Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross attending the Patagonian Shelf

Juan Pablo Seco Pon, Ornela Beltrame, Jorge Marcovecchio, Marco Favero, Patricia Gandini

To cite this version:

Juan Pablo Seco Pon, Ornela Beltrame, Jorge Marcovecchio, Marco Favero, Patricia Gandini. Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross attending the Patagonian Shelf. Marine Environmental Research, Elsevier, 2011, 72 (1-2), pp.40. 10.1016/j.marenvres.2011.04.004. hal-00720183

HAL Id: hal-00720183
https://hal.archives-ouvertes.fr/hal-00720183
Submitted on 24 Jul 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title: Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross Thalassarche melanophrys attending the Patagonian Shelf

Authors: Juan Pablo Seco Pon, Ornella Beltrame, Jorge Marcovecchio, Marco Favero, Patricia Gandini

PII: S0141-1136(11)00047-X
DOI: 10.1016/j.marenvres.2011.04.004
Reference: MERE 3520

To appear in: Marine Environmental Research

Received Date: 23 December 2010
Revised Date: 19 April 2011
Accepted Date: 22 April 2011

Please cite this article as: Seco Pon, J.P., Beltrame, O., Marcovecchio, J., Favero, M., Gandini, P. Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross Thalassarche melanophrys attending the Patagonian Shelf, Marine Environmental Research (2011), doi: 10.1016/j.marenvres.2011.04.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title:
Trace metals (Cd, Cr, Cu, Fe, Ni, Pb, and Zn) in feathers of Black-browed Albatross Thalassarche melanophrys attending the Patagonian Shelf

Name of authors:
Juan Pablo Seco Pona,b,*, Ornela Beltramec,d, Jorge Marcovechiod, Marco Faveroa,b, Patricia Gandinia,e,f

Affiliations of the authors:
aConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Rivadavia 1917 (C1033AAJ) Buenos Aires, Argentina.
bVertebrados, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Funes 3250 (B7602AYJ) Mar del Plata, Provincia de Buenos Aires, Argentina. Tel. +54 223 4752426 int. 466.
cDepartamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Funes 3250 (B7602AYJ) Mar del Plata, Provincia de Buenos Aires, Argentina.
dLaboratorio de Química Marina, Instituto Argentino de Oceanografía (IADO). Florida 4000, Edificio E1, Casilla de Correo 804 (8000) Bahía Blanca, Provincia de Buenos Aires, Argentina.
eUniversidad Nacional de la Patagonia Austral. CIPD Av. Prefectura s/n (9050) Puerto Deseado, Provincia de Santa Cruz, Argentina.

*Corresponding author:
Juan Pablo Seco Pon (double family name)
Tel. +54 223 4752426 int. 466.
E-mail: secopon@mdp.edu.ar
Abstract

We investigated the concentrations of cadmium, chromium, copper, iron, nickel, lead and zinc among feather tissues in sexes of Black-browed Albatross *Thalassarche melanophrys* killed in longliners off Argentina in 2005. We found no different metal concentration with sex for cadmium, copper, iron, lead and zinc in feathers of adult birds, though there were significant body-size differences between sexes. However, the concentrations of trace metals differed significantly among the type of feather within individual bird. The mean concentrations of copper, iron, and zinc in breast feathers of *T. melanophrys* were lower than those reported for the species from Georgias del Sur/ South Georgia, the southern Indian Ocean and for other seabirds’ worldwide. While cadmium fall within the known range of concentrations for bird feathers lead were not. Our results may be indicating that level of pollution in Patagonia may not be as negligible as previously thought at least for some trace metals.

Keywords: Argentina; Black-browed Albatross; Feather tissues; Trace metals; Ocean space; Patagonian Shelf, Pollution monitoring; Seabirds.
1. Introduction

Seabirds, and in particular albatrosses, have been widely used for monitoring the concentrations of contaminants in diverse marine regions as they feed far away from land and occupy high trophic levels in marine food webs, thus making them susceptible to the bioaccumulation of pollutants (Burger et al., 1994; Wolfe et al., 1998). Accordingly, monitoring of seabird species has proved to be an important method for assessing concentrations and effects of chemical contaminants in the aquatic environment (Gard and Hooper, 1995; Burger and Gochfeld, 2004; Mallory et al., 2010), and a growing number of studies is currently available for monitoring pollution (Honda et al., 1990; Elliott et al., 1992; Hindell et al., 1999; Burger and Gochfeld, 2000a; Savinov et al., 2003; Borga et al., 2006). Nevertheless, it has to be stressed that trace metal concentrations in seabirds depend on a variety of features such as their life history traits, breeding cycle, behavior and physiology, diet composition and the intensity and timing of exposure in foraging areas (Honda et al., 1986; Elliot et al., 1992; Nygärd et al., 2001).

