ) O L k)2 k0.0 \ 2 kOl KOl
Kl _ (Nt Uy +6t> - 11y kolk |Uk,9k7lk| N 2u k k’vta k k’ef (ef)z
t = : > t
(Ufaekvlk)vafﬂkylk’ +dk Ufﬁ’k,lk déﬂ déf
—— 2 — 2
k0%l ok,0k,1 k0%,
o (o7 BT) |8,
t = <
(Ufﬂk,lk)2|vfﬂk,lk| + df ’,Uf:gk»lk‘
and
B0 lp akOudn s kOulni KOkl k.05, k.04l oF.0rl
K3 — 20 7FF BT (g o k|+€1’5€) < 2Mt i kﬁk,ek,lk+2at Rk B kef
t — — kO L t

5051 505 k
(op7F k)%"t i k“"df dy

Since the processes ¥, o, 4* vFTLOk+1lit1 are bounded from Assumption and
our recursive hypothesis at step k + 1, we conclude that the processes I* and c* are
bounded too. Using the expressions of K 0. K', K2 and K3, we obtain:

— 5 2
k70k7lk

For i < 1P ‘
_g k k( ) S |Uf,0k7lk|

- k\2

€ k+1,0 )0

+ f‘vf,ek,lk’_i_lfﬂf,ek,lk_i_(67;]3 _/ + k+150k+41
t

LU Me+1 Uk, A1)

11



Using Cauchy’s inequality on the expression of ef, we find:

9
k1,01
(ef)? = (/E'Ut+ rH Hl%k(ekalhlk+1)77k+1(lk7dlk+1))
k+1,0 N 2 k+1,0 1
< /Evt+ RO (3 (O, Uiy L) nk+1(lkadlk+1)/EUt+ P 1 (L, Al 1)

then we get:

k2
e k10510

((;k) —/E’Ut T 1 (U dl1)
t

[} ) 2
(fE UerL Ic+17lk+1,-yf(9k7 lk7 lk+1)77k+1(lk7 dlk+1)) b 1,00 01,0t
- k+1,0k11,0pv1 /K 2 _/ Uy 77k+1(lk'7dlk+1) <0.
Je v (¥ Ok, Uy 1)) M1 (s dlgyr) /B

Hence we obtain a suitable lower bound fF of the generator gf )

- kOl ROnde \Bk’(’k’l’“l2
gk Okl (1) > ftk = — cﬂvt’ Rk lfﬁf Bt tk;a%l :
’,Utv k> k‘

Hence if we consider now the following BSDE:

\/ k~/ k 7k |Ztk‘2

) dt + ZFAW;,  Yp = of(0,1;) € (0,1).
t

then from Proposition 5.1 of [10], there exists a pair (Y, Z) € S> x BMO solution
of the BSDE:
dY, = — ffdt + 2, dWy, Yy = of(6y, 1y).

with Y > 5% and the coefficient fF¥ satisfies a quadratic growth (with respect to Z) and
linear growth (with respect to Y). Since ¢gk-%4:(1) > f¥ applying finally comparison
theorem of Kobylanski [[8], then the first component’s solution of the modified BSDE

(2.25) gives

RIS A L)

Therefore the modified BSDE is equivalent to the first BSDE of the (Ek) problem
(2.20), then we get the proof of the existence of the solution of this first BSDE.

Moreover, to obtain the upper bound 65 of vf Ol e take the terminal condition of
the corresponding BSDE: v?ek’l’“ = ak.(0y,1;) := 65. These prove that there exist

well constants 5% and 65 such that

0 < oF < offrle < gk

Second BSDE: (En) problem: Following the resolution of the existence of the first BSDE for
k = n and (2.22)), we obtain an explicit solution of the second BSDE which is given
by

Z%(0,1)

Ynﬂ,l — E
t [Z?(H,l)

(0, l)‘ft] . (2.29)
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Since for all (0,1) € A, (T) x E™, H"(0,1) € L* by assumption on the contingent
claim, then from (Z29), we find ;%! € $°. Moreover, we have a representation
Theorem

T
Y, = Hy(6,1) — /t 2y AW@Y€ [0, T] (2.30)

n,0,l
where W QOH =W, — n Es7 is a (0, 1) Brownian motion. For any stopping times
0, <7 < T and from @ there exists a constant d > 0 such that

EQO.D l / ! (zgﬂ”)zdsm} < QD [(H;zv"v’)z yfT] <d

Then Z™94 WQOD is a BMO-martingale under the probability measure Q(0,1), so
Z™91 W is a BMO martingale under the probability measure P from Kazamaki [7]
Theorem 3.3. Therefore we conclude Z™%! € BMO.

