Metabolic responses in gills of Manila clam exposed to copper using NMR-based metabolomics
Linbao Zhang, Xiaoli Liu, Liping You, Di Zhou, Huifeng Wu, Lianzhen Li, Jianmin Zhao, Jianghua Feng, Junbao Yu

To cite this version:

HAL Id: hal-00720181
https://hal.archives-ouvertes.fr/hal-00720181
Submitted on 24 Jul 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title: Metabolic responses in gills of Manila clam *Ruditapes philippinarum* exposed to copper using NMR-based metabolomics

Authors: Linbao Zhang, Xiaoli Liu, Liping You, Di Zhou, Huifeng Wu, Lianzhen Li, Jianmin Zhao, Jianghua Feng, Junbao Yu

PII: S0141-1136(11)00045-6
Reference: MERE 3518

To appear in: *Marine Environmental Research*

Received Date: 22 February 2011
Revised Date: 13 April 2011
Accepted Date: 17 April 2011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Metabolic responses in gills of Manila clam *Ruditapes philippinarum*

exposed to copper using NMR-based metabolomics

Linbao Zhang a,b, Xiaoli Liu a,b, Liping You a,b, Di Zhou a,b, Huifeng Wu a,*, Lianzhen Li a, Jianmin Zhao a, Jianghua Feng c, Junbao Yu a,*

a Key Laboratory of Coastal Zone Environment Processes, CAS; Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China

b The Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China

c Department of Electronic Science, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China

*Corresponding author:

Dr. Junbao Yu

Email address: junbao.yu@googlemail.com

Dr. Huifeng Wu

Tel: 86-535-2109190; fax: 86-535-2109000.

Email address: hfwu@yic.ac.cn
ABSTRACT

Copper is an important heavy metal contaminant with high ecological risk in the Bohai Sea. In this study, the metabolic responses in the bioindicator, Manila clam (*Ruditapes philippinarum*), to the environmentally relevant copper exposures were characterized using NMR-based metabolomics. The significant metabolic changes corresponding to copper exposures were related to osmolytes, intermediates of the Krebs cycle and amino acids, such as the increase in homarine, branched chain amino acids and decrease in succinate, alanine and dimethylamine in the copper exposed clam gills during 96 hour exposure period. Overall, Cu may lead to the disturbances in osmotic regulation and energy metabolism in clams during 96 h experimental period. These results demonstrate that NMR-based metabolomics is applicable for the discovery of metabolic biomarkers which could be used to elucidate the toxicological mechanisms of marine heavy metal contaminants.

Keywords: Copper; Heavy metal; Toxicity; Metabolites; Biomarkers; Manila clam; Bioindicator; Metabolomics
1. Introduction

Copper (Cu) is an essential element for organisms, since it is a cofactor of the prion protein and many enzymes. It acts as a catalyst for many enzyme systems, and is important as an electron carrier in intracellular structures (Hey, 1984). However, excessive copper is highly toxic due to its high affinity for thiol groups. Cu can participate in redox reactions that generate highly reactive hydroxyl radical enhancing the production of reactive oxygen species (ROS) through Fenton reactions associated with free Cu to catalyze the reaction between superoxide anion and H_2O_2 and direct binding to free thiols of cysteines, which can cause catastrophic damage to lipids, proteins and DNA (Halliwell, 1999; Cecconi et al., 2002). Copper pollution along the Bohai Sea mainly arises from mining and electroplating, which has posed severe ecological risk on the marine ecosystem of the Bohai Sea (Ma et al., 1995). Ma et al. reported that excessive copper had become one of most severe pollutants in the Jinzhou Bay of Bohai Sea due to the high levels of copper accumulated in the invertebrates listed in the “Mussel Watch Program” (Ma et al., 1995). It is therefore necessary to assess the toxicological effects and subsequent ecological risk of copper in the marine and coastal environments.