Previous published studies report trace metals concentrations for a number of South Atlantic albatross and petrel species (e.g. Muirhead and Furness 1988, and Thompson and Furness 1989a,b from Gough Island, and Becker et al., 2002, González-Solís et al., 2002, and Anderson et al., 2010 from Islas Georgias del Sur/ South Georgia Islands). It is noteworthy to stress that the majority of the studies were conducted in feather tissues, and that for some metals (e.g. lead and mercury) the concentrations in feathers are strongly and positively correlated to the levels in blood (Burger and Gochfeld, 1990; Monteiro and Furness, 2001). Moreover, feather samples have been used extensively for evaluating trace metals exposure on various seabird species due to...
several methodological advantages they bring over other tissues (e.g. feathers provide easily obtainable and non-invasive matrices, they also provide retrospective time series analyses, and endangered species can be resampled systematically and released without substantial harm) (see Goede and De Bruin, 1986; Burger, 1993; Pilastro et al., 1993; Monteiro et al., 1998; Burger and Gochfeld, 2004, 2009). This is particularly relevant considering that all albatross species are globally threatened with extinction (ACAP, 2009; BirdLife International, 2010).

The Patagonian Shelf off Argentina and its shelf-break is an important ecosystem whose diversity of species and level of endemism is accompanied by a great biomass and abundance of food for a large number of marine vertebrates (fish, turtles, birds and mammals) most of which are migratory species from distant areas such as Antarctica, Australasia and Western Africa (Croxall and Wood, 2002; Acha et al., 2004; Favero and Silva Rodríguez, 2005). Several authors suggested that the Patagonian Shelf is an area where local pollution by trace metals is negligible or non-existent (Stewart et al., 1999; González-Solís et al., 2002; Barbieri et al., 2007). However, more robust information from the region is still needed for understanding contaminant concentrations and defining biological indicators in this important ecosystem.

This article presents novel data on concentrations of cadmium, chromium, copper, iron, lead, nickel and zinc in feathers of Black-browed Albatross *Thalassarche melanophrys* (herein BBA), coming from individuals incidentally killed while attending commercial longliners operating in the Patagonian Shelf off Argentina. Black-browed albatrosses breed in several subantarctic islands and archipelagoes in the Southern Ocean chiefly at the Malvinas/ Falkland Islands and other island groups off southern Australia, Chile, and New Zealand and off south-eastern South Africa. Approximately
67% of the global population (estimated at ca. 602,000 breeding pairs) breeds in Malvinas/Falkland Islands (ACAP 2009), just 400 km from the Argentine mainland. The majority of the Malvinas/Falkland Islands BBAs are resident on the Patagonian Shelf throughout the year, remaining largely within the core area of incubating birds (ca. 3500 km), and in shelf and shelf-break waters (see Grémillet et al., 2000; Huin, 2002). Birds from adjacent colonies (e.g. Georgias del Sur/South Georgia Islands) migrate primarily to the east, reaching the Benguela Current area, with small numbers wintering on the Patagonian Shelf or around Australia (Prince et al., 1998; Phillips et al., 2005).

We focused on BBA given that: (1) it is the most important Procellariiform bird in Argentinean waters in terms of biomass (Favero and Silva Rodríguez, 2005), (2) it shows a strong interaction with commercial fisheries, and as such is the most commonly incidentally taken albatross species in Argentine waters (Favero et al., 2003; Gandini and Frere, 2006; Gómez-Laich et al., 2006; Seco Pon et al., 2007; Favero, 2008), and (3) it is listed as Endangered by the International Union for the Conservation of Nature (IUCN, BirdLife International, 2010). The overall objective of this study was to 1) to establish baseline trace metal concentrations against which to measure changes in elemental concentrations over time, and 2) to test hypotheses of no difference in the trace metal concentrations in BBA feathers coming from (a) different parts of the body, and (b) individuals of different sex.