(EK) problems: Now, assume that the solution exists for k := k-+1 with k € {0,1,...,n
1} (our recursive hypothesis), we have to show that it is still true for kE—1:= k.
We would like now to prove that (Ytk’e’“’l’“, Zf’e’“’lk) € §® x BMO for all k£ €
{0,1,...,n}. We can actually prove the existence of the solution of the second BSDE,
since the solution of the first one exists. Given the solution of the first BSDE, the
coefficient of the second one is linear. Therefore, we can characterize explicitly the
solution.

Step 1: Preliminary results.

Given the explicit formula of the coefficient g% !x-(2) in (Z20)), we get

kOk,li,(2) _  kOkli k0.l kO bk~ k.08 0k NN
9t = Zy + Ky Y, + Ay ‘

with

k0,

k 0k, lk 5k Ok,
kOl _ kOl k0,1 (Mt
ag = B — 0

" to oy T VF Ok, L, L) (1 + o] O Y (U, dlk—i—l))

(o0t [ (1 000 (v (O, Ly T 1)) i1 (L 1)

)

gyl = /(1+UJ0k’ )1k+1 (L, dliy1) +/ (1 + 0] %) R (05, L, i) ) (e dliyr)

(Hk R e O G A ta) AL ()00 90 g Ly (18 dlk—i—l))

’ (Uf’ek’lk) + [ (L4 0] ) (3 F (O, Uy L)) it (L i)
and
ApORte = /E(1+ o Oty O b (L iy )
B /E(l + o Oty O ek 9 b Y (L dlg)
y (Mf’ek’lk +opfelegEonle 41 +UJBk’lk)Vf(ek,lk,lk+1)nk+1(lk,dlk+1)>

(00t [ (1 08 (7 (O, Ly 1)) i1 (L i)

13



Under Assumptionand the integrability condition coefficients Okl *:0klk
and 7" are bounded. Moreover from the solution of the first BSDE and the boundness
of the processes vF*1:0r+1.lkt1 and 1/,5]@“"9’“+1’l’“rl (recursive hypothesis), we have
that the processes v”/#%x1 are bounded for all I;, € E¥ and g%t W is a BMO
martingale.

Therefore we deduce that the martingales A*%%tx W, o*9kle T and x*O%lx T are
BMO under the probability measure P. Let define the probability measure ) ~ P
with Radon Nikodym density on Fr defined by Zj@ = E(a®9%% W), Since the
martingale a9 W is BMO, the process ZtQ =E {Zg ]—"t} is uniformly integrable
and from Theorem 3.3 of Kazamaki [[7], the martingale kFOk:le T is still BMO under
the probability measure (). Therefore, there exists a non negative constant ¢ such that
EQ [ftT \/f’;’ek’l’v]2ds\.7:t} <e¢forallp <t <Tandke{0,1,...,n}.

Step 2: Integrability of the adjoint process I':

Let define for all k € {0,1,...,n}

_ t
I't :== exp </ Hf’ek’lkds) :
0

We prove that I" € LP(Q) forany p > 1 and § > 0O:

T T p2
= exp p/ K?,@k,lkds < exp / 5(H§7Gk7lk)2+ P s
t t 46
P’ T
< exp|==T]exp 5/ (Hig,ﬂk,lk)zds _

Since there exists a non-negative constant c such that

T ko2
EQ /t ’,%7 ]Wk‘dS’]:t

rr |

Ty

<c

we deduce form Proposition in Appendix that there exists 0 < § < c% such that

EQ [exp( ftT §|(kFO%1)2|ds) \Ft} < ﬁ. Therefore we conclude there exists a non
negative constant C; such that

EQ

t

p
|J-“t1 < (. (2.31)

Step 3: The solution of the BSDE.

Let define now for k € {0,1,...,n— 1}

1 (= T
Yol = g@ [f (PTH%(Gk,lk) + /t FSAS’Ok”kd8> |]:t] . G <t<T

t

(2.32)
Since I' = ZOT, using Bayes formula equation (2.32) is equivalent to
1

yvEO _ R
t Ft

T
(rTﬂgi(ek,lk)Jr / FSASds> yft], t<T. (2.33)
t
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Moreover since A*?x!% is bounded and Hé‘i(@k, l;;) € L°°, there exists a non negative

5|

Since the process A*?x-tk T/ @ is a BMO martingale under the probability measure Q
and using (2.31)),there exists a constant C' > 0 such that:

constant C' such that

~ ~ 2
Eu/T(Es
t I

t

o < oS (
L

+ (ABOkl )2) ds

|Y;k,9k,lk| < é, t<T.