Marine bivalves can accumulate heavy metals in direct proportion to their environmental levels (Roesijadi, 1980). Therefore, marine mussels and oysters have often been used as sentinel organisms in many countries for heavy metal pollution monitoring since “Mussel Watch Program” was proposed in the late 1970s (Goldberg, 1975). Manila clam, *Ruditapes philippinarum*, is consumed as economic seafood and distributed in the natural environment along the coasts of the Bohai Sea. It has been considered a good sentinel organism for the heavy metal pollution monitoring of marine and coast ecosystems and assigned as a bioindicator in the marine ecotoxicology due to its wide distribution, long life cycle, high tolerance to salinity and temperature, ease of collection and high bioaccumulation of heavy metals (Park et al., 2006, 2008; Ji et al., 2006).

Traditional toxicological studies on heavy metals have usually focused on the
measurement of specific responses such as the activity of acetylcholinesterase to test for neurotoxicity or antioxidant enzyme levels to test for oxidative stress induced by heavy metals (Matozzo et al., 2005; Elbaz et al., 2010; Geret et al., 2002). Therefore, some of these enzymatic parameters such as activity of acetylcholinesterase have been used as biomarkers for the heavy metal monitoring (Matozzo et al., 2005). With the development of system biology, metabolomics, one of the techniques of system biology, has been widely applied in drug toxicity studies, disease diagnosis, functional genomics and environmental sciences (Wu et al., 2005; Waters et al., 2001; Marchesi et al., 2007; Gavaghan et al., 2002; Griffin et al., 2004; Brindle et al., 2002; Bundy et al., 2004; Viant et al., 2006a, b; Katsiadaki et al., 2009). The application of proton nuclear magnetic resonance (NMR) spectroscopy combined with pattern recognition methods to detect the responses of low molecular weight metabolites (< 1 000 Da) to toxicants or environmental contaminants has been demonstrated in both terrestrial vertebrate and invertebrate systems relevant to environmental toxicology (Bundy et al., 2002; Griffin et al., 2000; Fiehn, 2002). 1H NMR spectroscopy is suitable for the detection of a large range of endogenous low-molecular weight metabolites in an organ or cells, since practically all metabolite molecules contain protons. Additionally, NMR is a rapid, non-destructive analytical approach that delivers rich structural and quantitative information and can allow the metabolites to be analyzed simultaneously (Jones et al., 2008; Tuffnail et al., 2009; Viant et al., 2003).

Gill tissue is a main target tissue for heavy metal accumulation in marine bivalve invertebrates (Panfoli et al., 2000; Viarengo et al., 1994). Hence, it is potentially sensitive and suitable for the detection of metabolic biomarkers induced by accumulated heavy metal. In this study, therefore, 1H NMR-based metabolomics was applied to the gill tissue extracts from Manila clam *Ruditapes philippinarum*, one of the bioindicators for marine heavy metal monitoring, to detect the metabolic responses in gill tissues as to copper exposure. Previously, Jones et al. (2008) reported the toxicological effects induced by nickel at the concentration of EC$_{50}$ in blue mussel (*Mytilus galloprovincialis*). However, the concentration (770 µg L$^{-1}$) of heavy metal was not environmentally relevant. In this work, the aim was to detect metabolic
biomarkers characterizing the toxicological effects of copper with environmentally relevant concentrations in adult Manila clams with various exposure times.

2. Materials and methods

2.1. Sample collection

All the adult Manila clams *Ruditapes philippinarum* (shell length: 3.0-4.0 cm, Zebra pedigrees) were purchased from local culturing farm. Animals were allowed to acclimate in aerated seawater (25 °C, 32 psu, collected from clean environment) in the laboratory for 10 days and fed with the *Chlorella vulgaris* Beij daily. After acclimatization, a total 60 clams were randomly divided into 3 flat-bottomed rectangular tanks with 20 individual animals respectively. For the challenge experiment, clams were exposed with copper at following concentrations, 10 and 40 µg L⁻¹ (as CuCl₂, 10 and 40 µg L⁻¹). The concentrations of Cu can be found in some heavily polluted sites of Bohai Sea (Ma et al., 1995). Clams cultured in the normal fresh sea water (FSW) were used as control samples. The gill tissues of five clams from each tank were randomly sampled for metabolomics analysis after exposure for 24, 48 and 96 h respectively. After collection, the samples were flash-frozen in liquid nitrogen immediately and stored at -80 °C prior to metabolite extraction.

