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Evidential Evolving Gustafson-Kessel Algorithm For

Online Data Streams Partitioning Using Belief Function

Theory

Lisa Serira,∗, Emmanuel Ramassoa,∗∗, Noureddine Zerhounia,

aFEMTO-ST Institute, UMR CNRS 6174 - UFC / ENSMM / UTBM, Automatic Control and

Micro-Mechatronic Systems Dep., 24 rue Alain Savary, 25000, Besançon, France

Abstract

A new online clustering method called E2GK (Evidential Evolving Gustafson-Kessel)

is introduced. This partitional clustering algorithm is based on the concept of credal

partition defined in the theoretical framework of belief functions. A credal partition is

derived online by applying an algorithm resulting from the adaptation of the Evolving

Gustafson-Kessel (EGK) algorithm. Online partitioning of data streams is then possible

with a meaningful interpretation of the data structure. A comparative study with the

original online procedure shows that E2GK outperforms EGK on different entry data

sets. To show the performance of E2GK, several experiments have been conducted

on synthetic data sets as well as on data collected from a real application problem. A

study of parameters’ sensitivity is also carried out and solutions are proposed to limit

complexity issues.

Keywords: Belief functions, Clustering, Evolving Systems

1. Introduction

Clustering is an unsupervised learning technique that aims at discovering meaning-

ful groups called clusters within a set of patterns (observations, data items, or feature

vectors), based on similarity [1]. Intuitively, patterns within a valid cluster are more

similar to each other than they are to a pattern belonging to a different cluster.

Pattern proximity, or similarity, is usually measured by a distance function defined

on pairs of patterns. A variety of distance measures is used in the various communities,

reflecting implicit assumptions about cluster shape [2, 3, 4]. For instance, the Euclidean

distance is often used to reflect dissimilarity between two patterns and is known to work

well when all clusters are spheroids or when all clusters are well separated. The variety
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of techniques for representing data, measuring proximity between data elements, and

grouping data elements has produced a large number of clustering methods [5, 6].

Several research communities are interested in clustering techniques and use differ-

ent terminologies and assumptions for the clustering process. Clustering is appropriate

in situations where little prior information is available about data, as it explores rela-

tionships between data points and makes assessment of their general structure.

Among the range of existing approaches, there is a distinction between hierarchical

and partitional clustering depending on the properties of the generated clusters. Hier-

archical methods produce a nested series of partitions based on a criterion for merging

or splitting clusters based on similarity. Partitional clustering algorithms identify the

partition that optimizes a clustering criterion. Additional techniques for the grouping

operation include probabilistic [7] and graph-theoretic [8] clustering methods. The

clustering algorithm presented in this paper is in line with partitional clustering meth-

ods.

1.1. Partitional Clustering

A partitional clustering algorithm obtains a single partition of the data instead of

a clustering structure, like in a hierarchical technique. Partitional methods have ad-

vantages in applications involving large data sets. A typical problem encountered in

partitional algorithms is the choice of the number of desired output clusters. The par-

titional techniques usually produce clusters by optimizing a criterion function. The

most intuitive and frequently used criterion function is the squared error, which tends

to work well with isolated and compact clusters. The k-means is the simplest and most

commonly used algorithm employing this criterion [9].

The output clustering can be either hard (a partition of the data into groups) or

fuzzy, where each pattern has a variable degree of membership in each of the output

clusters. Traditional clustering approaches generate partitions, in which each pattern

exclusively belongs to one cluster. Hence, the clusters in a hard clustering are disjoint.

Fuzzy clustering extends this notion to associate each pattern with every cluster using a

membership function [10]. A fuzzy clustering method assigns degrees of membership

in several clusters to each input pattern. A fuzzy clustering can be converted to a

hard clustering by assigning each pattern to the cluster with the largest measure of

membership. The most popular fuzzy partitioning method is Bezdek’s Fuzzy c-means

(FCM) algorithm [11]. One can also mention the Gustafson-Kessel fuzzy clustering

algorithm [12] that is capable of detecting hyper-ellipsoidal clusters of different sizes

and orientations by adjusting the covariance matrix of data.

1.2. Evolution of the partitional clustering methods

Clustering methods progressed considerably toward more realistic approaches of

clusters’ detection and separation. The membership restriction to exactly one cluster

of hard clustering was overcome by fuzzy probabilistic clustering [11]. However, fuzzy

clustering may be inaccurate in a noisy environment producing non intuitive high mem-

bership degrees for outliers. To improve this weakness, Krishnapuram and Keller [13]

proposed a possibilistic approach to clustering that they called a possibilistic c-means

(PCM) clustering. More recently, a more flexible concept based on belief functions
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theory, called credal partition, was introduced in [14] as an extension of the existing

concepts of hard, fuzzy and possibilistic partitions. In this approach, each data point

is given a mass of belief regarding its membership to, not only to a single cluster, but

also to any subset of clusters. This particular representation permits coding all the sit-

uations, from certainty to total ignorance of membership to clusters. In the Evidential

c-Means (ECM) algorithm [15], the credal partition is in particular exploited for out-

liers detection. The experiments presented in [14, 15] show that meaningful and robust

summaries of the data can be achieved, as it is possible to compute, for each cluster, a

set of objects that surely belong to it, and a larger set of objects that possibly belong to

it. Robustness is achieved by assigning outliers to the empty set.

1.3. Online clustering

Numerous techniques have been developed for clustering data in a static environ-

ment [1]. In classical data analysis it is usually assumed that a data set is first collected

completely and then the analysis is carried out. However, it is very common that we

do not have a fixed data set, but a constantly growing amount of data coming in. In

many real-life applications, non-stationary data (i.e. with time-varying parameters) are

commonly encountered. A possible way to analyze such data is to restart the corre-

sponding algorithm completely, each time new data arrive. However, this approach is

neither very efficient, nor suited to detect changes in the data. Online clustering is an

important problem that frequently arises in many fields, such as pattern recognition and

machine learning [16].

The task of online clustering is to group data into clusters as long as they arrive

in a temporal sequence. Also called incremental clustering in machine learning [17],

or sometimes adaptive clustering, online clustering is generally unsupervised and has

to manage recursive training in order to gradually incorporate new information and to

take into account model evolutions over time. The goal of online methods is to avoid

storage of complete datasets by discarding each data point once it has been used. On-

line methods are required when: 1) it is necessary to respond in real time; 2) the input

data set may be so huge that batch methods become impractical because of computa-

tion time or memory requirement; and 3) the input data come as continuous streams of

unlimited length that make it impossible to apply batch methods.

Adaptive versions of the mentioned clustering methods were proposed for data pro-

cessing in online mode. In [18], the authors proposed an online k-means algorithm for

data streams clustering. the key aspect of their method is a preprocessing step, which

includes an incremental computation of the distance between data streams, using a dis-

crete Fourier transform (DFT) approximation of the original data. They also propose

an incremental adaptation of the number of clusters k. At each iteration, the current

number of clusters can increase or decrease by one according to an evaluation of the

current clustering structure by a separation index quality measure.