Let consider Y9! defined by (2.32), then the process
= kO ! = = T
LYo / AFORIT s = B9 |Tp HY(O), 1) +/ T ARl ds| F,
0 0

is a squared integrable Q-martingale since H* is bounded by assumption, A*-@xts 11/
is BMO and T satisfies (2.31)). Therefore from representation theorem, there exists
a process Z € H? such that d(I‘thk’(‘)’“’l’C + [y TsAROrlegs) = thWtQ. Setting

ZFOkle — %, using integration by part formula we find:

dY;k’gk’l’“ _ —(Af’e’“’l’“+Zf’0’“l’“af’9’“l’“+nf’9’“’lk§@k’0’“l’“)dt—i—Zf’g’“’l’“th, lef,ek,lk — HE(64,11).
Applying Itd’s formula, we find

AV = oy POk (AP Oty RO ZE O W R4 (20,

therefore, for any stopping time o, we find:

T
EQ V (Zp 0 | 7,

o

T
< EQ l(Hég(gk’ lk))2 + 2/ stkﬂk,lk (Alsﬂﬂk,lk + K’;ﬂk,lkyskﬁk,lk)ds‘fgl )
(o

Since H*, Y*9xlx are bounded, A*Oxtx W and k0%t TW& are BMO martingales
under the probability measure @, we conclude Z%0 ! W is a BMO martingale
measure under @ then Z%%x-t TV is a BMO martingale under the probability measure
P from Kazamaki [[7] Theorem 3.3. Therefore we conclude (Ykﬂ’wlk, ZFOklk)
S x BMO is a solution of the second BSDE.

Third BSDE: (En) problem: Since g% = 0, we have directly &% = 0.
(EK) problems: Now, assume that the solution exists for k:=k+1withk € {0,1,...,n—

1} (our recursive hypothesis), we have to show that it is still true for £ — 1 := k. It
lets to prove that ( kbl Rf’e’“’l’“> € 8§ x BMO. Since, forall k € {0,1,...,n},
all the terms appearing in the coefficient gf O::3) are bounded and ZF0xt € BMO

by previous step, we conclude using representation Theorem that (£ kOl ROkl k)€
S8 x BMO, forall k € {0,1,...,n}.

O]
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2.2 BSDEs characterization by verification theorem

Now, we show that the triple (vkﬁk’lk, YFOnl §k79k7lk) , appearing in the quadratic decomposi-
tion form, solution to the recursive system indexed BSDEs provides actually the solution to the
global optimal investment problem in terms of the value functions V¥, k € {0,1,...,n} in Z.16)
and (2.19). As a byproduct, we will obtain the existence of the optimal strategy 7"*.

Theorem 2.2. The value functions V¥, k = 0,... n defined in @.16) and R.19) are given, for
allt € [0k, T, by

2
Vtk(x, 0y, 1, Vk:) _ vfﬁk,lk (Xf’m(eka L) — }/;kﬁkulk) + Efﬁklk (2.34)

forall x € R, (Ox,11,) € A x EX, V% € AL where (vF0rbe YEOrle ¢kOrli) js the unique
solution of the recursive triple BSDEs systems given for all k = {0,1,...,n} in and
In particular, the solution of the Mean Variance Hedging problem is given by

Vi'(@) = inf E (Hr = X5 = (e —¥9) +€), zeR. (2.35)
T€Ag

where the triple (UO, Yy, {8) is solution of the recursive system of BSDEs: (En): (2.17) and (EK):
2.20), k € {0,1,...,n—1}.

Moreover, there exists an optimal strategy m* := (7r0’*, wh* L , ") given by:

(O, 1)

1
k r7k,0k,ly kOrlk (, k k ok,0k,lk
TFkOnln [Jt Zy - K (ut + 07 By )

(0F)2 + [5(1 +v; IVE (O Uiy o1) * g1 (L, dlget1)

k. k1,041,0 kL0
Jp(X7 (Or, U)v, ™ F T — YR LBk TR AR (G L L))yt (U g 1)
,Uk79k:7lk
t

] (2.36)

with Kf’a’“’l’“ = Xf’m(ak, 1) — Y*Orle And for the after last default problem:

TO.0) = o [0 2000 — (X7(0.0) < YOY) (4 + o7 %) (237)

(o)
Remark 2.5. Following (2.35)), we can give some financial comments of our quadratic decompo-
sition form:

— The process v° doesn’t depend on the payoff H. Moreover, we have that

0 vO0/1y . 1,712
W =V0(1) = ﬂg@E[XT |

Therefore vV is related to the minimal variance of a pure investment on the asset S with an
initial wealth © = 1.

— The process Y is the quadratic approximation price of the option H.

— The process £° represents the incompleteness of this market. Since if the market is complete
(as in the (En) problem) then this process vanishes.