2. Materials and methods

2.1. Sample collection
All of the birds sampled in this study were incidentally captured in the Kingclip *Genypterus blacodes* demersal longline fishery operating in waters of the Patagonian Shelf, Argentina chiefly between 42ºS to 47ºS and 59ºW to 63ºW. The longline systems used by this fishing industry has been previously described (Gandini and Frere, 2006; Seco Pon et al., 2007). Overall, 50 adult BBAs incidentally captured during spring and summer 2005 were analyzed. Although a larger number of BBA carcasses were retrieved from longline operations at that period (see Seco Pon et al., 2007), only those birds without evidence of predation while they had been immersed on the longline were used in this study. Some of the birds were processed aboard fishing vessels while others were deep frozen and later transferred still frozen to the Centro de Investigaciones de Puerto Deseado, Argentina. After biometric measurements were made (Appendix A), birds were classified as juveniles or adults based on plumage characteristics and bill coloration (Prince et al., 1993). Sex was determined by visual inspection of gonads in the laboratory. The last grown primary feather (P10) (see Prince et al., 1993) was systematically obtained from the right wing of each sampled individual as a random pinch of feathers was plucked from the right side of the breast of the same individual. Given the difficulty in handling and weighing single feathers, multiple breast feathers were grouped and placed in envelopes. Although there may be some variation in metal concentrations among breast feathers, by using several feathers the differences are generally averaged (Bond and Diamond, 2008). Primary feathers were stored apart from breast feathers.

2.2. Element analysis
P10 and breast feathers were washed vigorously (at least three times) in deionized water alternated with acetone to remove loosely adherent external contamination (Burger et al., 1994), and then dried at 60º C. All materials associated with trace metal extraction were thoroughly acid-cleaned and rinsed with deionized water before use (Clesceri et al., 1998). Samples were digested in a mixture of concentrated acids, according to methods described by Marcovecchio and Ferrer (2005). About 250 mg were removed from the outermost (distal) segment of each feather and mineralized with a 1:3 perchloric-nitric acid mixture in a thermostatic bath (at 120 ± 10 ºC) up to minimum volume. Solutions were made up to 10 ml with 0.7 % nitric acid. Each feather segment was sectioned, and each section digested separately to ensure the reproducibility of the method.

Element concentrations were determined using a Perkin-Elmer AA-2380 atomic absorption spectrophotometer with air/acetylene flame. Analytical grade reagents were used to build up the relevant blanks and calibration curves, and the analytical quality (AQ) was tested against reference materials (mussel tissue flour, R.M.Nº6) provided by the National Institute for Environmental Studies (NIES) from Tsukuba (Japan). All elements were analyzed in dry mass tissue. Percentages ranges of recovery in the analysis of reference materials to assess analytical quality were between 91-101% for all the considered metals. The obtained values from the analysis of the reference materials were within the range of certified ones. The analytical precision expressed as coefficients of variance are < 10 % for all the metals based on replicate analysis.

Instrumental detection limits (µg g⁻¹) were: cadmium: 0.20, lead: 1.50, copper: 0.77, zinc: 0.88, iron: 2.73, nickel: 1.54 and chromium: 0.29.
2.3. Data analysis

Elements with mean concentrations below limits of detection (LOD), such as nickel and chromium, were reported in the summary statistics but excluded from further considerations or statistical analyses (see Anderson et al., 2010). Among the remaining elements, concentrations in some samples were below the limits of detection (maximum 48% and 24% of samples for cadmium in P10 and breast feathers respectively, 36% and 42% of samples for lead in P10 and breast feathers respectively). In these cases, a value equal to one-half the LOD limit for the type of feather sampled was assigned. Where element concentrations were below the limits of detection in >40% of samples overall for a particular type of feather those elements were also included in summary statistics but excluded from subsequent statistical analyses.

To analyze the relationship of metal concentrations with type of feather and sex, we employed general linear mixed models (GLMM) with normal error structure and identity link function (Crawley, 2007). This analysis was performed using GLMM to consider the non-independence of the type of feather within an individual bird. The relationship between the metal concentrations and type of feather and sex was modeled with individual identity as a random effect and type of feather and sex as fixed effect (Crawley, 2007). We also examined the covariation among elements in type of feathers of male and female birds using Pearson correlations. To run the GLMM and the Pearson, data were transformed using log_{10}(x) when necessary to accomplish assumptions of normality and variance homoscedasticity (Zar, 1999). Both arithmetic and geometric means are given to facilitate comparisons with other studies in literature. Statistical analysis of the data was performed using R software, Version 2.5.1. (R Development Core Team, 2004). In all cases, differences were considered significant.
where P was ≤ 0.05. Due to the small number of juvenile birds analyzed in this study ($n = 6$), statistical analyses were conducted in adult birds only. Metal concentrations (µg g$^{-1}$ dry mass) are presented as means ± one SD.