2.2. Metabolite extraction

Polar metabolites were extracted from the gill tissues using methanol/chloroform solvent system (Bligh and Dyer, 1959; Lin et al., 2007; Wu et al., 2008). Briefly, the gill tissue (~100 mg) was homogenized in 4 mL g⁻¹ (solvent volume/tissue mass) of methanol and 0.85 mL g⁻¹ of water using a high throughput homogenizer, Precellys 24 (Bertin, France). The homogenate was then transferred to a glass vial. A total of 2 mL g⁻¹ of chloroform and 2 mL g⁻¹ of water was added to the homogenate, and the mixture was vortexed and centrifuged (10 min, 2000 g, 4 °C). The methanol/water layer with the polar metabolites from clam gill tissue was removed and dried in a
centrifugal concentrator and then stored at -80 °C. The metabolite extracts was subsequently resolvated in 600 µL of 150 mM phosphate buffer (Na₂HPO₄ and NaH₂PO₄, pH 7.0) with 0.5 mM sodium 3-trimethylsilyl-2,2,3,3-d₄-propionate (TSP) as chemical shift standard in D₂O. The mixture was vortexed and then centrifuged at 2500 g for 5 min at 4 °C. The supernatant (550 µL) was pipetted into a 5 mm NMR tube prior to NMR measurement.

2.3. NMR spectroscopy

The gill tissue extracts were analyzed using a Bruker AV 500 NMR spectrometer operated at 500.18 MHz at 298 K. Basic one-dimensional (1-D) ¹H NMR spectra were obtained using a 11.9 µs pulse, 6009.6 Hz spectral width, mixing time 0.1 s, and 3.0 s relaxation delay with standard 1D NOESY pulse sequence, with 128 transients collected into 16, 384 data points. Datasets were zero-filled to 32, 768 points, and exponential line-broadenings of 0.3 Hz were applied before Fourier transformation. All ¹H NMR spectra were phased, baseline-corrected, and calibrated (TSP at 0.0 ppm) manually using TopSpin (version 2.1, Bruker). NMR spectral peaks were assigned following tabulated chemical shifts (Fan, 1996; Viant et al., 2003) and using the software, Chenomx (Evaluation Version, Chenomx Inc., Canada). Some of the metabolites were confirmed by the 2D NMR method, ¹H-¹H homonuclear correlation spectroscopy (COSY).

2.4. Spectral pre-processing and multivariate data analysis

All the NMR spectra were converted to a format for pattern recognition (PR) analysis using custom-written ProMetab software based on the Matlab software package (version 7.0; The MathWorks, Natick, MA) (Purohit et al., 2004). Each ¹H NMR spectrum was segmented into 0.01 ppm bins between 0.2 and 10.0 ppm with bins from 4.60 to 5.20 ppm (the residual water peak) excluded. The area of each segment was calculated and normalized using the total integrated spectral area of the spectrum. All the NMR spectra were log transformed (with transformation parameter, λ = 1 × 10⁻⁸) to stabilize the variance across the spectral bins and to enhance the
weightings of the less intense peaks (Purohit et al., 2004; Parsons et al., 2007). The
data sets were preprocessed using mean-centering before either principal components
analysis (PCA) or partial least-squares discriminant analysis (PLS-DA) was applied
using PLS Toolbox software (version 4.0, Eigenvector Research, Manson, WA).

