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The Netherlands
bFOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

Abstract

We develop a model to describe the effect of cell wall ageing on the local
expansion rate of tip growing cells. Starting from an exact equation for
the stationary age-distribution of the wall material, we propose a generic
measure for the local expansion propensity of the wall if the ageing pro-
cess is described by a constant rate Poissonian decay process. This ageing
process may be either interpreted as biochemical in nature describing the
finite lifetime of regulatory proteins, or as mechanical in nature describing
the gradual “hardening” of the wall through cross-linking or gelation of the
wall polymers. In this way we can construct models for tip-growth in which
material deposition, evolving wall properties and surface expansion are self-
consistently intertwined. As a proof of principle, we implement our ageing
approach in two different idealized models of tip-growth, obtaining the sta-
tionary tip shapes as a function of the ageing parameter. In the first, the
spatial distribution of delivery of growth material is determined by the local
curvature of the cell and the growth mode is orthogonal. In the second, the
growth material originates from a Vesicle Supply Center, a point-like repre-
sentation of the Spitzenkörper as found in fungal hyphae, and the growth
mode is isometric.

Keywords: tip growth; modelling; self-regulation; morphogenesis

1. Introduction

Tip growth, the localized extension of walled cells at just one of their ends
leading to a filamentous cell morphology, occurs in algae, fungi and higher
plants (for an overview see Geitmann et al., 2001). This unique growth mor-
phology is exploited by various organisms e.g. in reproduction (pollen tubes
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in plants, fungal hyphae) and for surface-area enhancement and mechanical
anchoring (root hairs in plants). At first sight, tip growth seems to be a be-
guilingly simple example of biological morphogenesis: In general both growth
velocity and tip shape remain approximately constant over time and in the
absence of additional spatial cues the cell shape has cylindrical symmetry.
In reality, it is quite a complex dynamical process which, first of all, involves
the intracellular production of vesicles containing wall-building materials, the
transport and localized delivery of these vesicles to the site of growth, where
they subsequently undergo exocytosis, simultaneously adding phospholipids
to the plasma membrane and depositing their contents to the nascent cell
wall.

Reinhardt (1892), in one of the first papers that attempted to model
tip growth, already concluded that the material properties of the cell wall
over the apical region could not be homogeneous. He argued that the newly
delivered material right at the tip should be easily deformable to allow for
extensional growth, while the material farther from the tip should effectively
rigidify to resist further expansion in the radial direction. Indeed, over the
past few years a number of papers have appeared that recognize that a proper
mechanical description of growth must involve the notion of a gradient in ma-
terial properties over the apical region (Goriely and Tabor, 2003a,b; Dumais
et al., 2006; Fayant et al., 2010). In these approaches, however, this gradient
is at the outset chosen to have a fixed, usually phenomenologically moti-
vated, functional form. Almost two decades ago, Koch (1982), however, was
the first to suggest that tip growth is possibly homeostatically controlled by
a feedback mechanism whereby the local material state of the wall controls
the local rate of incorporation of new material. Although his so-called “soft
spot” hypothesis (see also Koch (1994)) rests on, with hindsight, physically
and biologically shaky foundations, the idea by itself that there is feedback
on the growth process due to some form of intrinsic dynamics of the wall
material is plausible. In fact, the gradient of mechanical properties over the
apical region must be the result of the interplay between the intrinsic wall
dynamics and the growth process.

As far as we are aware, however, to date no attempt was made to self-
consistently include the intrinsic dynamics of the cell wall into the description
of tip-growth. Here we formulate a generic model to account for the feedback
of an ageing process of the wall material, whatever its precise microscopic ori-
gin, on the local expansion rate of tip-growing cells, showing that it leads to
an additional level of self-organisation of the tip-growth process. We start by
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formulating an explicit model for the space-time evolution of the age distribu-
tion of the wall material during the growth process, and derive the equation
that determines its form in steady state. We assume that the ageing pro-
cess is well described by constant rate Poissonian decay process, describing
either the finite life-time of co-deposited regulatory factors, or the on-going
physico/chemical cross-linking of the wall polymers. On this basis we derive
a phenomenological quantity that locally describes the “propensity” of the
nascent wall to expand, given the availability of new growth material. We
then show that this approach leads to analytically or numerically tractable
models of tip growth that allow the systematic exploration of the influence
of wall ageing on tip morphologies.