Proof. Stepl: We begin by proving for all k = {0,1,...,n},t € [0, T] and v* € AE, that
2
Ufﬁklk (Xf””(ek, I) — Y;kﬂk,lk) + gfﬂk,lk < V;k(l‘, 0,1, Vk;) (2.38)
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Let denote by D the process defined for all k = {0,...,n — 1}, ¢ € [0, T] and v* € AL
by

DF(z,0,1;,0%) = vf’e’“’lk(Xf’x(Bk,lk)—Ytk’e’“’lk) N 1)

t
xX * 2
+/9 /E (Ufﬂ,ek,lk(xf: (Ok, lk) +7T§» 7§(9k,lk,lk+1) _ Ysk+1,ek,lk) +§§+170k7lk) 0l dlysr)ds
k

and DP(z,0,1,07) == v P4 (X77(0,1) — Y0 4 g0,

Since D* is a local submartingale, let T} be a localizing F-stopping times sequence valued
in [0y, T for DF, we have forall 0, <t < s <T

Df/\Ti(x’ ek’lk7yk) < E [Ds/\T (IL‘ ekallm )|ft}

Now using Definition of the admissibility condition for v/, Assumption the fact

that Y01, ¢704 are squared integrable and v+

is bounded, we obtain that the sequence
(DEATZ- (z, 0, Lk, Vk))l is uniformly integrable for s € [0, T, and so we obtain the sub-
martingale property for D*. Writing now, this submartingale property between time t and T
and recalling terminal conditions of the three BSDEs, we obtain the expected results which

are for all v* € Ak and k € {0,1,...,n — 1}

op O (X (1, 1) — VO b0 < B [(HE (B 1) — X5 (05 1) 20l (0. 1) | 1] (2.40)

/ / Vi (X 9k+1 (O, 1k) + 70, Ok 1) 6, (O Uiy L), 0k+1,lk+1)77k+1(lk,dlk+1)d9k+1!ft]

and fork = n

2
v Ot (X7 (0,0) = YT gt < B[ (HE - X717 (6,1)%ar(0,1)| Fi| 2.41)

Step2: We need now to check that the trading strategy n* = (ﬂ'k’*)kzo’m’n is admissible in the
sense of Definition 1.1} u For more readability, we forget the dependence parameter (0, l1)
for 7rt *(6},11,) and we will use the simpler notation 7. We recall (DF )telo,7]> the local
martingale (since we take this quantity with the optimal strategy 7*) is defined in (2.39) for
allk={0,...,n—1}andt € [0, T] b

Df(w, 0.1, Trk,*) - Uf,é’mlk (th,x,*(gk, L) — Ytk’ek’lk) n €k; 011k
t
* * . 2
+/9 /E (U§+l’ek7lk(X§’x’ (O, L) + T8 YE (O, Uiy lpa) — YOkl +§§+1’9k7lk) n(lg, dljyr)ds
k

Let T; be a localizing F-stopping times sequence valued in [0, T'] for the local martingale
DF, then

k k k.01 k% 5,055,052 k.05,
Dipg,(z, Oy, U, ") = vt/\zi€ k(XtAwT (ekalk)_YtATf ") +§tATIz g
tAT;
2
/ ob O (XET (0, 1) + 8" (B Ly L) — YEFLOR0)T 4 P LO0M ) (1l 1) ds
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Since (DF) is a local martingale, taking the expectation, we get

k05,1 k,z, ©,0k 0\ 2 k0,1 k05,1 k,z, k,05 06\ 2 k05,1
E Ut/\]é k(Xt/\%*(ek,lk) _Y;/\Tf k) +€t/\7€ k|f9k = k k(Xekm*(ek,lk) —ka k k) —i—fgk kotk (2.42)

tAT; . . 2
—-E l/g /E (U§+1’0k’lk(Xf’z’ (O, 1) + 755 (O, Uy, Ty — YO +€§+1’0k’lk) n(lkadlk+l)d5’f6k]
k

By recursive backward induction and using Theorem 3.2, we have for all k = {0,...,n—1}
that v¥ 1Okl (XE2x (9, 1) + 7k k(0 U, lrr) — Kf“?ek’l’“)g 4 E+10k:0k i positive

S

for all s € [0, T]. Hence we obtain for all ¢ € [f, T'] that

k,05,1 k,z,* k05,062 k,05,1 k0,1 k,z,* k05,062 k0,1
E Ut/\ﬁ k(Xt/\Ti (O, L) _Yt/\Tf ") +£t/\7€ k|f9k < Y g k(Xek Ok, L) —ka M) +§9k Fok

k

2
< Ugfkylk (a: . Yek;vekvlk) + ggllﬁ’kylk < 00 (2.43)

Using Theorem we know that there exists a positive constant ¢ such that vf Bl > 5
forall t € [0, T)]. Letting now i — oo, it follows from Fatou’s Lemma and similarly as in
the proof of Proposition 3.2 in [10] that