Two well-developed pattern recognition methods, PCA and PLS-DA, were used
in this work to separate the sample groups. PCA is an exploratory unsupervised
pattern recognition technique which is blind to the status of each sample, and serves to
reduce the dimensionality of the data and summarize the similarities and differences
between multiple NMR spectral sets. The algorithm of this pattern recognition method
calculates the highest amount of correlated variation along PC1, with subsequent PCs
containing correspondingly smaller amounts of variance. For each model built, the
loading vector for the PC could be examined to identify the metabolites which
contributed to the clusters. PLS-DA is a supervised pattern recognition technique and
is frequently used to classify multiple classes by searching for variables (the X matrix)
which are correlated with class membership (the Y matrix). In PLS-DA, the X matrix
is the measured matrix, i.e., the NMR data, and the Y matrix is composed of dummy
variables (represented by ones and zeros) that indicate the class for each treatment
(Keun et al., 2003). The prediction accuracy of the PLS-DA model was assessed using
cross-validation with leave-one-out (Rubingh et al., 2006; Westerhuis et al., 2008). A
Q^2 score > 0.08 indicates that the model classification is significantly better than
chance, while a score greater than 0.4 indicates that the model is practically robust
(Lindon et al., 1999). Similar to PCA, the weights vector for the Latent Variables (LV)
in PLS-DA can be applied for the identification of these potentially significant
metabolites which contribute to the clusters due to the biological variations between
control and exposed groups. One way ANOVA (analysis of variance) with Tukey’s
test was performed on the ratio of representative bin area (peak intensity) to the total
spectral area which was contributive for the separation between control and
copper-treated samples and was used as the “concentration” of corresponding
metabolite. A P value of 0.05 was considered significant for ANOVA on the
metabolites between control and exposed samples.
3. Results

3.1. 1H NMR spectroscopy of gill tissue extracts

A representative 1H NMR spectrum of gill tissue extracts from a control clam is shown in Figure 1. Several metabolite classes were identified, including amino acids (branched-chain amino acids: valine, leucine and isoleucine, arginine, glutamate, glycine, etc.), energy storage compounds (α, β-glucose, ATP/ADP and glycogen), organic osmolytes (betaine, homarine, etc.), and Krebs cycle intermediates (succinate, citrate and α-ketoglutarate). However, the original NMR spectrum (Fig. 1A) is dominated by the key organic osmolyte, betaine (3.25 and 3.91 ppm), which is 10 - 100 times higher in the intensity than other metabolites.

![Insert Fig. 1](image)

3.2. Pattern recognitions on the 1H NMR spectra of gill tissue extracts

Principal components analysis was initially applied to the NMR spectral data sets of gill tissue extracts after 24, 48 and 96 h exposures. However, no significant difference ($P > 0.05$) along various principal components between the control and exposed groups was detected using one way analysis of variance (ANOVA) on the PC scores (data not shown). Hence the supervised technique PLS-DA was employed to classify the control and exposure groups (Fig. 2, 3 and 4). PLS-DA resulted in clear separation between the groups (Fig. 2A, 3A and 4A) with Q^2 values more than 0.4 showing the high robustness of PLS models and was therefore used throughout the rest of this study. After 24 hours of exposure, the gill samples from control and low (10 μg L$^{-1}$) Cu-exposed groups were separated mainly along LV1, while the control and high (40 μg L$^{-1}$) Cu-exposed groups were tightly clustered along LV2 (Fig. 2A). The scores plot (LV1 vs. LV2) showed clear separation between control and Cu-treated groups after exposure for 48 hours. However, there was no separation between low and high Cu treated samples (Fig. 3A). For these clam gill samples after 96 hours of exposure, the control and low (10 μg L$^{-1}$) Cu-exposed groups were clearly
separated along LV2, and the separation between control and high (40 µg L\(^{-1}\))
Cu-exposed groups was found along LV1 (Fig. 4A).

The plots (Figs. 2B, 2C, 3B, 4B and 4C) of either LV1 or LV2 weights were
originally used to identify the NMR spectral bins of metabolites which might be
significant for the separation between the control and exposed groups. Then, one way
analysis of variance with a 5% significance level was applied to the NMR spectral bin
areas that presented a possible contribution to the separation, facilitating the
identification of metabolic changes.