The outline of the paper is as follows: In Section 2 we introduce the
geometrical setting of our tip growth model. In Section 3 we discuss the
two main regulatory factors that determine the growth process, the so-called
expansion propensity, which determines the rate at which locally available
growth material contributes to growth, and the supply factor which describes
the spatial dependence of the available material. In Section 4 we then present
the application of our framework to two specific examples of simple models
of tip growth, a purely geometrical model and a classical model for fungal
hyphae. After the discussion in Section 5, a number of appendices collect
some of the more technical details.

2. Geometrical setting

2.1. Surface shape

We assume that the tip-growing cell is in a stationary state. In this
state growth proceeds at a constant velocity v, and while individual material
points on the cell surface are undergoing a continuous dynamics, the shape of
the cell as a whole is unchanged, apart from an overall translation in space
in the direction of growth. Assuming the stationary shape is cylindrically
symmetric, we can parametrize it through

r(s, ϕ) = (ρ(s) cosϕ, ρ(s) sinϕ, z (s)) , (1)

where s is the arclength from the apex along a meridional section of the cell,
ϕ is an azimuthal angle around the symmetry-axis, ρ the radial distance from
the symmetry-axis to the surface, and z a coordinate along the symmetry
axis. The unit vector normal to the surface is given by

n̂(s, ϕ) = (−z′(s) cosϕ,−z′(s) sinϕ, ρ′(s)). (2)
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where the prime throughout denotes differentiation with respect to s. If we
define ψ as the angle between the surface normal and the positive z-axis we
have

cosψ = ρ′(s), (3)

sinψ = −z′(s). (4)

The position of the apex is given by

ρ(0) = 0,

z(0) = z0,

where z0 can be freely chosen to fix the origin of the reference frame along
the axis of symmetry. This geometrical setting is illustrated in Figure 1.

x

y

s

z

Ã

n̂

Figure 1: Coordinate system for describing stationary tip growth.

We further assume that the tip is smooth at the apex and consequently,

ρ′(0) = 1,

z′(0) = 0,
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and that as the distance to the apex becomes large, the shape tends to a
cylinder with a constant radius

lim
s→∞

ρ(s) = R,

lim
s→∞

ρ′(s) = 0.

The infinitesimal element of surface area of the cell is simply given by

dA (s, ϕ) = ρ (s) dsdϕ. (5)

Finally, an important quantity characterizing the local properties of the sur-
face is the mean curvature, which, in terms of our parametrization, is given
by

H(s) =
1

2

(√
1− ρ′(s)2

ρ(s)
− ρ′′(s)√

1− ρ′(s)2

)
. (6)

We refer the reader to Appendix A for the relevant details.

2.2. Surface expansion

The growth process causes the surface to expand, but because of the
anisometric tip shape this expansion rate is not constant over the surface.
We define the local expansion rate Φ (s) as the increase of surface area per
unit of existing area at a point a distance s away from the apex. In order for
a stationary state to exist, where the apex moves with the constant growth
velocity v, the local expansion rate must vanish as s→∞.