E

5,0, k,z, k05,02 5,0, = k,z, 2
U (X (O, ) = YiR7E ) + 605 km] > 5 (B[IXF7(0n, 1)) +1)
Hence, we obtain that there exist constants ¢; and ¢y such that

T
E [|X§i’z’*(9k,lk)’2} <c¢; and E l/ |X§’x’*(9k,lk)’2d8 < C9 (2.44)

k

We need now to prove that this inequality implies Definition Indeed, applying It
2
formula to (th’x’*(Bk,lkD gives

* 2 €T, % €T, % X%
d (XE2 (O, 1)) = 2X155 (O, L) AX T (O3, 1) + d [ XP77 (05, 1y)|

Using the dynamic of X" (6},,1;,) and let (T});e be a sequence of localizing time, we
get

22+FE <E

TNT;
[ 1w okt s
O

. 2 TNT; N .
(X577 (0r,11)) ]—2E [ /9 T 1 (O, L) X7 (O, 1) ds
k

(2.45)
Since, by assumption, processes 1%(0}.,1;,) and 0¥(8},1;) are bounded. We obtain that
there is a constant Ko < (¢¥(8},,1}))? such that for all s € [0, T

— 2B i (O, 1) X 7% (04, 1) < E!Xf’m’ (ekvlk)|2’ﬂls€(9k7lk)‘2+72 T2 (2.46)
Using (2.46) in (2.45) gives

2>+ E

AT 2,k 2 k% 2
| RO ) ds] < E|(xi% 60 0) ]
k

TN 2 ok 2k 2
+ E /9 7‘X37 ’ (Gk,lk)| ‘,U,S(ok,lk” ds| +E

k Ky

TNT; K
/ 22 ko \st]
0y 2
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Applying now Fatou’s Lemma, when 7 goes to infinity we get

T
2 +E / 75 2% (B4, 1)) 2ds| < E
0

k

(Xéi””’*(ek,lk))z] (2.47)

K T
+ 22 / i 2 ds
2 0y

2
—E
+K2

T
/6\Xf’x’*(akalk)|2\ﬂls€(9k,lk)\2d3
k

Moreover since Ko < (c%(0},,1;))?, we obtain

°R ¥
2 l/@k ‘Trs

Therefore, since by assumption ,ulg (0, 1)) is bounded and by (2.44), we conclude that (1.12))
is satisfied, which is that 7%* is admissible in sense of Deﬁnition

2ds

T,k 2 2 T €T,k
<B| (X5 0n10)” ~ 02|+ B | [ X (00, 1) Pk 01,11 s
K5 0,

Step3: We need to show that the wealth process th (04, 1)) taken with the strategy Wf ™ exists
forall k € {0,1,...,n}. Firstly, we can remark that the optimal strategy (2.36) admits a
linear form with respect to th (), 1) for O, <t < T. Let denote this linear form as

T = af (0, ) X7 (0, 1) + dF (01, 1), Yk € {0,1,...,n}
Then substituting this expression in (1.9) gives for 8, <t < T
AXEP (O 1) = (af (O, L)X Ok, ) + df (O, 1) ) (1 (O, L)t + of (B, 1) dWV7 )
= XP7 (O, L) (af (B, L)t Ok, i)t + af Ok, L) (B, L)W ) (2.48)
+ (dF (O L) Ok, L)t + df (O, L) (O, Le) AW )

We recall that the solution for 8, < ¢ < T of the SDE given by

dgf (O, L) = &F Ok, L) (af Ok, L)t (B, Le)dt + af (B, Li)orf (B, 1) dWV: )

is  of(Ok, k) = 05, (Or, L) exp {ngk <af(9k,lk)#f(9k,lk) -3 (af(ek, Li)oy (B, lk)>2> dt}-

Therefore setting X" (84, i) := LF(0k, 1p)dF (0), 1) with dLE(0y, 1) := ¥ (O, 1) dit+
o (0y,1;,)dW; and L’gk (0, 1l;) = 1 and applying integration by part formula we obtain for
all0, <t <T

AXP O b) = XP7 Ok, 1) [af Ok, L)isf (O, Le)dt + af (O, L)t (O, L) AW

+ OF (O, 1) [(ﬂf(ek, i) + af (0r, 1k)or (O, k)57 (O, lk:)) dt + &7 (O, lk)th]

df (Oklk) (Nf(ekvlk)—af(f)kJk)(fffwk,lk)f)

Hence from (2.48), we get jif (0, 1) = IO and o1 (0, 1) =
W Then we deduce that X" (04, 11.) := L¥ (81, L) 6k (O, 11,) is a solution
of the SDE (T9).