Basically, the levels of aspartate, dimethylamine and hypotaurine were
significantly elevated in the gill tissues from the low (10 µg L\(^{-1}\)) dose group after 24
hours of exposure, while alanine, acetate, succinate, citrate, acetylcholine were
decreased significantly (Table 1, Fig. 2B). For high dose (40 µg L\(^{-1}\)) of exposure, the
metabolic responses in clam gill tissues included significantly increased aspartate,
betaine, homarine and glycogen, and significantly decreased alanine, acetate,
succinate, citrate, dimethylamine and acetylcholine (all significant at the 5% level)
(Table 1, Fig. 2C). After 48 h of Cu exposures, the most significant metabolic changes
in gill tissues were the elevation of branched chain amino acids, citrate, betaine,
glycine and homarine, and decreased levels of alanine, acetate, dimethylamine,
aspartate, succinate, acetylcholine and ATP/ADP from both low and high Cu-dosed
samples (Table 1, Fig. 3B). The metabolic profiles resulted in significant increase in
alanine and hypotaurine, and decrease in betaine, taurine and acetate in the low (10 µg
L\(^{-1}\)) Cu-dosed samples after exposure for 96 hours, together with the elevated
branched chain amino acids, hypotaurine and homarine and depleted acetate,
dimethylamine, betaine and taurine in the high (40 µg L\(^{-1}\)) Cu-dosed samples (Table 1,
Fig. 4B and 4C).
4. Discussion

Metabolomics is a well-established technique of system biology based on the measurement and analysis of low molecular weight endogenous metabolites using modern analytical techniques including NMR spectroscopy and Mass spectrometry (Wang et al., 2003; Plumb et al., 2003). The metabolic profiling can provide an overview of the metabolic status of a biological system including cells, tissues, organs or even whole organisms (Lin et al., 2006; Stentiford et al., 2005).

After PLS-DA analysis, the LV score plot showed clear separations between the control and Cu-exposed groups (10 and 40 µg L\(^{-1}\)) after 24 hours of exposure (Fig. 2A), which meant the metabolic differences between various Cu-dosed clam gill samples. Although common metabolic changes in both low and high Cu exposed groups were detected including the elevated aspartate and decreased alanine, acetate, succinate, citrate and acetylcholine, there were a few specific metabolic differences between these 2 dosed groups such as the elevated hypotaurine in low Cu-dosed samples and elevated betaine, homarine and glycogen and decreased dimethylamine in high Cu-dosed samples. All these findings implied the differential metabolic responses induced by various doses of Cu in the clam gill samples after exposure for 24 hours. After 48 h of Cu exposures, both low and high doses of Cu-exposed samples were classified from controls along negative LV1. However, there was no separation between low and high Cu treated samples, which indicated the similar metabolic responses induced by either low or high dose of Cu after 48 hours of exposure (Fig. 3A). The separation between control and low (10 µg L\(^{-1}\)) Cu-exposed groups after exposure for 96 h were found along LV2, while the high (40 µg L\(^{-1}\)) Cu-exposed groups were classified from the controls along LV1 (Fig. 4A). It indicated the distinguishable metabolic responses in the gill tissues from either low or high dose of Cu-exposed groups from the controls due to the differential metabolic biomarkers (Fig. 4B and 4C).

The original NMR spectrum (Fig. 1A) was dominated by a couple of organic osmolytes, betaine (3.27 and 3.91 ppm) and taurine (3.27 and 3.45 ppm) (Fig. 1A), which were 10-100 times higher in NMR peak intensities than other metabolites.
Organic osmolytes such as betaine, homarine, hypotaurine, dimethylamine, alanine and taurine are small organic molecules functioning in the osmotic regulation in marine organisms via various metabolic pathways (Preston, 2005). The osmolytes can be actively accumulated or released when the salinity increases or decreases. Therefore, organic osmolytes play key physiological roles in osmotic regulation of invertebrates and were therefore detected at higher levels than other metabolites in clams (Preston, 2005). In the clam gills after 24 hours of exposure of Cu, the elevation of hypotaurine and reduction of alanine in low (10 µg L\(^{-1}\)) dose of Cu-treated samples exhibited the disturbance in osmotic regulation in clam gills. However, the differential metabolic changes including the increased levels of betaine and homarine and the decreased levels of alanine in high (40 µg L\(^{-1}\)) dose of Cu-treated samples might indicate the disturbance in osmotic regulation via various metabolic pathways compared with that in low (10 µg L\(^{-1}\)) dose of Cu-treated samples as mentioned above. It demonstrated the dose-responsive toxicological effects induced by various doses of Cu.