For a co-moving observer the surface expansion reveals itself as a motion
of material points within the surface in the direction pointing away from the
apex. This flow speed of the material points again depends on the distance
from the tip and is denoted by v (s). Clearly, lims→∞ v(s) = v. In Appendix
B we derive the following relationship between the local expansion rate and
the flow speed:

ρ(s)Φ (s) =
dρ(s)v(s)

ds
= ρ′(s)v(s) + ρ(s)v′(s) (7)

To obtain the rate at which the surface area of an “apical cap”, i.e. a
part of the surface bounded by a longitudinal circle and containing the apex,
increases, we integrate (7) over the appropriate area yielding

Ȧ(s) =

∫ s

0

ρ(s)ds

∫ 2π

0

dφΦ(s) = 2π

∫ s

0

ds
d(ρ(s)v(s))

ds
= 2πρ(s)v(s). (8)

5



Letting s →∞ we find the expected result that total surface area increases
as Ȧtot = 2πRv, where R = ρ(∞) is the final cell radius. This latter result
illustrates how the stationary tip growing cell can keep its shape constant by
effectively adding a cylindrical segment of area infinitely far away from the
apex.

2.3. Growth mode

A three dimensional surface growth process is not fully specified by the
local areal expansion rate Φ (s) alone. Generically, an initially circular in-
finitesimal element of surface area at time t will expand under the growth
process into a shape that an infinitesimal time dt later is well approximated
by an ellipse. Only the surface area of this ellipse ∝ a× b, where a and b are
the length of the minor and major axes respectively, is fixed by the local areal
expansion rate. The aspect ratio of the ellipse, i.e. the ratio b/a of the lengths
of the axes, still needs to be determined. This quantity follows from the com-
ponents of the rate of strain tensor (B.9) as derived in Appendix B. The
orientation of the ellipse, however, is fixed by our assumption of cylindrical
symmetry, which constrains the axes of the ellipse to lie along the meridional
and azimuthal directions respectively. To give a realistic account of the full
growth dynamics clearly requires considering the mechanical properties of
the cell wall, which currently is an active area of research (see e.g. Goriely
and Tabor (2003a); Dumais et al. (2006); Campàs and Mahadevan (2009);
Fayant et al. (2010)). However, this is beyond the scope of the current work,
which focusses on the generic aspects of wall ageing on the overall expansion
rate. In the illustrative examples presented in Section 4 we therefore limit
ourselves to two geometrical models of growth that have been discussed in
previous modelling efforts (Gierz and Bartnicki-Garćıa, 2001). Both growth
modes, either implicitly or explicitly, fix the ratio of the diagonal elements
of the rate of strain tensor. For the relevant derivations we refer the reader
to Appendix C.

The first growth mode we consider requires the motion of material points
to be always perpendicular to the surface, yielding so-called orthogonal growth.
This growth mode has in the past been suggested to be in accord with ex-
perimental observations (Bartnicki-Garćıa et al., 2000) and is at the same
time simply stated geometrically. In orthogonal growth both the flow speed
of material points

v (s) = −vz′ (s) (9)
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and the local expansion rate

Φ(s) = 2vρ′(s)H (s) (10)

are fully fixed by the geometry of the surface alone.
In the second growth mode we consider, the local element of surface area

expands isotropically during growth, yielding so-called isometric growth. Al-
though experiments have shown that in most cases filamentous growth dis-
plays clear strain anisotropies (Castle (1958); Chen (1973); Kataoka (1982);
Dumais et al. (2004)), this growth mode has the advantage of greatly sim-
plifying both the derivation of the shape equations as well as their numerical
analysis. In isometric growth the flow speed is given by

v (s) =
v

R
ρ(s), (11)

and the local expansion rate

Φ(s) = 2
v

R
ρ′ (s) . (12)

3. Regulation of expansion

We assume that the local rate of areal expansion the cell of is regulated
by two distinct factors. The first is obviously the availability of new wall-
building material which is delivered by intracellular mechanisms to specific
location. We model this by a position dependent rate of delivery of material
g (s) we call the supply factor. The second factor represents the regulatory
influence of the material state of the cell wall on the degree to which the
available wall material is actually used to contribute to expansion. In the
simplest possible realization of this notion we model these effects through
a multiplicative factor f(s), which we term the expansion propensity. With
these assumptions we write

Φ(s) ∝ f (s) g (s) . (13)

Below we address both the modelling of these two factors separately, but not
before first considering the age distribution of the wall material.
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3.1. Age distribution of wall material