Step4: We would like now to prove that the trading strategy 7" = (Wk’*)k:()’m’n is optimal.
Since the trading strategy m* = (77’“*) k=0,....n 1s admissible in the sense of Definition
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and processes D are "true" martingales for k& = {0,...,n}, we have for all (8,1;) €
AL(T) x E¥,z € R, t € [0, T)and k = {0,1,...,n — 1} that
VPOl (xxhax (g 1) — YOI | bl ((HE(Ok, 1) = X5 Ok, L))o (8, L) | i | (2.49)

Okt1

l/ VARG 0 ) + 5 (0. ), (B s D), 0k+1,lk+1)nk+1(lk,dlkmdek“m]

and fork =n

o P XP(0,0) YO g = B [(H6,1) - XF(0,1)2ar(0,1)|F] 2.50)

where X™*%*(6,1) means that we take the strategy 7* = (wk’*)kzow,,n to evaluate these

wealth processes. Starting with k = n, let F}*(8,1) be the process given by
FrO.0) = essint | B [(HFO,1) = X7 (0,1)°ar (0, 1) — o' (X]7(0,1))° — 2X"7 (0,0, *")| 7
T EAR (v
By the submartingale property given in (2.41)) we get

F(0,1) = essinf E[(HRO,1) — X7 (0,1)%ar(0,1) — v ™ (X7 (0,1) - 2X7(0, )Y, )| F]

T EAR (t,v™)
n n,xr n 2 n n n,xr n,r TL
> PP (0,0) = YT 4 g — o (X6, 1) - 277 (0, 1))

_ Un,H,l (Y;n,e,l> + gn 0.1
_ UlL B,l(th,x,*(o’l) . Ytn,B,l) +£f9l n,@,l ((Xf’x’*(07l))2 B 2th,:(:,>k(0’l)ytn,0,l)

Using now the martingale property when we take the strategy (i.e. (2.50))), we obtain

E [(H7(0,1) — X" (0,1))%ar(6,1) — of *1((X"(0,1))* — 2X7"" (0, 1)y, )| 7y

> essinf E (HF(0,1) = X7(0,1))2ar(8,1) — v " (X7(0,1))% — 2X;° (8, 1)y, | 7
TEAR (tvm
F/(6,1)

Ftn<97 l)

Y

Hence F}*(0,1) = v;' B (Y;n’e’l) + & @1 Combining with its definition we finally get the

first expected result
Vi'(2,0,L,v") = essinf E[(H}O,1) - X7"(0,1))ar(0,1)| ]

T AR (t,v™)

U;L,Bl( nm(a l) nOl) +€n9l

Let now & = {0,1,...,n — 1} and assume that (2.34) holds true at step k& + 1. Then we
observe similarly as above that for any ¢ € [0, T], 7 € AL (¢, v¥)

Ff(0r,l) = essinf E[(HF(Ok, L) — X1 (Ok, 1) o (O, L)
ke AK(t k)
k79k,lk(( k,x(9k7 lk))2 o 2Xf,$(0k’ lk))/;k’,elmlk)

+ / /Vgiﬂ Bron (O U) + 75, Ok, 1) V6, (O Ly L 1) Okt Lot )i (Uil 1) B g1 |
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By again the submartingale property given in (2.40) we get

FEOr, 1) > o (X5 (0, 1) — kaolmlk) + gl
/Ul];: Bkyk((XkCC ak;lk _QXf,x(0k7lk)}/tk,9k7lk>

_ k 0k, lk ( k 9k7lk) k Ok, lk

— ,Uf70k7lk (th’mu*(ek7 lk) _ Yk)elmlk) + gk 0k,lk
= o X (O, 1)) = 2XE (O, )Y

Using the martingale property (2.49), we obtain

Ff(O1) = E[(HEOkU) — X5 (0, 1)) (6, 1)
= o (O, 1)) — 20 (O, L)Y

+ / /Vk’drl ngil* Bkalk)+7rgk* (O )V Oy Uiy ey ), O 1, Ui )1 (b, i1 ) g1 | T

k+1

Hence F* (0}, 1),) = vF0 b (Ytk’e‘“’l’“) €Ol Combining with its definition we finally
get the second expected result which is for all k£ € {0,1,...,n — 1}

V;fk(xvokalk7l/k) = essinf E[(HT(Bkvlk) i”m(ekvlk))2alﬂt(0k7lk) +

nke Ak (t,vk)
/ LV Ot + O, O i li), B Ui (L )1 3

k,0,1 k k,0,1 k,0,1
— ,Ut7 k:k(thx(ek’lk:)_}/;7k7k) _’_é‘ k-tk

Moreover taking now ¢ = 6, and using relations (2.49), (2.50) and (2.34) we get

Vit (2,0,0) = E[(H}O,1) — XJ""(0,1)ar(8,1)| s,

_ nel(an*(e l) YGZ’B’I) +§g@l

and
Vi (@, 00, L) = E[(HF(Ok, i) — X727 Ok, 1)) (O, L) +
/ek/%iﬂ 5;1* Ok, 1) + Wg,;il(ekalk)-75k+1(0kalk7lk—i—l),ek—&-lalk+1)77k+1(lk>dlk+1)d9k+1|f0k]

k,05,1 k k‘e l k,05,1
— /Uel; kvk( m*(ak‘ylk‘) k7k) +é‘ kvk

k,*)

These relations prove that 7* = (7"*);—o . is an optimal trading strategy.