3. Results

The mean concentration of cadmium, copper, iron, lead and zinc in the last grown primary and breast feathers of BBA are given in Table 1. Using GLMM, we found no significant interaction between feather type and sex for any of the metals analyzed (GLMM, all $P > 0.49$). However, the cadmium (GLMM: $F_{1,43} = 35.08, P < 0.001$), copper (GLMM: $F_{1,43} = 72.43, P < 0.001$), iron (GLMM: $F_{1,43} = 39.80, P < 0.001$), lead (GLMM: $F_{1,43} = 19.48, P < 0.001$), and zinc (GLMM: $F_{1,43} = 122.73, P < 0.001$) concentrations differed significantly among the type of feather within individual BBA. Breast feathers had significantly higher concentrations of cadmium, copper and lead than primary feathers, whilst primary feathers had significantly higher concentrations of iron and zinc than breast feathers.

Correlations among trace metal concentrations within feather type from birds of a particular sex were in general non significant, although there were some significant relationships. We found a significant positive correlation between copper and zinc concentrations in breast feathers of both male and female BBAs. Cadmium and copper, and iron and lead concentrations were correlated in the last grown primary feathers of male birds (Table 2).

4. Discussion
Overall, variation in the concentration of some metals (e.g. cadmium, cooper, iron and zinc) resulted as a function of the type of feather (either breast or primary) of individual BBA considered. Black-browed albatrosses moult their primary feathers biennially during the non-breeding period (Prince et al., 1993). This takes place from late April to early September – early October in the South Atlantic (Tickell, 2000). Like most small albatrosses, BBA replace its flight feathers seasonally in ordered sequences: the primaries outward and the secondaries inwards (Prince et al., 1993); but not all flights feathers are moulted in a single year (Onley and Scofield, 2007). Moreover, albatrosses have more flight feathers than any other group of birds, and based on pattern of feather replacement in North Pacific albatrosses, Edwards and Rowher (2005) suggested that other species of albatross such as BBA may have multiple moult series throughout their wings. Because birds are able to eliminate a substantial portion of their body burden of certain trace metals via feather moulting, the concentration of certain metals may be not constant along this period (Dauwe et al., 2003). However, we lack information on the moulting sequence of birds retrieved dead from longline operations. Hence, comparisons and conclusions in this study are drawn exclusively from body feathers given that there are known to be most representative of concentrations in plumage as a whole (Furness et al., 1986; Lewis and Furness, 1991; Burger and Gochfeld, 2004).

There is very limited information in the literature on toxic elements apart from mercury in feathers from seabirds attending the Patagonian Shelf (González-Solís et al., 2002; Anderson et al., 2010). However, regional comparisons are possible given that concentrations of some of the metals analyzed in this study are available for the same species from Georgias del Sur/ South Georgia, and the southern Indian Ocean (see Kim
et al., 1998; Anderson et al., 2010). Since pollution by trace metals in the Patagonian Shelf is presumably non-existent or negligible (Stewart et al., 1999; González-Solís et al., 2002; Barbieri et al., 2007), we expected the concentrations of metals in feathers to be relatively low. In fact, Table 3 draws a parallel between elemental concentrations in feathers of BBA from the Southern Ocean region and related species – all Procellariiformes – from other locations in the world.

Cadmium is a non-essential metal that comes from a variety of anthropogenic sources (Burger, 1993; Furness, 1996). When compared with concentrations in the same tissue, cadmium concentrations in feathers of BBA analyzed in this study were lower than those reported in adult BBA and Grey-headed Albatross T. chrysostoma from Georgias del Sur/ South Georgia (Anderson et al., 2010) but higher than those of the same species from the southern Indian Ocean (Kim et al., 1998). In a broader comparison, on average, cadmium fall within the known range of concentrations from bird feathers of related Procellariiformes species from different biogeographic areas (see Table 3). Like cadmium, lead is an element that plays no role in metabolic processes of animal organisms. It is an extremely toxic element with a wide range of harmful effects in birds (see review in De Francisco et al., 2003). Normal background concentrations of lead in feather of adult seabirds are in the range of 0.51 to 1.68 µg g\(^{-1}\) dry mass (Mendes et al., 2008; Burger and Gochfeld, 2009). Unfortunately regional comparisons are not possible since lead concentrations in BBA from neighboring waters were below the limit of detection (Anderson et al., 2010). Still, lead concentrations in BBA analyzed in this study were higher than those reported for birds obtained from fishing operations in the Indian Ocean (Kim et al., 1998). Moreover, lead concentrations in BBA feathers
examined in the present study tended to be higher than those in any of the seabird species compared (see Table 3).