Our basic assumption on the expansion propensity is that it depends only
on the local properties of the existing wall material. These properties will in
principle change over time, as the growth process is constantly altering the
cell wall composition, due to the absorption of new wall building material
and its subsequent ageing. In order to describe these ageing effects in the cell
wall, we must give a description of the time elapsed since the incorporation
of a certain portion of wall material. Therefore, each position on the cell
surface is characterized by an age distribution defined as follows: Ψ(τ, s)dτ
is the fraction of wall material at position s that has spent a time between τ
and τ + dτ as a part of the wall. This distribution is normalized, such that∫

∞

0

Ψ(τ, s)dτ = 1. (14)

Given that we have a stationary growth process, the age distribution itself is
time independent. This means that it is invariant under a set of transforma-
tions representing the growth dynamics. We can distinguish four processes
due to the growth dynamics in the cell wall that affect the age distribution.
First of all there is the intrinsic ageing process itself: with the passage of time
physical and chemical processes cause changes in the material state of the
wall. Then there are two kinematic effects due to the growth process: flow,
the motion of material points away from the apex as the surface expands,
and dilution, the same material is spread out over a larger area due to the
expansion. Finally, there is rejuvenation, as new material is incorporated.
These four processes are illustrated in Figure 2.

We now consider a cohort of material points in small area ΔA(t) centered
on a point at distance s from the apex, with ages between τ and τ + Δτ .
Under the action of the growth process during an infinitesimal time dt this
cohort will now occupy a slighter larger area ΔA(t+dt) = (1+Φ(s)dt)ΔA(t)+
O(dt2), effectively ‘diluting’ the (surface) concentration. The area occupied
by the cohort is now centered on s+ v(s)dt+O(dt2) due to the flow, and the
ages of the cohort now range from τ + dt to τ + dt +Δτ due to the ageing
process. In the steady state the local age distribution does not change over
time and hence we require that to first order in dt

Ψ(τ + dt, s+ v(s)dt)ΔA(t + dt)Δτ = Ψ(τ, s)ΔA(t)Δτ (15)

Expanding the left hand side to first order in dt, subtracting the right hand
side, and canceling all common factors, then yields a first order PDE for the
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rejuvenation

flow

dilution

ageing

ageing

Figure 2: Illustration of the four dynamic effects of cell wall growth: ageing, here conceived
as increasing cross-linking between the wall polymers, flow, dilution and rejuvenation .

age distribution

∂Ψ(τ, s)

∂τ
+ v(s)

∂Ψ(τ, s)

∂s
+ Φ(s)Ψ(τ, s) = 0 (16)

which is analogous to the well-known McKendrick- von Foerster equation
describing the dynamics of age-structured populations in theoretical ecology
(Kot, 2001, see e.g.), here, however, with a position dependent spatial drift
term and a dilution effect, due to the surface expansion.

Finally, the continuous influx of new material rejuvenates the age distri-
bution. We assume that the amount of matter added per unit area per unit
time is proportional to the increase in area. Then, the fractional increase in
area in an infinitesimal time interval ∝ Φ(s)dt must be equal to fraction of
material ∝ Ψ(0, s)dt younger than dt, and hence we are led to the boundary
condition

Ψ(0, s) = Φ(s). (17)

In principle, for given functions v(s) and Φ(s), this linear first order PDE
can be solved by the using the method of characteristics. The line of initial
value points {(0, s)|s ∈ [0,∞)} is a sufficient set of boundary points for this
problem, as the tangent vector to the characteristics is given by (1, v(s)),
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where 0 ≤ v(s) ≤ v, and hence never tangent to the initial value curve. In
the following, however, we do not solve this equation directly, but rather an
integral transform of it, whose boundary condition is explicitly derived.

3.2. The expansion propensity

We now need to address how the expansion propensity depends on the age
distribution of the wall material. Here we make the assumption that there is
a single Poissonian process with which the contribution to the propensity to
expand of a given amount of wall material decays with increasing age. With
this definition we set

f(s) =

∫
∞

0

dτ Ψ(τ, s)e−ατ , (18)

where α is the ageing rate. In the limiting case α = 0 (no ageing) the
expansion propensity is normalized to unity, whereas as required it vanishes
for α→∞ (very fast ageing).