Step 5: For the verification Theorem[2.2] we have for k = {0,1,...,n}, H = 0and t € [0, T]
that )
Vi (@ Ok B ) = 0 P X (O, 1)

kO Lk

since the value process V* is unique, we get that the process v is unique too.
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Y01 is unique since we have the formula (2.29). Assume that Y**1.0k+1le+1 is unique,
from (2.33) and since v¥f%t and v¥T10k+1:lk+1 are unique we obtain that Y%k is also
unique.

By (2.34), since V¥ (z, Oy, Ly, v*), v%O%t and YFOkk are unique, we obtain that &0l
is then unique.
O

3 Numerical Applications

We consider a special case where there is only one default event and such that x°, 6% and ~°
are constants; p'(0,1) and o (6, 1) are only deterministic functions of 6, and the default time 7 is
independent of I, so that a; (6, 1) is simply a known deterministic function «(#) of § € R, and the
survival probability G(t) = P[r > t|F] = P[r > t] = [ «(#)d is a deterministic function.
We assume that the survival probability follows an exponential distribution with constant default
intensity \. So there is a constant A > 0 such that G(t) = e~ and thus the density function
is a(0) = e *?. Moreover we will take v° > 0 (loss at default) and we consider functions
p(0,1) and o (6, 1) which for all @ € [0, T have the form p*(6,1) = p° (%) and o!(0,1) =

oV (2 — %) See [6] for the economic interpretation. Here there is no mark, so we will not denote
the dependence in [. In this case, we have

0 2
[#)7] = e (‘” -6y 5) )
0

2
which gives vtl 0=\ exp (—)\t + (T -0) (0(2‘@21)) ) . We take two constant payoffs H° and
oY (24—
H" such that H° > H'. This corresponds to the case of a zero coupon with a risk of default. Then
our system of BSDEs becomes a system of ordinary differentials equations (ODEs) in this model
and has explicit solutions. We adopt for this example another quadratic form which is given by
VOl () = vf’e’“’l’“’@)m2 - 2vf’9k’lk’(1)x + vf’e’“’l""(o) with & = {0,1} (i.e. O for the before

kO, Lk, (1 k0L, (0
k},gk,lk’(Q), ,Ut7 k> kv( ) and fUt’ k> k»( )

default and 1 for the after). We can obtain the terms v using

our classical quadratic decomposition form since we have ROele(2) = ROkl Y ROkl —

k0 L (1) k,05.1 k05,1, (0) k,05.0un\2 K,0k,lk,(2)
v° Y%k k WOkl __ WOkslk, Wkl Okt
POl (2) and & = - (Y ) v .

We will take here the particular time ¢t = 6. By dynamic programming on the corresponding
value function V;? given in (T.13), we obtain in our Markovian framework that V° satisfies the
Hamilton-Jacobi-Bellman equation given by

W) | f o V@) | 107(x)
FTRRRII P L il e

(0")?x2 + Vi(z + fy%)} =0 (3.51)

As, fori € {0, 1}, we have a quadratic decomposition form of Vi (z) given by Vi(z) = v/""# 22—

2v§’t’(1)x + vi’t’(o), we then obtain that the optimal strategy is

2_70 (0P — o) 40 (gD 1 P40

07* —_
- 0,t,(2 1,t,(2
(00)20 "3 g (50)20 )

Ty

22



Injecting this in[3.51] we get

0,t,(2) 0,t,(1) 0,t,(0)
<avt + vtl’t’(2)> 22— 2 (C%t + vtl’t’(l)> x4 (avt + vl’t’(0)> =

ot ot ot ¢
2
[(1OUPH® 4 4OpHE ) g 4oL 0y 2]

(00)21}?%(2) + (70)2%1%(2)

Then, identifying the different coefficients in x, we obtain the following ODEs

0,,(2) 1,6,(2)\ 2
87}?’t’(2) 1,t,(2) (Movt +7" ) 0,T,(2) AT
= _Ut77 ) 'UT7 7 :G(T) =€
ot (00)21)?7157(2) + (’YO)QUtLt’@)
0,,0:t:(2) 0,,Lt(2) 0,,0,¢,(1) 0,,L:t,(1)
oo™V, (O %) (0 00 e
ot = % + 0z 0.4(2) o LE(2) o Ur = HoUr
(09)2v; + (79)%y,
0,t,(1 1,t,(1)\ 2
oo (00" 20" LOT0) _ g2, 07(2)
8t t (O-O)QU?vtv(Q) + (,-YO)QUtlrt’(Q)? T 0T