An online version of the spherical k-means algorithm has been proposed in [19]

based on the Winner-Take-All competitive learning. In this online algorithm, each

cluster centroid is incrementally updated. The number of clusters K is fixed in advance

and the method was proposed as a more efficient version than in the batch version

giving better clustering results.
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Examples of clustering algorithms that are used in model identification procedures

include Angelov’s work on fuzzy rule-based models identification [20, 21]. In [22], a

recursive approach for the adaptation of a fuzzy rule-based model structure has been

developed and tested using on-line clustering of the input-output data with a recursively

calculated spatial proximity measure. Centers of these clusters are then used as proto-

types of the centers of the fuzzy rules (as their focal points). The recursive nature of

the algorithm makes it possible to design an evolving fuzzy rule-base in on-line mode,

which adapts to the variations of the data pattern.

Various online extensions of fuzzy clustering algorithms have been developed dur-

ing the last decade [23, 24, 25, 26]. Our particular interest goes to an online version of

the Gustafson-Kessel fuzzy clustering algorithm (EGK), that was proposed in [27] and

enables online partitioning of data streams based on a similar principle than the one

used in the initial GK algorithm [12]. In particular, online updating of the fuzzy parti-

tion matrix relies on the same formula. Rules were then proposed to decide whether a

new cluster has to be created or existing prototypes should evolve.

Finally, To our knowledge, only one incremental approach to clustering using belief

functions has been proposed [28]. In this approach the data in the training set are

considered uncertain. Moreover, each data is described by a given number of attributes,

each labeled by a mass of belief provided by an expert, which are very difficult to obtain

in real life application. In addition, this approach assumes that the number of clusters

is known in advance and can not evolve.

1.4. Contribution

In this paper, we propose the Evidential Evolving Gustafson Kessel algorithm

(E2GK) which permits to adapt a credal partition matrix as data arrive. This clus-

tering method is introduced in the theoretical framework of belief functions, and more

precisely of Smets’ Transferable Belief Model (TBM, [29]). E2GK is composed of two

main steps, both performed online:

1. Determination of clusters prototypes (also called centers), either by moving ex-

isting prototypes, creating new ones, or by removing existing ones. To do so, we

adapt some results from the Evolving Gustafson-Kessel algorithm (EGK) pro-

posed in [27].

2. Allocation of the belief masses to the different subsets of classes. This step is

based on some results of the Evidential c-means algorithm (ECM) [15].

E2GK benefits from two efficient algorithms: EGK and ECM, by dealing with doubt

between clusters and outliers in an online manner. Doubt is generally encountered in

data transition and can be useful to limit the number of clusters in the final partition.

Moreover, outliers are well managed using the conflict degree explicitly emphasized in

the TBM framework.

This paper is an extended version of a previous contribution [30]. In Section 2,

we present GK and ECM algorithms as well as belief functions giving the necessary

background for Section 3 in which we introduce E2GK. Results are finally presented

in Section 7.
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2. Background

Let the patterns to be clustered be in the form of a collection X = {x1, . . . ,xk, . . . ,xN}
of feature vectors xk ∈ ℜq. Let c be the number of clusters characterized by a prototype

(or a center) denoted vi ∈ ℜq.

2.1. Gustafson-Kessel Algorithm

Most of the prototype-based fuzzy clustering algorithms, like FCM, are based on

an optimization scheme and aim at minimizing a suitable function J that represents the

fitting error of the clusters regarding the data:

J(V,U) =
c

∑
i=1

N

∑
k=1

(uik)
β d2

ik (1)

where

• uik is the membership degree of data point xk to the i-th prototype (cluster center),

• U = [ui j] is the resulting partition matrix with dimension c×N,

• V = [vi] is the c×q matrix of prototypes,

• dik is the distance between the k-th data point xk and the i-th prototype,

• Parameter β > 1 is a weighting exponent that controls the fuzziness of the parti-

tion (it determines how much clusters may overlap).

The FCM algorithm uses point prototypes (cluster centers) vi and the inner-product

norm-induced metric given by:

d2
ik = ‖xk − vi‖

2
S = (xk − vi)

T S(xk − vi) , (2)

as the distance measure, where the norm matrix S is a positive definite symmetric

matrix. The above distance measure is meaningful only when all clusters are expected

to be ellipsoids of the same orientation and size, as the norm matrix determines the

size and shape of the points enclosed within a given distance of the center. The norm

matrix is hard to specify in advance, thus it is usually taken to be the identity matrix

and doing so reduces the distance measure to the Euclidean distance. The Euclidean

distance gives good results only when all clusters are spheroids of the same size or

when all clusters are well separated. To overcome the drawback due to the Euclidean

distance one can use the Mahalanobis distance (MD) as the distance measure.

The Gustafson-Kessel algorithm (GK) associates each cluster with both a point and

a matrix, respectively representing the cluster center and its covariance. While the

original fuzzy c-means makes the implicit hypothesis that clusters are spherical, the

Gustafson-Kessel algorithm can identify ellipsoidal clusters. Gustafson and Kessel [12]

extended the standard fuzzy c-means algorithm by employing an adaptive distance

norm, in order to detect clusters of different geometrical shapes in the data set. Each

cluster has its own norm-inducing matrix Si. In the GK and EGK algorithms, the fuzzy
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covariance matrix Fi of the i-th cluster is used. The distance dik used in the GK al-

gorithm is a squared inner-product distance norm (Mahalanobis) that depends on a

positive definite symmetric matrix Si defined by:

d2
ik = ‖xk − vi‖

2
Si
= (xk − vi)

T Si(xk − vi) . (3)

This adaptive distance norm is unique for each cluster as the norm inducing matrix

Si, i = 1...c, is calculated by estimates of the data covariance

Si = [ρi det(Fi)]
1/q

F−1
i , (4)

where ρi is the cluster volume of the i-th cluster and Fi is the fuzzy covariance matrix

calculated as follows:

Fi =
∑

N
k=1(uik)

β (xk − vi)(xk − vi)
T

∑
N
k=1(uik)β

. (5)

The minimization of the objective function J (V,U) under the constraint
c

∑
i=1

uik = 1,

using an iterative algorithm, which alternatively optimizes the cluster centers and the

membership degrees:

vi =
∑

N
k=1(uik)

β xk

∑
N
k=1(uik)β

, i = 1 . . .c, k = 1 . . .N . (6)

and

uik =
1

∑
c
j=1(dik/d jk)2/β−1

, i = 1 . . .c, k = 1 . . .N . (7)

2.2. Belief Functions

Dempster-Shafer theory of evidence, also called belief functions theory, is a the-

oretical framework for reasoning with partial and unreliable information. It was first

introduced by A. P. Dempster (1968), then developed by G. Shafer (1976). Later, Ph.