A few candidates for such an ageing process have already been discussed
in the literature. One proposed mechanism for the regulation of cell wall de-
position in tip growth (for a recent review see Cárdenas, 2009) is through the
fact that calcium ions are required to lower the energy barrier for vesicle fu-
sion at the plasma membrane. The influx of these ions into the cell is effected
by calcium channels. These channels in turn are deposited into the membrane
through exocytosis. If we now assume that to a first approximation the incor-
poration rate is proportional to the local calcium concentration, itself taken
to be proportional to the ion-channel density, and that the active channels
have an exponentially distributed lifetime, we have a first example of such
a Poissonian ageing process. Another example is the increasing stiffening of
the cell wall due to the ongoing de-esterification of pectins under the action
of co-deposited pectin methylesterases (Fayant et al., 2010). If these enzymes
are present in abundance, and the rate of cleavage per methyl group is con-
stant, one expects an exponential decay of the number of uncleaved methyl
groups per amount of pectin as a function of time after insertion. As the
de-esterified groups can cross-link using calcium ions as linkers causing the
pectins to gel, we can in a very rough approximation posit that the expansion
propensity is proportional to the mean number of surviving methyl groups.
The latter approximation is essentially equivalent to the so-called “soft spot”
hypothesis, originally proposed by Koch (1994). This hypothesis stated that
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the increasing degree of cross-linking of wall polymers with time since de-
position (illustrated in Figure 3) would physically prevent the incorporation
of new wall material. For a constant cross-linking rate one would again find
that the available number of cross-linking sites per unit amount of material
decreases exponentially with age. Although obviously highly simplistic, this
hypothesis does provide a concrete metaphor to illustrate our otherwise fairly
generic ageing mechanism.

Figure 3: Illustration of the concept of cell wall ageing. The highlighted polymer has five
locations where cross-linkers can bind, of which two are occupied.

Combining the definition (18) with the equation for the age distribution
(16), and using (17), we arrive at a one-dimensional initial value problem for
the expansion propensity f(s)

v(s)f ′(s) + (Φ(s) + α)f(s) = Φ(s), (19)

To obtain a boundary condition, we consider the limit s→ 0 of the expression
(7) for the local expansion rate, which shows that for a smooth tip the flow
speed v(0) = 0 vanishes at the apex. Using this in (19) evaluated at s = 0

11



then yields

f(0) =
Φ(0)

Φ(0) + α
. (20)

In order for the uptake propensity to be a proper autonomous regulator
of tip growth, we require that it vanishes as s → ∞. As the expansion rate
also vanishes in this limit, this requires that the two terms on the left hand
side of (19) must balance each other asymptotically, i.e.

v lim
s→∞

f ′(s)

f(s)
= lim

s→∞

Φ(s)

f(s)
− α ≤ 0. (21)

Further on we will make use of an equivalent integral formulation for
the evolution of the expansion propensity. We arrive at this formulation by
rearranging (19), eliminating Φ(s) using (7) and multiplying by ρ(s)

αρ(s)f(s) = (ρ(s)v(s))′ (1− f(s))− ρ(s)v(s)f ′(s) = (ρ(s)v(s) (1− f(s)))′

(22)
Integration then yields

α

∫ s

0

ds′ ρ(s′)f(s′) = ρ(s)v(s)(1− f(s)), (23)

and specially its useful limiting case (cf. (8))∫
∞

0

ds ρ(s)f(s) =
Rv

α
. (24)

3.3. Supply factor

How much wall-building material is delivered to a certain location could
in principle depend on all the details of the intracellular processes involved in
the delivery of vesicles to the plasma membrane. From a formal perspective
within our framework, however, the only constraint on the supply factor
comes from the requirement that the expansion propensity vanishes for s→
∞ (Eq. (21)). Indeed, if, without loss of generality, we choose

