Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation

Abstract : Dempster-Shafer evidence theory is very important in the fields of information fusion and decision making. However, it always brings high computational cost when the frames of discernments to deal with become large. To reduce the heavy computational load involved in many rules of combinations, the approximation of a general belief function is needed. In this paper we present a new general principle for uncertainty reduction based on hierarchical proportional redistribution (HPR) method which allows to approximate any general basic belief assignment (bba) at a given level of non-specificity, up to the ultimate level 1 corresponding to a Bayesian bba. The level of non-specificity can be adjusted by the users. Some experiments are provided to illustrate our proposed HPR method.
Type de document :
Communication dans un congrès
WCICA 2012 - World Congress on Intelligent Control and Automation, Jul 2012, Beijing, China
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00720453
Contributeur : Jean Dezert <>
Soumis le : mardi 24 juillet 2012 - 15:25:04
Dernière modification le : jeudi 7 février 2019 - 17:10:24
Document(s) archivé(s) le : jeudi 25 octobre 2012 - 03:40:08

Fichier

HPRWCICA2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00720453, version 1

Collections

Citation

Jean Dezert, Deqiang Han, Zhun-Ga Liu, Jean-Marc Tacnet. Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation. WCICA 2012 - World Congress on Intelligent Control and Automation, Jul 2012, Beijing, China. 〈hal-00720453〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

100