Smets proposed a general framework, the Transferable Belief Model (TBM) [29], for

uncertainty representation and combination of various pieces of information without

additional priors. In this section, we present the main concepts oh this theory.

Considering a variable ω taking values in a finite set called the frame of discern-

ment Ω, the belief of an agent in subsets of Ω can be represented by a basic belief

assignment (BBA), also called belief mass assignment:

m : 2Ω → [0,1]
A 7→ m(A) ,

(8)

with ∑A⊆Ω m(A) = 1. A belief mass can not only be assigned to a singleton (|A| = 1),

but also to a subset (|A| > 1) of variables without assumption concerning additivity.

This property permits the explicit modeling of doubt and conflict, and constitutes a

fundamental difference with probability theory. The subsets A of Ω such that m(A)> 0,
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are called the focal elements of m. Each focal element A is a set of possible values of

ω . The quantity m(A) represents a fraction of a unit mass of belief allocated to A.

Complete ignorance corresponds to m(Ω) = 1, whereas perfect knowledge of the value

of ω is represented by the allocation of the whole mass of belief to a unique singleton

of Ω, and m is then said to be certain. In the case of all focal elements being singletons,

m boils down to a probability function and is said to be Bayesian.

A BBA m is said to be normal if m( /0) = 0. A normalized BBA is such as:

m∗(A) =







m(A)

1−m( /0)
if A 6= /0

0 otherwise

(9)

This process is called Dempster normalization. A positive value of m( /0) is considered

if one accepts the open-world assumption stating that the set Ω might not be complete,

and thus ω might take its value outside Ω. The conflict is then interpreted as a mass of

belief given to the hypothesis that ω might not lie in Ω. This interpretation is useful in

clustering for outliers detection [15].

Several functions - in one-to-one correspondence [29] - can be computed from a

BBA. Among these functions, the plausibility function is defined by:

pl(A) = ∑
B∩A 6= /0

m(B) ∀A ⊆ Ω , (10)

where pl(A) represents the maximal degree of belief supporting the subset A . It is

important to note that pl boils down to a probability measure when m is a Bayesian

BBA and to a possibility measure when the focal elements are nested [31]. Probability

and possibility measures are thus recovered as special cases of belief functions.

Decision making in the TBM framework consists in the choice of the best hypoth-

esis using the pignistic probability distribution [29] defined as:

BetP(ω) = ∑
ω∈A

m(A)

|A|
, ∀ω ∈ Ω . (11)

where each mass of belief m(A) is equally distributed among the elements of A. If the

BBA is subnormal (m( /0) 6= 0), a preliminary normalization step has to be performed

(Eq. 9).

2.3. ECM: Evidential C-Means algorithm

Belief functions theory is largely used in clustering and classification problems [32,

33]. Recently (2003), T. Denoeux and M-H. Masson proposed the use of belief func-

tions for cluster analysis. Similar to the concept of fuzzy partition but more general, the

concept of Credal Partition was introduced. It particularly permits a better interpreta-

tion of the data structure. A credal partition is constructed by assigning a BBA to each

possible subset of clusters A of Ω, and not only to singletons of Ω. Partial knowledge

regarding the membership of a datum k to a class i is represented by a BBA mik on the

set Ω = {ω1, . . . ,ωc}. This particular representation makes possible the coding of all

situations, from certainty to total ignorance. A N ×2c partition matrix M is derived by
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determining, for each data point k, the BBA’s mik = mk(Ai) , Ai ⊆ Ω such that mik is

low (resp. high) when the distance dik between datum k and focal element Ai is high

(resp. low).

The particularity of ECM is that only singletons focal elements (clusters ωk) are

associated with centroids. However, the distance between a data point and any non

empty subset Ai ⊆ Ω is defined by computing the center of each subset Ai, the latter

being the barycenter vi of clusters centers composing Ai:

vi =
1

|Ai|

c

∑
l=1

sli vi, (12)

with

sli =

{

1 if ωl ∈ Ai,
0 otherwise

(13)

The distance dik between xk and the focal set Ai may then be defined by:

d2
ik = ‖xk − vi‖

2 . (14)

Therefore, ECM is not a FCM with 2c classes.

ECM uses the classical Euclidean distance. Classes are thus supposed to be spheri-

cal. However, the use of a Mahalanobis distance may be interesting in case of elliptical

clusters. A variant of ECM with an adaptive metric was proposed in [34]. To compute

the distance between a data point xk and a non singleton subset of clusters of Ω, Ai, the

authors proposed to associate the matrix Si with subset Ai by averaging the matrices

associated to the classes ω j ∈ Ai:

Si =
1

|Ai|

c

∑
l=1

sli Sl , ∀Ai ⊆ Ω, Ai 6= /0, (15)

where, Sl denotes a (q × q) matrix associated to cluster ωl , l = 1 · · ·c inducing

a norm ‖x‖2
Sl
= xT Sl x. Matrix Si may be seen as a kind of within-class covariance

matrix of the clusters composing Ai [34]. The distance d2
ik between xk and any bubset

Ai 6= /0, is then defined by:

d2
ik = ‖xk − vi‖

2
Si
= (xk − vi)

T Si (xk − vi) . (16)

The Evidential c-means algorithm (ECM) [15] is a clustering algorithm that uses

a FCM-like algorithm to derive a credal partition by minimizing a suitable objective

function. Our approach for developing E2GK (Evidential Evolving GK algorithm) is

based on the concept of credal partition as described in ECM [15] where the objective

function was defined as:

JECM(M,V ) =
N

∑
k=1

∑
{i/Ai 6= /0,Ai⊆Ω}

|Ai|
α

m
β
ikd2

ik +
N

∑
k=1

δ 2mk( /0)β , (17)

subject to

∑
{i/Ai 6= /0,Ai⊆Ω}

mik +mk( /0) = 1 ∀k = 1, . . . ,N , (18)

where:
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• α is used to penalize the subsets of Ω with high cardinality,

• β > 1 is a weighting exponent that controls the fuzziness of the partition,

• dik denotes the Euclidean distance between data point k and subset Ai,

• δ controls the amount of data considered as outliers.