Copper concentrations in this study were lower than those reported for BBA from Georgias del Sur/ South Georgia and the Indian Ocean (Kim et al., 1998; Anderson et al., 2010). Similar pattern was obtained when comparing BBA with related Procellariiformes species from other areas. Iron is a critical element for almost all vertebrates, but can have toxic effects of different magnitude on different bird taxa (Randell et al., 1981). Little information is available for iron concentrations in feather tissues of seabirds. In this study, iron concentrations in feathers were in general lower than those reported in BBA and other three albatross species from Georgias del Sur/ South Georgia (Anderson et al., 2010). Zinc, one of the essential elements required for feather formation (Sunde, 1972), showed in this study lower concentrations than those reported for BBA from Georgias del Sur/ South Georgia (Anderson et al., 2010), and any of the seabird species compared (see Table 3).

There are few studies concerning studies of sex differences in elemental concentrations in birds. Burger (1993) summarized studies of sex-related differences in metal concentrations in feathers of birds and reported differences in three out of eight species studied. For example, there were no significant differences between sexes for the same array of metals in feathers of adult Laysan Albatrosses *Phoebastria immutabilis* from northern Pacific (Burger and Gochfeld, 2000c). In this study, no different metal concentration with sex was observed for cadmium, copper, iron, lead, and zinc in feathers. Considering that biometric measurements revealed significant body-size differences between sexes in BBA (in line with that reported by Phillips et al., 2004 and Gandini et al., 2009), this finding was unexpected considering that metal
concentrations were reported to vary in those species with body-size differences between sexes or differential diets, and also that females can eliminate trace metals by sequestering them in the eggshell or transferred via vitellus or the albumen (Burger, 1993; Furness, 1996; Lacoue-Labarthe et al., 2008; Bond and Diamond, 2009; Burger and Gochfeld, 2009). Other relevant variables (e.g. age, sex-specific foraging strategies, relative proportion of sex and time that birds spend behind fishing vessels, etc.) could play a role in determining metal concentrations. BBA frequently follow fishing vessels, being benefited from discards along the Patagonian Shelf (Croxall and Gales, 1998). Accordingly, BBA is the most abundant Procellariiform species attending national longline vessels, roughly representing 40% of individuals recorded in recent years (Gandini and Seco Pon, 2007). Additional research is needed to address the relative contribution of discards and offal from national longliners in BBA diet and the influence diet has upon metal concentrations in sexes of the species.

5. Conclusion

The results of this study indicate that the bulk of the toxic elements analyzed in feathers were below the medians of those reported for seabirds worldwide, but lead concentrations were higher than BBA from the Indian Ocean and any of the related Procellariiformes species selected for comparison. Thus, our results may be indicating that level of pollution in Patagonia may not be as negligible as previously thought at least for some trace metals. However, one disadvantage when using pelagic seabirds such as albatrosses to characterize marine environments is the wide feeding range of albatrosses also greatly varying between and within the year (Grémillet et al., 2000;
309 Huin, 2002). Yet, other disadvantage when using feathers to evaluate concentrations of
310 lead, cadmium, and many other elements is that total concentration may be the result of
311 two combined processes: deposition (from the atmosphere onto the surface of feather)
312 or incorporation (from the blood) (Furness and Camphuysen, 1997). For feathers to be
313 maximally useful as tools to assess current body burden or concentrations of metals in
314 internal avian tissues there should be a solid relationship between the concentrations in
315 feathers and other tissues (Burger, 1993). Given that relatively high lead concentrations
316 have been reported in several tissues (e.g. blood, bones, feathers) and vital organs (e.g.
317 liver, kidneys, salt gland) of pelagic seabird species (see Kim et al., 1998; Burger and
318 Gochfeld, 2000c; González-Solís et al., 2002; Metcheva et al., 2006; Anderson et al.,
319 2010), further investigations are needed to study features of lead bioaccumulation in
320 different tissues of Black-browed albatrosses feeding in the Patagonian Shelf,
321 particularly in bone as this is the principal site for long-term storage (De Francisco et
322 al., 2003).
323
324
325 Acknowledgements
326 Authors would like to thank Dr. Laura Mauco and all the crew of the F/V Argenova
327 XXII. Two anonymous referees greatly improved an early version of the manuscript.
328 Thanks to Dr. Germán García for providing statistical help. This work was supported by
329 the Instituto Argentino de Oceanografía, Universidad Nacional de la Patagonia Austral,
330 Universidad Nacional de Mar del Plata, CONICET and by the company ARGENOVA
331 S.A.
5. References