It has been reported that alanine also constitutes the major portion of end-product of glucose breakdown anaerobically, together with the metabolite of succinate in invertebrate (Carlsson and Gade, 1986; Stokes and Awapara, 1968). However, both succinate and alanine were down-regulated in this work after exposure of Cu for 24 hours. In another possible metabolic pathway, there is substantial conversion of aspartate to succinate with no detectable enrichment of other compounds under anoxic conditions in mollusk hence with the decreased aspartate and increased succinate (Graham and Ellington, 1985). Interestingly, the contrary result of increased aspartate as well as decreased succinate was found in the copper-exposed clams in our case, which meant no anaerobiosis metabolism induced by Cu in clam gills. Therefore the decrease of succinate and citrate in both low and high doses-exposed groups meant the possible perturbations in energy metabolism caused by both low and high doses of Cu after 24 hours of exposure.

Acetylcholine is a neural transmitter that can be degraded to choline in cholinergic synapses and neuromuscular junctions by acetylcholinesterase (AChE) (Matozzo et al., 2005). In some studies, the measurement of AChE activity was...
demonstrated useful as a biomarker of neurotoxic compounds in aquatic organisms and has been successfully applied for the monitoring of neurotoxic contaminatants (Matozzo et al., 2005; Cajaraville et al., 2000). As a matter of fact, the inhibition of AChE is followed by accumulation of acetylcholine, however, the significant decrease of acetylcholine was detected in clam gills caused by both low and high doses of Cu after 24 hours of exposure. In our previous work, the accumulation of acetylcholine was detected in gill tissues of clam after exposure with mercury that is known as a typical neurotoxic heavy metal (Liu et al., 2011). Elevated acetylcholine was then recognized as the biomarker of neuro-toxicity induced by mercury (Liu et al., 2011). In this work, it seemed copper exposures could induce contrary alteration in acetylcholine to that caused by mercury exposure. The physiological mechanism was unclear and needed further studies.

Acetate is an end product of anaerobic metabolism that can be used as a biomarker of exposure to anoxic conditions with the elevated levels in the biological tissues (Kluytmans et al., 1975; Zwaan and Marrewijk et al., 1973). In this work, the level of acetate was significantly reduced in clam gill tissues after exposed to Cu for 24 hours, which might imply the reduced anaerobic metabolism in gills.

Compared to the metabolic changes induced by Cu exposures after 24 hours, the specific metabolic responses including increased branched chain amino acids and glycine and decreased ATP/ADP were observed in both low and high doses of Cu-exposed samples after 48 hours of exposure. Recent studies have reported that some marine mollusks use high intracellular concentrations of free amino acids to balance their intracellular osmolarity with the environment, and these pools of oxidizable amino acids were also used extensively in cellular energy metabolism (Viant et al., 2003). The increase of amino acids in clam gill tissues indicated the disturbances in osmolarity and energy metabolism caused by Cu exposures.

After exposed to Cu for 96 hours, the levels of branched chain amino acids, succinate, citrate, acetylcholine, aspartate in the low (10 µg L\(^{-1}\)) dose of Cu-exposed samples were recovered to the control levels, which meant the recovery of disturbances in energy metabolism and osmotic regulations due to the biological
adaptation to the low dose of Cu exposure. On the other hand, the unique metabolic responses including the increased betaine and taurine (2 organic osmolytes) were detected after exposure to low dose of Cu for 96 hours. For the high dose (40 µg L$^{-1}$) of Cu-treated samples, the levels of citrate, succinate, acetylcholine, glycine and ATP returned to the control levels as well. However, the osmolyte, taurine was decreased like that in the low dose of Cu-treated samples. It indicated the time-dependent responses of new disturbances in the osmotic regulation based on the alterations in the levels of betaine and/or taurine induced by either low (10 µg L$^{-1}$) or high (40 µg L$^{-1}$) dose of Cu exposure for 96 hours.