The matrix M is computed by the minimization of criterion (Eq. 17) and was shown

to be [15], ∀k = 1 . . .N, ∀i/Ai ⊆ Ω, Ai 6= /0:

mik =
|Ai|

−α/(β−1)
d
−2/(β−1)
ik

∑
Al 6= /0

|Al |
−α/(β−1)

d
−2/(β−1)
lk +δ−2/(β−1)

, (19)

and

mk( /0) = 1− ∑
Ai 6= /0

mik . (20)

To use the adaptive distance (Eq. 16), the authors of [34] demonstrated that the

covariance matrix, called Σl , associated to each cluster ωl is obtained by minimizing

(Eq. 17) with respect to Sl and can be seen as an analog in the evidential framework of

the fuzzy covariance matrix. The expression of Σl is then given by1 [34]:

Σl =
N

∑
k=1

∑
Ai∋ωl

(mik)
2 |Ai|

α−1 (xk − vi)(xk − vi)
T , l = 1 · · ·c . (21)

From the credal partition, the classical clustering structures (possibilistic, fuzzy

and hard partitions) can be recovered [15]. A possibilistic partition can be obtained

by computing from each bba mk for data point k, the plausibilities plk of the different

clusters (Eq. 10). For example, plk({ωi}) is the plausibility (or possibility) that object

k belongs to cluster i. One can also obtain a probabilistic fuzzy partition by calculating

the pignistic probability BetPk({ωi}) (Eq. 11) induced by each bba mk and interpreting

this value as the degree of membership of the object k to cluster i. Assigning each object

to the cluster with highest pignistic probability, or with highest plausibility, permits to

obtain a hard partition.

One can also summarize the data by assigning each object to the set of clusters with

the highest mass. One then obtains a partition of the points in at most 2c groups, where

each group corresponds to a set of clusters. This makes it possible to find the points

that unambiguously belong to one cluster, and the points that lie at the boundary of two

or more clusters. Moreover, points with high mass on the empty set may optionally be

rejected as outliers.

As an example, let consider N = 4 data and c = 3 classes. Tab. 1 gives an example

of a credal partition. BBAs for each data in Tab. 1 illustrate various situations: data 1

certainly belongs to class 1, whereas the class of data 2 is completely unknown. Partial

knowledge is represented for data 3. As m4( /0) = 1, data 4 is considered as an outlier,

i.e., its class does not lie in Ω.

1For optimization requirements, the authors set parameter β equal to 2 [34].
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Table 1: Example of a credal partition.

A /0 ω1 ω2 {ω1,ω2} ω3 {ω1,ω3} {ω2,ω3} {ω1,ω2,ω3}
m1(A) 0 1 0 0 0 0 0 0

m2(A) 0 0 0 0 0 0 0 1

m3(A) 0 0 0 0 0.2 0.5 0 0.3

m4(A) 1 0 0 0 0 0 0 0

3. The Evidential Evolving Gustafson-Kessel algorithm

In [27], an online version of the Gustafson-Kessel clustering algorithm (EGK) was

proposed. It enables online partitioning of data streams by adapting the fuzzy partition

matrix defined in the original GK (Eq. 7). Data arrive in a temporal sequence and for

each new incoming data point, rules are applied to decide whether a new cluster has to

be created or existing prototypes must evolve.

In this section we propose an adaptation of this algorithm to the context of belief

functions. The main idea is to derive, online, a credal partition matrix from the data. As

shown in ECM [15], a credal partition offers a better interpretation of the data structure.

In particular, doubt between clusters is useful for modeling transitions between clusters

and high degrees of conflict generally reflect atypical data. The proposed algorithm is

presented in Tab. 2.

3.1. Initialization

At least one cluster center should be provided. Otherwise, the first point is chosen

as the first prototype. If more than one prototype is assumed in the initial data, GK

algorithm or the adaptive distance version of ECM (section 2.3) can be applied to

identify an initial partition matrix. The result of the initialization phase is a set of c

prototypes vl and a covariance matrix2 Fl for GK (Eq. 5), and Σl for ECM (Eq. 21).

3.2. The updating procedure

For each new incoming data point xk, the following steps are performed.

3.2.1. Determination of the existing clusters

The boundary of each cluster is defined by the cluster radius rl , defined as the

median distance between the cluster center vl and the points belonging to this cluster

with membership degree larger or equal to a given threshold uh:

rl = median
∀xk∈ l-th cluster and Plk>uh

‖vl − xk‖Sl
. (22)

2To obtain a covariance matrix from ECM, one can also use the Mahalanobis distance as proposed in [34].
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where Plk is the confidence degree that point k belongs to ωl ∈Ω and can be obtained by

three main process: either by using the belief mass mk(ωl), or the pignistic transforma-

tion [29] that converts a BBA into a probability distribution, or by using the plausibility

transform (10) [35]. In section 7, BetP was used in most of the presented applications

of E2GK.

Compared to EGK, where the maximum rule is used, we here apply the median

value which is less sensitive to extreme values. Moreover, the minimum membership

degree uh, initially introduced in [27] and required to decide whether a data point be-

longs or not to a cluster, can be difficult to assess. It may depend on the density of the

data as well as on the level of cluster overlapping. We rather set uh automatically to

1/c in order to reduce the number of parameters while ensuring a natural choice for its

value.

3.2.2. Computation of the partition matrix

Starting from the resulting set of clusters at a given iteration, we need to build the

partition matrix M as in ECM (Eq. 19).

In section 5, solutions are proposed to decrease memory consumption due to the

storage of the partition matrix.

3.2.3. Adaptation of the structure

Given a new data point xk, two cases are considered:

Case 1: xk belongs to an existing cluster, thus an update of clusters has to be

performed. Data point xk is assigned to the closest cluster p if dpk ≤ rp. Then, the p-th

cluster is updated by applying the Kohonen rule [36]:

vp,new = vp,old +θ ·∆ , (23)

where

∆ = xk − vp,old , (24)

and

Σp,new = Σp,old +θ ·
(

∆ ∆T −Σp,old

)

, (25)

where θ is a learning rate (and can be set in [0.05,0.3] as in [27]), vp,new and vp,old

denote respectively the new and old values of the center, and Σp,new and Σp,old denote

respectively the new and old values of the covariance matrix.

In [27], the authors propose to recursively update the inverse of the covariance

matrix and its determinant to improve the computational efficiency of the algorithm

using an exponentially weighted moving average (EWMA) procedure. The resulting

expressions are given in the following:

Σ−1
p,new =

(

I −Gp ∆T
)

Σ−1
p,old

1

1−θ
, (26)

where

Gp = Σ−1
p,old ∆

θ

1−θ +θ ∆T Σ−1
p,old ∆

, (27)
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and

det(Σp,new) = (1−θ)n−1
det

(

Σp,old

)

(

1−θ +θ∆T Σ−1
p,old∆

)

, (28)

with 0 < θ < 1 is the constant forgetting factor that controls the updating rate. This

formulation requires that the covariance matrix is initialized as a diagonal matrix with

sufficiently large elements [27].

Case 2: xk is not within the boundary of any existing cluster (i.e. dpk > rp), thus a

new cluster may be defined and a clusters’ update has to be performed. The number

of clusters is thus incremented: c = c+ 1. Then, the incoming data xk is accepted as

the center vnew of the new cluster. In EGK [27], the covariance matrix Σnew of this new

cluster is initialized with the covariance matrix of the closest cluster Σp,old . To avoid

introducing too much prior information related to previously created clusters, and to

reduce the effect of these latter on the shape and orientation of the newly created ones,

we propose to initialize the covariance matrix of each new cluster as a diagonal matrix

corresponding to a reduced set of data points of circular shape. This matrix is then

filled by Eq. 25.