Φ(s) =
Φ(0)

f (0) g (0)
f (s) g (s) = (Φ(0) + α) f (s)

g (s)

g (0)
(25)

then, because of the limit (21),

lim
s→∞

g (s)

g (0)
≤ α

Φ(0) + α
= 1− f (0) . (26)
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This constraint rules out the potentially simplest choice g (s) = g (0), i.e. a
constant delivery rate independent of the position, as this is only compatible
with the limit of infinite fast ageing, α → ∞, in which case Eq. (19) yields
f (s) = f (0) = 0.

Arguably, a physically realistic description of the supply factor should
involve the active transport and/or the diffusion of vesicles in the volume
of the cell, with the local rate of exocytosis playing the role of a flux-type
boundary conditions. We ourselves have pursued such an approach in the
context of fungal growth in earlier work (Tindemans et al., 2006). For the
examples in Section 4 we again limit ourselves to two specific and highly
simplified choices for the supply factor, both of wich have been discussed
in the literature. These choices for the supply factor have the advantage of
being much simpler from a computational perspective, yet retain many of
the essential features of tip-focussed vesicle delivery.

The first was already suggested by Goriely et al. (2005), and assumes that
the delivery rate is solely dependent on the local curvature of the surface

g (s) = H (s) (27)

This choice ignores all details of the delivery process, but achieves focussed
delivery by assuming more supply at the more strongly curved areas on the
surface. The second choice, appropriate to the case of tip growing fungi, is the
assumption that the wall material is delivered by vesicles that reach the cell
surface by ballistic transport after their release from a “Spitzenkörper”, here
represented as a point-like Vesicle Supply Center (VSC), as it was introduced
by Gierz and Bartnicki-Garćıa (2001). In this case the supply factor is given
by

g (s) ∝
{
The flux of additional surface material delivered to an
element of cell surface at position s by a point source
located at the origin.

(28)

and achieves focussing by projecting more vesicles per unit area to regions
closer to the VSC, i.e. the apical region, than areas farther away along the
tube. Finally, it should be mentioned that there is strong experimental evi-
dence that in several tip-growing cells the maximum rate of vesicle delivery
is not at the apex, but rather at an annular region just downstream from the
apex (Bove et al., 2008; Zonia and Munnik, 2008). This could in principle
be modelled by a non-monotonic supply factor, with a maximum at an apex
distance smax > 0, but we chose to forego these additional complexities here.
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4. Application to specific examples of growth models

4.1. Curvature-driven delivery

In our first model, where take the supply function g(s) to be proportional
to the mean surface curvature H(s), and we employ the orthogonal growth
mode. One hand, by the definition (25), we then have

Φ(s)

Φ(0)
=
f(s)

f(0)

H(s)

H(0)
. (29)

On the other hand, the orthogonal growth condition (10) implies

Φ(s)

Φ(0)
=
ρ′(s)H(s)

ρ′(0)H(0)
= ρ′(s)

H(s)

H(0)
. (30)

Combining these two identities, then yields a direct relationship between the
shape of the cell and the expansion propensity,

f(s)

f(0)
= ρ′(s). (31)

If we insert this expression into the condition (24), we fix the apical value of
the expansion propensity

f(0) =
2v

αR
. (32)

Combining this result with the boundary condition (20) and the orthogonal
growth prescription we obtain

RH(0) =
κ

κ− 2
, where κ = αR/v. (33)

Note that this uniquely determines the curvature of the tip at the apex as
a function of the ageing rate, the final radius and the growth velocity. Also,
this relation tells us that we here we must require κ > 2 in order to have a
finite tip curvature.