In summary, this work examined the metabolic responses and toxicological effects in the gill tissues of Manila clam *Ruditapes philippinarum* induced by two doses (10 and 40 µg L$^{-1}$) of Cu during 96 hours of exposure. The dose- and time-dependent effects of Cu mainly included the disturbances in energy metabolisms and osmotic regulations based on the corresponding metabolic biomarkers such as succinate, citrate, ATP, branched chain amino acids, betaine, taurine, hypotaurine, glycine, aspartate, acetylcholine, homarine and dimethylamine. Our findings demonstrated the applicability of metabolomics for the elucidation of toxicological effects of heavy metals in the bioindicator and the potential of metabolic biomarkers for the monitoring of heavy metal contaminants in the marine environment.

Acknowledgments

We thank Dr. Mark Viant (School of Bioscience, The University of Birmingham) for use of the software ProMetab. This research was supported by The 100 Talents Program of the Chinese Academy of Sciences, Technology Development Program Projects of Shandong Province (2008GG20005006 and 2008GG3NS0700) and SDSFC (ZR2009CZ008) and in part by the CAS/SAFEA International Partnership Program for Creative Research Teams “Representative environmental processes and resources effects in coastal zone” and CAS innovation key project (KZCX2-YW-Q07-04).
References

De Zwaan, A., Van Marrewijk, W.J.A., 1977 Anaerobic glucose degradation in the

New York.

multivariate statistical analysis shows promise for the detection of drug
metabolites in biological fluids. Rapid Communications in Mass Spectrometry
2003, 17, 2632–2638.

Physiology and Biochemistry 265, 410–421.

models using variance stabilizing transformation of metabolomic NMR data.
OMICS: A Journal of Integrative Biology 8, 118–130.

Roesijadi, G., 1980. Influence of copper on the clam Protosthaca staminea: effects on
the gills and occurrence of copper-binding proteins. Biological Bulletin 158,
233-247.

Rubingh, C.M., Bijlsma, S., Derks, E.P.A., Bobeldijk, I., Verheij, E.R., Kochhar, S.,
Smilde, A.K., 2006. Assessing the performance of statistical validation tools for

Stentiford, G.D., Viant, M.R., Ward, D.G., Johnson, P.J., Martin, A., Wenbin, W.,
Cooper, H.J., Lyons, B.P., Feist, S.W., 2005. Liver tumors in wild flatfish: A
histopathological, proteomic, and metabolomic study. OMICS: A Journal of
Integrative Biology 9, 281–299.

Stokes, T.M., Awapara, A., 1968. Alanine and succinate as end-products of glucose
degradation in the clam Rangia cuneata. Comparative Biochemistry and
Physiology 25, 883–892.

metabolomic study of the exposure of the marine mussel Mytilus edulis to atrazine,
lindane, hypoxia and starvation. Metabolomics 5, 33–43.

dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo ³¹P NMR,
HPLC-UV and ¹H NMR metabolomics. Aquatic Toxicology 76, 329–342.

of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook
salmon (Oncorhynchus tshawytscha) determined by ¹H NMR metabolomics.
Aquatic Toxicology 77, 359–371.

Table 1 Significantly up- or down-regulated metabolites involved in various physiological functions ($P < 0.05^a$) in gill tissues of Cu-exposed clams after exposures for 24, 48 and 96 hours.