In the initial EGK algorithm [27], a parameter Pi was introduced to assess the

number of points belonging to the i-th cluster in order to quantify the credibility of

the estimated clusters. The authors suggested a threshold parameter Ptol to guarantee

the validity of the covariance matrices and to improve the robustness. This context-

determined parameter corresponds to the desired minimal amount of points falling

within the boundary of each cluster. The new created cluster is then rejected if it

contains less than Ptol data points.

An additional step is proposed in our adaptation of EGK. After creating a new

cluster, the data structure evolves. However, the new cluster may contain data points

previously assigned to another cluster. Thus, the number of data points in previous

clusters could change. We propose to verify, after the creation of a new cluster, that

all clusters have at least the required minimum amount of data points (Ptol or more).

If it is not the case, then the cluster with the minimum number of points is removed.

Compared to the initial EGK algorithm, in which the number of clusters only increases,

E2GK is more flexible because the structure can change by increasing or decreasing

the number of clusters.

The overall algorithm is summarized in Tab. 2.

4. An Example on Synthetic Data

To illustrate the ability of the proposed algorithm, let consider the following syn-

thetic data randomly generated from five different bivariate Gaussian distributions with

parameters as given in Tab. 3.

Initial clusters (Fig. 1) of N = 15 data points each, of type G1 and G2, were identi-

fied by batch GK procedure with uh = 0.5, Ptol = 20 and θ = 0.1. To test the updating

procedure, we gradually (one point at a time) added the following data points (in this

given order):

1. 15 data points of type G1,

2. 15 data points of type G2,

12



Table 2: E2GK algorithm

Initialization 1. Take the first point as a center or apply the off-line

GK or ECM algorithm to get the initial number of clusters c and

the corresponding centers V and covariances Σl , l = 1 · · ·c
2. Calculate vi, the barycenter of the cluster centers

composing Ai ⊆ Ω

3. Calculate the credal partition M, using Eq. 19 and Eq. 20

Updating Repeat for every new data point xk

4. Find the closest cluster p

5. Decision-making: Calculate the radius rp of the closest cluster

using Eq. 22 with the median value

If dpk ≤ rp

6. Update the center vp (Eq. 23)

7. Update the covariance matrix Σp (Eq. 26 and Eq. 28)

else

8. Create a new cluster: vc+1 := xk; Σc+1 := Σp

end

9. Recalculate the credal partition M using Eq. 19 and Eq. 20

10. Check the new structure: remove all the clusters

with a number of data points ≤ Ptol

Table 3: Parameters of the synthetic data

type µ σ

G1 [0 5] 0.3
G2 [0 0] 0.3
G3 [6 6] 0.6
G4 [6 0] 0.6

noise [2.5 2.5] 2

3. 15 data points of type G3,

4. 30 data points of type G4,

5. 15 data points of type G3,

6. 90 data points of type ”‘noise”’,

7. 6 data points at the following location: [10.1 3.2], [10.1 − 3.2], [−4.1 − 3.1],
[−2.3 8.3], [6.2 9.2] and [8.6 −3.1].

E2GK parameters were set to: Ptol = 20, θ = 0.1, δ = 10, α = 1 and β = 2.

Each new incoming data point leads to a new credal partition. Figure 2 shows the

final resulting partition. The center of gravity of each cluster is marked by a red star

(the notation ωi j stands for
{

ωi,ω j

}

). A data point falling in a subset ωi j means that

this point could either belong to ω1 or ω2. The points represented in black circles are

those with the highest mass given to the empty set and considered as outliers. It can be

13
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Figure 1: Initialization of E2GK algorithm using some data from two clusters. Centers are represented by

stars.

−4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

∅

ω1

ω2

ω12

ω3

ω13

ω23

ω123

ω4

ω14

ω24
ω124

ω34

ω134

ω234

Figure 2: Credal partition with δ = 10, α = 1, β = 2, θ = 0.1, Ptol = 20. Red big stars represent centers.

We also displayed the centers corresponding to subsets, e.g. ω123, and atypical data (black dots) are well

detected.

seen that a meaningful partition is recovered and that outliers are correctly detected.

The online adaptation of the clusters is illustrated in Figure 3. One can see how

E2GK assigns each new data point to the desired cluster or subset. The figure depicts

the evolution of the partition regarding the order of arrival of the data (like mentionned

before). The first 30 points are used to initialize cluster ω1 and ω2. Then from t = 31

to 45 points are assigned by E2GK to cluster ω2. The next 15 points are assigned to

ω1 then to ω4, ω3 (30 points) and to ω4. The next points correspond to noise and are
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Figure 3: Structure adaptation: data arrived at each instant (x-axis) and is assigned to one of all possible

subsets (y-axis). The set of possible subsets also evolves with the number of clusters.

mainly assigned to subsets, for example point 160 to ω134.

Figure 4 also depicts the structure evolution, that is the number of clusters at each

instant. The scenario given at the begin of this section is recovered: at t = 76 data

from group G3 arrives but they are not enough to allow the creation of clusters while

a cluster is created at t = 93 and t = 110 for group G4 and G3 respectively. “Noise”

and atypical points arriving from t = 181 and t = 211 do not affect the structure. This

figure does not illustrate clusters’ removing because this operation is made within the

algorithm.

0 31 46 61 76 106121 211

2
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4

5

 

 

EGK

E2GK

Figure 4: Structure evolution: the number of clusters at each instant varies as data arrive.

Figure 5 describes the dataset partitioning after decision making by applying the

pignistic transformation (11) on the final credal partition matrix. Data tips provide

the center coordinates, which are close to the real parameters (Tab 3). In comparison,

we also provide in Figure 6 the centers obtained by EGK algorithm with parameters

Ptol = 20, uh=1/c and θ = 0.1 (the same as in E2GK). EGK generates on this dataset

too many (five) centers which are also misplaced.
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Figure 5: Decision on clusters for each point based on the pignistic probabilities obtained from the credal

partition (Fig. 2) using E2GK algorithm. Also are displayed the coordinates of the centers found by E2GK.
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Figure 6: Decision on clusters for each point based on the maximum of degree of membership from the

fuzzy partition using GK algorithm. Also are displayed the coordinates of the centers found by EGK. The

parameter uh was set to 1/c and the other parameters are the same as in E2GK (θ = 0.1 and Ptol = 20).

5. Limiting the Complexity

As mentioned in section 3, one has to consider complexity issues due to the com-

putation of the credal partition. Indeed, for each data point in the partition matrix, the

belief mass potentially has 2|Ω| elements. Storing a belief mass for all data points may

require a lot of memory resources (and becomes intractable for |Ω| ≥ 12). In [15, 14],

the authors proposed to reduce the complexity of the method by considering only a

subclass of BBA’s with a limited number of focal sets. They proposed for instance, to

limit the focal sets to be either Ω, or to be composed of at most two classes. Follow-
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ing a similar idea, we propose to use the concept of k-additive belief function in order

to decrease memory consumption. We also propose solutions to improve speed and

memory consumption.