The first ODE corresponds to the first BSDE in this Markovian framework. In fact, in this
particular case where all coefficients and terminal conditions are deterministic, the predictable
component 3° of the pair (v07(2), %) solution of the first BSDE equals to zero. Equivalently,
the two last ODEs are related to the two last BSDEs in this particular setting. Therefore we can
verify numerically the characteristics of the triple (v%(2), Y0, £0) appearing in and plotting
the solutions of the ODE:s.

For the simulations, we take ° = 0.2, 0 = 0.05, H® = 1.2, H' = 0.9 and maturity T = 1.
From Figure we first find that there exists (5,5 > 0 such that § < v? < ¢ < 1. This inequality
verifies what we proved in Theorem [2.1] point 1. Furthermore, from the quadratic decomposition
form of V°, we have:

2
v = V(1) = min E | X7

Therefore v°

is related to the minimal variance of a portfolio investment on the asset .S with
initial wealth x = 1. Consequently, to understand the impact of asset parameters on the minimal
variance, we shall plot the coefficient v° with respect to time ¢. Firstly, let study the minimal
variance with respect to the jump due to default. We recall that the variance of the portfolio is
divided in two parts, the continuous part driven by a Brownian motion and the jump part driven by
the default indicator process. In Figure |1} we clearly find that the minimal variance with no jump
part (y = 0) is least than the minimal variance part with jump part. In others words, the jump
part, due to default, increases the minimal variance. We are interested too in understanding the
variation of the minimal variance with respect to the intensity parameter. Hence in Figure [2] we
find that the minimal variance increases with the intensity parameter. This is an expected result
since when the intensity increases, the corresponding probability of default increases too. And so,
the occurrence of jump increases and implies an increasing of the variance.

In Figure (@), we observe that the values of the process Y is quite stable with respect to \ for
each value of 7. We recall now that the process £° represents the incompleteness of the market.
Hence, in Figure (5), we observe first, since the payoff have a jump between values H° and H',
that if we take a non vanishing jump in the asset dynamic S (i.e. taking v # 0) the values of
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Time t

Figure 1: v{ in function of time ¢ € [0, T] with T = 1 and X\ = 0.01 for different values of .

0 0.2 0.4 0.6 0.8 1
Time t

Figure 2: v{ in function of time ¢ € [0, T with 7' = 1 and y = 0.5 for different values of \.

&) is quite close to zero. This shows that our hedging strategy covers well the model. Whereas,
if we take a v = 0O then the dynamic of the asset price .S doesn’t jump when the default occurs
although the payoff still jump, we observe that the value of the process & increases with respect
to the probability of jump. Since we are in a default risk model with jump in the payoff, taking
~v = 0 means to use a continuous asset dynamics S and so to use a Black and Scholes hedging
strategy. Hence it is natural to obtain values of £° bigger than in the cases with v # 0. In a
financial example, assuming that the payoff I is a CDO with multiple defaults, then assuming

24



10

(=2
5
Figure 3: 7(0) in function of +y for different values of \.
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Figure 4: Graphe of Y} in function of + for different values of \.

that S is a Black and Scholes model gives less good result in term of hedging than assuming that
Sis a CDS.
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Figure 5: Graphe of &) in function of «y for different values of A.
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Appendix A

Proposition 3.1. Let A be an adapted increasing continuous process such that there exists a
constant C > 0 satisfying forany 0 < s < 't

E[(At - As)|-/rs} S C )
then this process A also satisfies

1
=30 v0<5<5.

Elexp (6(A¢ — As))|Fs] <

Proof. Let A an increasing continuous adapted process satisfying E[(A; — Ag)|Fs] < C. We
first prove by iteration that E[(A4; — A4)P|Fs] < p!CP for any p € N. For that we assume that
for p > 2, E[(A; — AP 1| F,] < (p— 1)IKP~1. Let recall that for any increasing continuous
adapted process A we have (A; — A5)P =p |, ; (A — AP —1dA, fors < t, consequently we get
t t
El(A— A)IF] = pB[ [ (A= A)r AR = pE[ [ Bl - AP FuldALE]
S S
< (p—1)ICPTIE[A; — A,||Fs) < plCP.

Therefore, we get forany 0 < § < %, E[szo Z%(SP(At — AS)P“]{S} < 3 "p>0 0PCP. Then we
conclude the expected result. 0
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