Equation (23) can now be rewritten as a first-order nonlinear ordinary
differential equation for ρ(s)

ρ(s) = R
√
1− ρ′(s)2

(
1− 2

κ
ρ′(s)

)
. (34)
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Parametrizing all shape functions in terms of the angle ψ between the surface
normal and the z-axis, enables us to solve the problem explicitly, yielding

ρ(ψ) = R sinψ

(
1− 2

κ
cosψ

)
, (35)

z(ψ) = z0 −R

[
1− cosψ − 2

κ

(
sin2 ψ + log cosψ

)]
, (36)

s(ψ) = R

[
ψ +

2

κ

(
log

1 + sinψ

cosψ
− 2 sinψ

)]
. (37)

The resulting solutions for several values of κ are shown in Figure 4.

Figure 4: Calculated shapes for the simple geometrical model. Values for the dimensionless
ageing parameter κ are 2.02 (lower left), 4 (middle) and 202 (upper right).

It is interesting to note that the slow growth/fast ageing limit (κ → ∞)
of this solution yields the extremely simple form

ρ∞(ψ) = R sinψ, (38)

z∞(ψ) = z0 − R (1− cosψ) , (39)

s∞(ψ) = Rψ. (40)
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for ψ ≤ π/2, i.e. a hemispherical cap, which can be continued into an arbi-
trarily long cylinder of radius R. Intriguingly, a 2D version of such a solution
was already found in the early simulations by van Batenburg et al. (1986) of
a tip growth model where the orthogonal expansion rate of the surface was
assumed to decrease linearly with the axial distance to the tip. Indeed, here
we find that in terms of this distance Δz = z0−z∞ (ψ) the uptake propensity
is given by

f∞ (Δz) =

{
f∞ (0)

(
1− Δz

R

)
Δz ≤ R

0 Δz > R
, (41)

whilst the curvature H∞ (Δz) = 1/R is constant for Δz ≤ R, implying the
full identity of these models in this limit.

4.2. The VSC model

In the VSC model we position an isotropic, constant-rate source of growth
material at the origin of our coordinate frame. The appropriate supply factor
can then be derived by making the rate of growth material impinging on a
patch of cell surface area proportional to the solid angle subtended by this
patch as seen from the VSC. This yields

g(s) ∝ r(s) · n̂(s)
|r(s)|3 =

z(s)ρ′(s)− z′(s)ρ(s)

(ρ2(s) + z2(s))
3

2

. (42)

For this application we choose the isometric growth mode, which through
Eq. (12) also expresses the local expansion rate in terms of the geometry.
Using the normalization Eq. (25) also allows us to express the expansion
propensity in terms of the surface geometry

f(s) =
Φ(s)

(Φ(0) + α)

g(0)

g(s)
=

1

z2(0)

2

(2 + κ)

ρ′(s) (ρ2(s) + z2(s))
3

2

(z(s)ρ′(s)− z′(s)ρ(s))
. (43)

Inserting these expressions into the steady-state equation for the expansion
propensity then yields a single closed form second order differential equation
involving ρ(s), z(s) and their derivatives. Using the parametrization Eq. (3),
the dependency between ρ(s) and z(s) can be resolved, finally yielding a set
of two coupled first order equations, which we show in full in (D.6) and (D.7).
Note that these equations contain the as yet undetermined quantity z(0), i.e.
the distance between the VSC and the apex of the cell. This quantity can
be determined self-consistently from the solutions to the equations, when the
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ultimate cell radius R is considered as fixed. In practice this is done using a
standard “shooting approach”, which is described in Appendix D. In Figure
5 we show the computed tip shapes for a number of different ageing rates.
These results show that, while the shape itself only becomes slightly more
“blunt” at higher ageing rates, the tip–VSC distance does increase markedly
on the ageing rate.

3 2 1 1

1.0

0.5

0.5

1.0

- - -

-

-

Figure 5: The shape of the tip in the VSC-model for different values of the ageing param-
eter κ with distances measured in units of the tube diameter R, and using the location
of the VSC (filled disk) as origin. From the innermost to the outermost shape κ ranges
through 0 (orange), 1 (green), 5 (blue), 10 (red). Faster ageing tips are blunter, and have
a larger apex-VSC distance.