5.1. k-additive partition matrix

In the context of discrete fuzzy measures (also called non-additive measures or

capacities), M. Grabisch proposed the concept of k-additive fuzzy measure in order

to face with complexity issues [37]. Considering the fact that a belief function is a

particular fuzzy measure for which the Möbius Transform is non-negative, we give the

following definitions:

Definition 1. A belief function on Ω is a function Bel : 2Ω → [0,1] generated by a BBA

m as follows:

Bel(A) = ∑
B⊆A

m(B) ∀A ⊆ Ω , (29)

Note that m is actually the Möbius transform of Bel. We will refer to the BBA inducing

a k-additive Bel as a k-additive belief mass (or BBA).

Definition 2. The belief mass is said to be k-additive if the cardinality of focal sets is

less or equal to k, i.e. m(A) = 0 if |A|> k and thus it exists at least one element A ⊂ Ω

containing k elements with m(A)> 0.

The k-additive belief mass is thus here an approximation of a belief mass and pa-

rameter k sets the complexity. In section 7, we give an illustration of the influence of

parameter k.

5.2. Improving speed and memory consumption

This approximation facilitates decision-making concerning the belonging to a clus-

ter of each data point. Indeed, if one uses the pignistic probability distribution (10)

or the plausibility transform (11) on singletons, then the number of computations is

reduced since the belief mass has less elements.

For each data point, one needs to compute the belief mass of each element A (one

by one) with cardinality greater or equal to k and for each one of them has to:

• For the pignistic probability: transfer the mass
m(A)
|A| on m(ωi) if ωi ∈ A;

• For the plausibility transform: transfer the mass m(A) on m(ωi) if ωi ∩A 6= /0.

Once all subsets have been treated for the current point, one can decide which cluster it

belongs to. Therefore, it is not required to store the partition matrix, which drastically

reduces time and memory consumption.
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5.3. Re-interpreting the partition matrix

In some applications, the partition matrix has to be stored for further analysis of the

data structure. In this case, the end-user can set the value of k:

• For k = 1, only masses on singletons are computed. In this case, one obtains a

probabilistic partition matrix (after normalisation).

• For k = |Ω|, masses on all subsets are computed. In this general case, one obtains

an evidential partition matrix as in ECM [15].

• For k ∈]1, |Ω|[, one can compute the plausibility of each cluster to obtain a possi-

bilistic partition matrix. An other option consists in computing masses on subsets

with cardinality less or equal to k to obtain a k-additive partition matrix.

Considering the example presented in section 4, E2GK was applied on the same

dataset, with the same parameters. Figures 8, 9, 10 and 11 shows the influence of

parameter k on the final results of the algorithm. The decision on clusters is obtained

by applying the pignistic transformation on each final k-additive credal matrix. For

each value of k, data tips show the coordinates of the centers discovered by E2GK. One

can see that the number of clusters increases when k is small. For example, for k = 1

i.e., only singletons are considered for the computation of the credal partition, E2GK

finds 6 clusters. This can be justified by the fact that, in this case, the credal partition

is actually a probabilistic partition. Doubt between clusters has not been taken into

account leading to the creation of clusters within data of type “noise”. When k = 2,

five clusters are found by E2GK. Here, only doubt between two clusters is considered.

Finally, a value of k = 3 leads to a partitioning of the dataset into 4 clusters, as in the

general case (k = Ω). However one can notice a slight difference for the center values,

closer to real values for the general case. The Mahalanobis distance enables E2GK

to adapt the clusters to their real shape. The shape of the clusters found by E2GK is

illustrated in Fig. 7. This figure shows that the clusters shape correspond to the ground

truth. Indeed, the clusters whose variance is small (left) are clearly identified despite

the presence of clusters with much higher variance (right). Another important result is

the form of the cluster of noisy data (center) that appears spherical reflecting the fact

that the noisy points are almost evenly distributed throughout the baseline.

6. Performance and Parameter Sensitivity

Cluster validity methods aim at giving the experts some quantitative tools to eval-

uate the quality of the resulting partitioning. There exist numerous methods in the

literature to discuss issues in cluster analysis [38, 39]. A fundamental issue faced in

clustering is to decide the optimal number of clusters that best fits the data set. An

improper choice of the clustering algorithm parameters leads to a resulting partitioning

that is not optimal for the specific data set. It is very common that visualization of the

clustering results on a 2D data set experiments is used to verify how meaningful the

provided partitioning is. However, this verification can be a very difficult task in the

case of large multidimensional data sets. Research efforts have been made to address

the problem of the evaluation of the clustering results, and the reader can refer to a
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Figure 7: Shape of clusters found for k = 2
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Figure 8: Final decision on clusters when k = 1.

review of these methods in [40, 41]. Among the various validity indices that exist in

the literature, the external validity indices are used to evaluate the results of the clus-

tering algorithm based on a predefined structure on a data set that reflects the intuition

of the user. The resulting clustering structure C = {C1, . . . ,Cm} is thus compared to an
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Figure 9: Final decision on clusters when k = 2.

independent partition P = {P1, . . . ,Pl} of the same data set built according to the user’s

intuition. Examples of these indices are the Rand index [42], the Folkes and Mallows

index, Hubert’s Γ statistic, etc. [40].

In the present paper, we consider the Jaccard coefficient [43] defined as follows:

J =
a

a+b+ c
(30)

where:

• a: the number of pairs of points for which both points belong to the same cluster

of the clustering structure C and to the same group of partition P.

• b: the number of pairs of points for which the points belong to the same cluster

of C and to different groups of P.

• c: the number of pairs of points for which the points belong to the same cluster

of P and to different groups of C.

The Jaccard coefficient has been commonly applied to assess the similarity between

different partitions of the same dataset, the level of agreement between a set of class
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Figure 10: Final decision on clusters when k = 3.

labels P and a clustering result C is determined by the number of pairs of points as-

signed to the same cluster in both partitions. It produces a result in the range [0,1],
where a value of 1 means that C and P are identical. The higher the value of J is, the

more similar C and P are.

To show the performance of E2GK, we consider the example of section 4. We

recall that the dataset is composed of four groups of data points generated by bivariate

Gaussian distributions, in addition with a fifth group representing noisy data, whose

parameters are given in Tab. 3. To compute the Jaccard coefficient J, the four groups

of data points represent the partition P to be compared with the results of the clustering

algorithm (ground truth). For the sake of comparison, J is calculated for both EGK and

E2GK algorithms, with parameters uh = 0.5, Ptol = 20 and θ = 0.1 for EGK, and Ptol =
20, θ = 0.1, δ = 10, α = 1 and β = 2 for E2GK. With these settings, JEGK = 0.62612

and JE2GK = 1.00000. Thus, E2GK outperforms EGK as JE2GK = 1 means that the

partition discovered by E2GK perfectly matches the partition P considered as ground

truth. This conclusion fits with the analysis of the results in section 4 illustrated in

Fig.5 and Fig.6. It was shown that the centers of the clusters discovered by E2GK are

very close to the real values, whereas EGK generates too many clusters with misplaced

centers.