Jones, M., Fitter, J. (Eds.), Albatross: their world, their ways. David Bateman
Ltd, Auckland, pp. 176–177.
Norwood, A.W. (Eds.), Environmental contaminants in wildlife. Lewis
mercury in the environment: relationship between mercury content and moult.
measurements of Black-browed albatross Diomedea melanophris incidentally
killed during longline operations. El Hornero 23, 43–46.
Gandini, P., Seco Pon, J.P. 2007. Seabird assemblages attending longline vessels in the
Argentinean Economic Exclusive Zone. Ornitología Neotropical 18, 553–561.
Gandini, P.A., Frere, E. 2006. Spatial and temporal patterns in the bycatch of seabirds in
Gard, N.W., Hooper, M.J. 1995. An assessment of potential hazards of pesticides and
environmental contaminants, in: Martin, T.E., Finch, D.M. (Eds.), Ecology and
management of neotropical migratory birds: A synthesis and review of critical
pollution. Environmental Monitoring and Assessment 7, 249–256.

Table 1 – Mean trace metal concentrations (in μg g$^{-1}$, dry mass) \pm SD in the last grown primary (P10) and breast feathers of adult Black-browed Albatross *Thalassarche melanophrys* killed as by-catch in longline fisheries off Argentina in 2005. Geometric means are given in parentheses.
Table 2 – Interelement concentrations with statistically significance in feathers of males (above the diagonal, $n = 27$) and females (below the diagonal, $n = 17$) Black-browed Albatross recovered from longline operations off Argentina.
Table 3 - Average (arithmetic mean) trace metal concentrations in feathers (µg g$^{-1}$, dry mass) of Black-browed Albatross and other seabirds from the literature and from this study.
Appendix A - Biometric data (mean ± SD) of adult Black-browed Albatross *Thalassarche melanophrys* incidentally killed in longliners off Argentina. Kruskall-Wallis one-way ANOVA (H) and probabilities (P) are also given.
> Information on the concentrations of trace metals in southern ocean seabirds is scarce. > We examine concentrations of seven trace metals in feathers of Black-browed Albatross off Argentina. > Concentrations of cadmium, copper, iron, lead and zinc in feathers were not affected by sex. > The mean concentrations of copper, iron, and zinc in feathers of birds were lower than those reported for the species from relative nearby oceanic areas. > While cadmium concentrations fall within the known range for bird feathers lead were not. > Our results may be indicating that level of pollution in Patagonia may not be as negligible as previously thought at least for some trace metals.
Concentrations of trace metals in feathers of Black-browed Albatross were examined. Concentrations of cadmium, copper, iron, lead and zinc were not affected by sex. Concentrations of essential elements were lower than those reported for the species. As cadmium concentrations fall within the known range for feathers lead were not. Level of pollution in Patagonia may not be negligible at least for lead.
<table>
<thead>
<tr>
<th></th>
<th>Male (n = 27)</th>
<th>Female (n = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary feather</td>
<td>Breast feathers</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.33 ± 0.32</td>
<td>0.69 ± 0.67</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.39)</td>
</tr>
<tr>
<td>Chromium</td>
<td>< LOD</td>
<td>< LOD</td>
</tr>
<tr>
<td>Copper</td>
<td>4.86 ± 1.75</td>
<td>9.67 ± 3.22</td>
</tr>
<tr>
<td></td>
<td>(4.54)</td>
<td>(9.04)</td>
</tr>
<tr>
<td>Iron</td>
<td>101.73 ± 122.32</td>
<td>21.53 ± 31.91</td>
</tr>
<tr>
<td></td>
<td>(149.12)</td>
<td>(38.10)</td>
</tr>
<tr>
<td>Lead</td>
<td>5.71 ± 5.67</td>
<td>3.17 ± 3.34</td>
</tr>
<tr>
<td></td>
<td>(3.35)</td>
<td>(1.96)</td>
</tr>
<tr>
<td>Nickel</td>
<td>< LOD</td>
<td>< LOD</td>
</tr>
<tr>
<td>Zinc</td>
<td>102.76 ± 127.37</td>
<td>28.18 ± 67.37</td>
</tr>
<tr>
<td></td>
<td>(152.16)</td>
<td>(72.11)</td>
</tr>
</tbody>
</table>