<table>
<thead>
<tr>
<th>Dose</th>
<th>10 µg Cu$^{2+}$ L$^{-1}$ seawater</th>
<th>40 µg Cu$^{2+}$ L$^{-1}$ seawater</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmotic regulation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylamine↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotaurin↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy metabolisms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succinate↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrate↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylcholine↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmotic regulation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branched chain amino acids↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrate↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaine↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycine↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homarine↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylamine↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy metabolisms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succinate↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP/ADP↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylcholine↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmotic regulation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotaurine↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaine↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taurine↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy metabolisms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylamine↓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Osmotic regulation:
- Aspartate↑
- Betaine↑
- Homarine↑
- Alanine↓

Energy metabolisms:
- Acetate↓
- Glycogen↑
- Dimethylamine↓
- Citrate↓

Miscellaneous:
- Acetylcholine↓

Osmotic regulation:
- Branched chain amino acids↑
- Citrate↑
- Betaine↑
- Glycine↑
- Homarine↑
- Alanine↓
- Dimethylamine↓

Energy metabolisms:
- Acetate↓
- Succinate↓
- Citrate↑
- ATP/ADP↓

Miscellaneous:
- Acetylcholine↓

Osmotic regulation:
- Branched chain amino acids↑
- Hypotaurine↑
- Homarine↑
- Betaine↓
- Taurine↓

Energy metabolisms:
- Acetate↓
- Dimethylamine↓

Osmotic regulation:
- Branched chain amino acids↑
- Hypotaurine↑
- Homarine↑
- Betaine↓
- Taurine↓

Energy metabolisms:
- Acetate↓

a P values determined using One-way ANOVA on the bin areas from the representative peak of corresponding metabolite.
Figure legends

Figure 1. A representative one dimensional 500 MHz 1H NMR spectrum of gill tissue extracts from a control clam (A) vertical expansion of the aromatic region (B). Keys:

1. Branched chain amino acids: isoleucine, leucine and valine
2. lactate
3. alanine
4. arginine
5. glutamate
6. acetoacetate
7. succinate
8. citrate
9. aspartate
10. α-ketoglutarate
11. malonate
12. acetylcholine
13. betaine
14. taurine
15. hypotaurine
16. glycine
17. homarine
18. glucose
19. glycogen
20. ATP/ADP
21. tyrosine and 22. histidine.

Figure 2. Partial Least-Squares Discriminant Analysis (PLS-DA) model showing (A) separations between control (▼), 10 (●) and 40 µg L$^{-1}$ Cu-exposed (■) clam samples after exposure for 24 hours ($Q^2 = 0.57$); and corresponding LV1 (B) and LV2 (C) weights plots showing the metabolic differences between the groups. Keys:

1. Branched chain amino acids: isoleucine, leucine and valine
2. alanine
3. acetate
4. succinate
5. citrate
6. dimethylamine
7. hypotaurine
8. aspartate
9. acetylcholine
10. unknown (3.24 ppm)
11. betaine
12. homarine
13. glycogen.

Figure 3. Partial Least-Squares Discriminant Analysis (PLS-DA) model showing (A) separations between control (▼), 10 (●) and 40 µg L$^{-1}$ Cu-exposed (■) clam samples after exposure for 48 hours ($Q^2 = 0.49$); and corresponding LV1 (B) weights plots showing the metabolic differences between the groups. Keys:

1. branched chain amino acids: isoleucine, leucine and valine
2. alanine
3. acetate
4. succinate
5. citrate
6. dimethylamine
7. hypotaurine
8. aspartate
9. acetylcholine
10. unknown (3.24 ppm)
11. betaine
12. homarine.

Figure 4. Partial Least-Squares Discriminant Analysis (PLS-DA) model showing (A) separations between control (▼), 10 (●) and 40 µg L$^{-1}$ Cu-exposed (■) clam samples after exposure for 96 hours ($Q^2 = 0.50$); corresponding LV1 (B) and LV2 (C) weights plots showing the metabolic differences between the groups. Keys:

1. Branched
chain amino acids: isoleucine, leucine and valine, (2) lactate, (3) alanine, (4) acetate,
(5) dimethylamine, (6) betaine, (7) taurine, (8) homarine and (9) unknown (7.68 ppm).
Fig. 2
Fig. 3
Fig. 4
The metabolic responses induced by Cu were characterized in *Ruditapes philippinarum*.

The metabolic biomarkers indicated the toxicological effects including the disturbances in osmotic regulation and energy metabolism in clams caused by Cu.

Our results showed the applicability of metabolomics for metabolic biomarker discovery.