In the following, a study of the sensitivity of E2GK to parameters Ptol and θ is
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Figure 11: Final decision on clusters when k = |Ω|.

provided on the same data set.

6.1. Influence of parameter Ptol

A parameter of particular interest is the Ptol, defined as the desired minimum amount

of data points within a cluster [27]. The choice of this parameter is very dependent of

the considered set of data. In EGK, the decision whether to create a new cluster or

not is based on the value of Ptol. A major difference introduced in E2GK compared

to the original method is that the evolution of the data structure after the creation of

a new cluster is taken into account, and clusters that may have been valid before the

creation of this new cluster could evolve to smaller clusters containing less than Ptol

points. E2GK performs an additional step to remove these clusters making it possible

not only to increase, but also to decrease the number of clusters.

To illustrate the influence of Ptol on the performance of E2GK, we conducted ex-

periments on the same data set for different values of Ptol, the remaining parameters

were kept unchanged. The Jaccard coefficient was calculated for each value of Ptol for

both E2GK (θ = 0.1, δ = 10, α = 1, β = 2) and EGK (uh = 0.5, θ = 0.1) algorithms.

Considering Ptol taking the values 8, 9, 10, 12, 13, 15, 18, 20, 23, 25, 26, 27, 28, 30,

33, 35, 38, 40, 42, 44, 46, 48, 50, the comparative results are given in Fig. 12.
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Figure 12: Evolution of the Jaccard Coeffitient with Ptol (uh = 0.5, and θ = 0.1)

For any value of Ptol, E2GK remains more efficient than EGK. One can notice that

the variation of Ptol affects both algorithms in a similar way. As expected, too small

or too high values of Ptol lead to a less meaningful partition of the data set and thus

to a smaller J. Starting from Ptol = 13, and for both E2GK and EGK, the value of

J remains constant at its maximum value. One notable difference is that this stable

phase, of optimal value of J, is higher and larger in the case of E2GK. At Ptol = 27,

JEGK suddenly decreases, whereas a similar abrupt fall in the value of JE2GK occurs

at Ptol = 38. This can be explained by looking at the partition of data considered as

ground truth. The considered partition is composed of 30 points each of type G1, G2,

G3 and G4 to which 90 points of type noise were added to test the updating procedure.

The influence of Ptol in the case of E2GK is reduced due to the fact that doubt between

clusters has been taken into account in the computation of the credal partition, doubt

mainly being added by the noisy data.

In section 5, we provided some solutions to reduce the complexity of E2GK through

the concept of k-additive belief mass. Figures 13 and 14 shows the comparative results

for k = 2 and k = 3. Basically the same conclusion as for the general case (k = |Ω|)
can be made. It is also to mention that the optimal value JE2GK is reached at Ptol = 15

for k = 2 and k = 3. This reflects that E2GK is more sensitive to small values of Ptol,

but also that the restriction to case of a 2 or 3-additive belief mass still permits a better

stability to noisy data.
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Figure 13: Evolution of the Jaccard Coeffitient with Ptol when k = 2 (uh = 0.5, and θ = 0.1).

6.2. Influence of parameter θ

Parameter θ is the learning rate of the updating procedure as mentioned in section

3.2. in Eq. 23 ans Eq. 25. It takes its values in [0.05,0.3] and determines the step of

searching in the updating rule. Large values of θ guarantee sparsely selected clusters.

The choice of parameter θ remains difficult as in some cases, a large step leads to large

changes that could ignore valuable clusters [27].

Considering the same example as before, we provide comparative results of EGK

and E2GK when parameter θ varies. For this test, Ptol was chosen equal to 20 as it

was previously shown to lead to optimal values of JEGK and JE2GK (Fig. 12). Values

of θ range between 0.05 and 0.3 with a step of 0.05. The results are depicted in Fig.

15 and underline the fact that the performance JE2GK remains optimal for any value of

θ whereas JEGK varies between 0.48 and 0.76 until θ = 0.28. At θ = 0.12, JEGK = 1

meaning that The resulting partition of EGK perfectly matches the considered partition

P. Additional experiments by looking at the Jaccard coeffients values when both θ and

Ptol vary show the same trend, i.e. while EGK is very influenced by the variations of θ ,

E2GK show few changes due to θ . This might indicate that parameter Ptol is a crucial

parameter that deserves to be paid a particular attention.
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Figure 14: Evolution of the Jaccard Coeffitient with Ptol when k = 3 (uh = 0.5, and θ = 0.1).

6.3. Convergence issues

The fact that the complete dataset is not available makes difficult the proof of opti-

mality of the centers and covariances estimates in online methods. In EGK, updating

is based on static GK equations, and a kind of convergence can generally be observed

in an experimental way with appropriate θ . The learning rate θ determines the step of

searching and is generally made small to avoid large changes that could miss a valuable

center. In E2GK, we use a similar principle by assuming it inherits these convergence

properties. In experiments, this scheme demonstrated a greater robustness than EGK

with respect to θ and Ptol.

7. Application of E2GK

7.1. A benchmark 1-D problem

Let consider the Mackey-Glass chaotic time series defined as follows:

x(t) =
0.2 · x(t − τ)

1+ x10(t − τ)
−0.1 · x(t) , (31)

with τ = 17 and x0 = 1.2. A total of 270 samples were generated. E2GK parameters

were set to δ = 10, α = 1, β = 2, θ = 0.01 and Ptol = 10.

25



0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

θ

J

Ptol = 20, k = |Ω|

 

 

EGK
E2GK

Figure 15: Evolution of the Jaccard Coeffitient with θ (Ptol = 20, uh = 0.5)

The obtained series is depicted in Figure 16 as well as the resulting segmentation

by E2GK (using [t x(t)] as inputs). Figure 17 shows the number of clusters evolving

along time. The online segmentation provides 10 segments well located on the curve.

Figure 16: The Mackey-Glass time series and its online segmentation. Prototypes appear in red stars.
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Figure 17: Number of clusters along time for the first application (Mackey-Glass).

7.2. Square data

As a second application, we propose to test the ability of E2GK on a particular

dataset that we call square data. The dataset is composed of 10 blocks, each composed

of 50 data points as depicted in figure. We first generate 10 centers c̃i, i = 1 . . .10

uniformly distributed in [−8,8], around which 50 data points are uniformly drawn in

[c̃i −0.5, c̃i +0.5].
E2GK algorithm is randomly initialized using 2 centers and 30 data points. Param-

eters were set to: δ = 100, α = 1, β = 2, θ = 0.01 and Ptol = 40.