\(^1\text{< LOD below limit of detection.}\)

TABLE 1
<table>
<thead>
<tr>
<th>Element</th>
<th>Cd</th>
<th>Cu</th>
<th>Fe</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Cu</td>
<td>0.523 (0.05)</td>
<td>NS</td>
<td>NS</td>
<td>0.840 (< 0.001)</td>
<td>NS</td>
</tr>
<tr>
<td>Fe</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Pb</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.510 (0.06)</td>
<td>NS</td>
</tr>
<tr>
<td>Zn</td>
<td>NS</td>
<td>0.563 (0.05)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

*First row gives values for breast feathers. Second row gives values for the last grown primary feathers.
Comparisons with Pearson correlation (P values); NS indicates P values > 0.10

TABLE 2
<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Cadmium</th>
<th>Copper</th>
<th>Iron</th>
<th>Lead</th>
<th>Zinc</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-browed Albatross</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.979</td>
<td>6.913</td>
<td>615.216</td>
<td>< LOD*</td>
<td>39.592</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Grey-headed Albatross</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.194</td>
<td>6.692</td>
<td>522.216</td>
<td>< LOD*</td>
<td>50.115</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Wandering Albatross</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.317</td>
<td>6.032</td>
<td>440.009</td>
<td>< LOD*</td>
<td>58.194</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Northern Giant Petrel</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.080</td>
<td>9.272</td>
<td>90.208</td>
<td>< LOD*</td>
<td>93.256</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Southern Giant Petrel</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.389</td>
<td>8.677</td>
<td>80.208</td>
<td>< LOD*</td>
<td>80.208</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Southern Giant Petrel</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.139</td>
<td>15.11</td>
<td>280.076</td>
<td>< LOD*</td>
<td>77.696</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Antarctic Prion</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.059</td>
<td>20.176</td>
<td>1,070.660</td>
<td>< LOD*</td>
<td>113.658</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Blue Petrel</td>
<td>Bird Island, Georgias del Sur/ South Georgia</td>
<td>0.076</td>
<td>8.745</td>
<td>986.700</td>
<td>< LOD*</td>
<td>6.850</td>
<td>Anderson et al. (2010)</td>
</tr>
<tr>
<td>Black-footed Albatross</td>
<td>Midway Atoll, North Pacific</td>
<td>0.152</td>
<td>Na</td>
<td>Na</td>
<td>0.973</td>
<td>Na</td>
<td>Burger and Gochfeld (2000b)</td>
</tr>
<tr>
<td>Laysan Albatross</td>
<td>Midway Atoll, North Pacific</td>
<td>0.364</td>
<td>Na</td>
<td>Na</td>
<td>0.768</td>
<td>Na</td>
<td>Burger and Gochfeld (2000b)</td>
</tr>
<tr>
<td>Bonin Petrel</td>
<td>Midway Atoll, North Pacific</td>
<td>0.129</td>
<td>Na</td>
<td>Na</td>
<td>1.35</td>
<td>Na</td>
<td>Burger and Gochfeld (2000d)</td>
</tr>
<tr>
<td>Wedge-tailed Shearwater</td>
<td>Midway Atoll, North Pacific</td>
<td>0.071</td>
<td>Na</td>
<td>Na</td>
<td>0.478</td>
<td>Na</td>
<td>Burger and Gochfeld (2000d)</td>
</tr>
<tr>
<td>Christmas Shearwater</td>
<td>Midway Atoll, North Pacific</td>
<td>0.950</td>
<td>Na</td>
<td>Na</td>
<td>2.38</td>
<td>Na</td>
<td>Burger and Gochfeld (2000d)</td>
</tr>
</tbody>
</table>

* LOD below the limit of detection; Na not analyzed.
* Black-browed Albatross, Grey-headed Albatross, and White-chinned Petrel combined.
* Breast feather of males and females combined.
** Includes reported in fresh mass.