The remaining data points are gradually (one by one) given to E2GK and the re-

sulting clusters are shown in Fig. 18. One can see that E2GK perfectly recognizes the

square blocks whereas EGK fails to properly locate the centers (Fig. 19).

Figure 18: Square data : Decision on clusters for each point based on the pignistic probabilities obtained

from the credal partition using E2GK algorithm. Also are displayed the coordinates of the centers found by

E2GK.

7.3. A multidimensional real problem on PRONOSTIA platform

To illustrate our results, a dataset provided by an experimental platform called

PRONOSTIA is used. This platform is dedicated to bearing prognosis. PRONOS-
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Figure 19: Square data : Decision on clusters for each point based on the maximum of degree of membership

from the fuzzy partition using GK algorithm. Also are displayed the coordinates of the centers found by

EGK. uh = 0.7 and the other parameters are the same as in E2GK (θ = 0.01 and Ptol = 40).

TIA is developed within the Department of Automatic Control and Micro-Mechatronic

Systems (AS2M) of FEMTO-ST institute3 for the test and validation of bearing prog-

nostics approaches. The originality of this experimental platform lies in the characteri-

zation of both the bearing functioning and its degradation and also in the possibility to

make the operating conditions of the bearing vary during its useful life.

Pronostia (Fig. 20) is an experimentation platform dedicated to the tests and vali-

dation of the machinery prognosis approaches, focusing on bearing prognostics. The

main objective of Pronostia is to provide real experimental data that characterize the

degradation of a ball bearing along its whole operational life (until fault/failure). Vibra-

tion and temperature measurements of the rolling bearing during its functioning mode

are collected by sensors.

As prognosis algorithms need statistical data, it is necessary to conduct an experi-

ment in just a few hours, and so collect a large amount of data in a few weeks. To do

so, we developed a device that is able to maintain the bearing under study into hard

operating conditions.

A data acquisition system was developed to ensures the visualization of the signals

provided by the different sensors and sampled in a specific manner. Thus, all data can

be monitored in real time on scrolling graphs. The raw signals provided by the sen-

sors are processed in order to extract relevant information concerning bearings states.

Several techniques have been implemented and gathered in a signal processing tool-

box with Matlab: time-domain methods (RMS, skewness and kurtosis, crest factor,

K-factor, Peak-to-Peak), frequency-domain methods (spectral and cepstrum analysis,

envelope detection), time-frequency domain (short-time fourier transform) and discrete

3FEMTO-ST stands for “Franche-Comté Electronics, Mechanics, Thermal Processing, Optics - Sci-

ence and Technology”. The platform was developed in AS2M department (Automatic control and Micro-

Mechatronic Systems).
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Tested bearings

Figure 20: PRONOSTIA platform.

wavelets.

Figure 21 illustrates the power spectral density of the vertical acceleration sensor

computed during the last half of the test period. It shows a growing amplitude at the

end of the experiment when the bearing is gradually degrading. Various other data

processings are possible to provide the necessary tools for bearing prognostics.

We consider here the power spectral density made of 512 points at each time slice.

This huge dataset is then post-processed by a principal components analysis in order to

automatically select the 6 most representative frequencies. These 6 features are used

as inputs of E2GK (with 250 points).

We here applied E2GK in order to automatically find a partitioning (online) of the

data streams. E2GK algorithm is initialized randomly using 2 centers and 20 data.

Parameters were set to: δ = 20, α = 1, β = 2, θ = 0.01 and Ptol = 15.

The first 20 data correspond roughly to the first 0.5 hour of the experiment where

the bearing does not present any default. Then, data arrive sequentially and make the

clustering structure possible to evolve. E2GK adapted its structure until obtaining 7

clusters as pictorially described in Fig. 22. First of all, a third cluster is obtained into

the cloud around the initialization points. This shows that the bearing only degrades

from about the third hour. Then 4 clusters are gradually added according to the degra-

dation. Cluster ω4 represents a transition between the normal modes (ω1, ω2 and ω3)

towards the degrading modes (ω5 and ω6). Finally the fault mode is detected with ω7.

Figure 23 shows the assignments, i.e. cluster chosen for each data point (according to

the maximum of belief mass).

The application of E2GK on PRONOSTIA’s data presents a realistic experimental

case study of a common practical problem, that is online fault detection of bearing

degradation. The application demonstrates that the health state of the bearing can be

represented by evolving clustering and associating the clusters with the main states.

The association between the clusters provided by E2GK and the health states is of a

crucial importance in the context of novelty detection and prognostics applications. It

is rationale to model the operating modes of a bearing as a set clusters [44, 45], and the

lack of well defined boundaries between operating modes and the gradual transitions
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Figure 21: Power spectral density of the vertical acceleration sensor.

Figure 22: Online segmentation into clusters for PRONOSTIA’s data. Centers are depicted with red crosses

and arrows represents the order of arrival of the data.

between them makes E2GK of particular interest. Indeed, as shown in section 3, the

concept of credal partition enables the explicit representation of doubt between clusters.

Given this segmentation of PRONOSTIA’s data streams into meaningful clusters and

based on the evolution of these clusters, one can be interested in predicting a potential

occurrence of a degradation. In [44], the authors discussed a similar topic using a

fuzzy clustering method and a different decision making approach. Using E2GK, we

are currently developing a prognostics approach exclusively based on belief functions

to be compared with Angelov’s work on fuzzy evolving systems [20, 21].
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Figure 23: Number of clusters along time for the second application.

8. Conclusion

To our knowledge, only one incremental approach to clustering using belief func-

tions has been proposed [28]. In this approach the data in the training set are considered

uncertain. Moreover, each data is described by a given number of attributes, each la-

beled by a mass of belief provided by an expert. Also, this approach assumes that the

number of clusters is known in advance.

E2GK algorithm is an evolving clustering algorithm using belief function theory,

which relies on the credal partition concept. This type of partition permits a finer repre-

sentation of datasets by emphasizing doubt between clusters as well as outliers. Doubt

is important for data streams analysis from real systems because it offers a suitable

representation of gradual changes in the stream. E2GK relies on some parts of EGK

algorithm [27], initially based on a fuzzy partition, to which we bring some modifica-

tions:

• use the median operator to calculate cluster radius, which is more robust than the

maximum rule,

• use of credal partitioning for a better representation of the data structure and an

improved robustness to cluster evolution,

• change the structure of partitioning by adding or removing clusters (vs. adding

only in EGK).

Solutions have been proposed to limit complexity issues, based on the concept

of k-additive belief functions. The study of the influence of parameter k shows the

importance of doubt representation in the clustering process to limit the number of

clusters in the final partition matrix. Simulation results show that E2GK discovers

relatively well the changes in the data structure. An analysis of parameters sensitivity

(Ptol and θ ) has also been carried out and demonstrated that E2GK is more robust than

EGK.
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