Finally, in Figure 6 we plot the expansion propensity f(s) for different
values of the ageing rate, showing that as ageing increases the region where
growth is possible becomes limited to the area close to the apex.

5. Discussion and outlook

We have presented what are arguably the first, albeit simplified, models
of tip growth that self-consistently couple material deposition, evolving wall
properties and growth. This additional mechanism significantly enlarges the
dynamical phase space of growth models. To date most models essentially
only involve a single timescale related to the growth rate , tgrowth = R/v,
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Figure 6: The expansion propensity f(s) plotted as a function of the distance from the
apex measured in units of the tube radius R. From the outermost to the innermost shape,
κ ranges through 0 (orange), 1 (green), 5 (blue), 10 (red). With increasing rate of ageing
the region where growth is possible shrinks to an area close to the apex.

which is readily observable at the global scale. In the ageing approach, a new
timescale, tageing, appears, which is associated with the intrinsic dynamics of
the newly deposited wall material, and hence more difficult to observe. It is
the interplay between these two timescales that allows the new class of models
to account for a much wider variety of tip-shapes than hitherto possible, as
illustrated e.g. in Figure 2.

A key assumption in our model is the generic notion of a feedback of the
local material state of the wall on the propensity to expand in surface area,
given that enough wall building material is available. We have obviously
chosen a very generic functional form for this feedback, allowing only a phe-
nomenological interpretation at this stage. Our underlying dynamics of the
age distribution of the cell wall material, could, however, serve as the basis for
more detailed microscopic ageing mechanisms. From an experimental point
of view, it is obviously very challenging to probe the dynamical processes
going on in the nascent cell wall. Nevertheless, we may hope that a combina-
tion of micromechanical (see e.g. Zerzour et al., 2009) and biochemical (see
e.g. Fayant et al., 2010) measurements that probe the local properties of the
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wall with quantitative measurement on the local rate of exocytosis (see e.g.
Zonia and Munnik, 2008) may serve to validate some of the ideas presented
here.

What is still clearly lacking from our model is the true physics of growth
and expansion, which requires the application of the principles of continuum
mechanics (for a nice recent review see Goriely and Tabor, 2008), coupled
to perhaps more realistic microscopic models of the developing cell wall.
Goriely and Tabor (2003a,b) and later Dumais et al. (2006) have already
formulated models in which the mechanics is explicitly taken into account.
However, these models essentially impose a stationary gradient of mechanical
properties along the growing tip, rather than having this gradient emerge self-
consistently on the basis of the combined process of material incorporation,
ageing and extension. By combining the approach of our present work which
with the explicit use of elasticity theory, by having the relevant mechanical
constants depend explicitly on the “age” of the wall material, one can hope
to achieve a synthesis which is reasonable both from a biological as well as
physical point of view. We are currently working to formulate such a model.
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Appendix A. The geometry of axisymmetric surfaces

In this Appendix, and the two following ones, we give a very concise
overview of the differential geometry of surfaces relevant to the problem of
tip-growth. Readers interested in more background are urged to consult a
reference on the geometry surfaces such as Carmo (1976) and a primer on
tensors such as Joshi (1995).

Consider a parameterization of a tip-shaped axisymmetric surface using
the variables (σ, ϕ), where σ is an arbitrary parameter along the meridional
direction and ϕ is the usual azimuthal (cylindrical) angle. Because of the
axial symmetry, the shape of the surface is fully described by the functions
ρ(σ) and z(σ). The arc length from the apex to σ is then defined by

s(σ) ≡
∫ σ

σ0

dσ′
√
ρ′(σ′)2 + z′(σ′)2, (A.1)
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where σ = σ0 denotes the position of the apex. It is convenient to choose the
arc length s itself as the meridional parameter, as already done in the main
text. From the definition of the arc length it follows that

ρ′(s)2 + z′(s)2 = 1. (A.2)

This relationship implies that the surface shape can essentially be described
solely by the function ρ(s). However, we also use z(s) for notational simplic-
ity. Using Eq. (A.2), we can solve for z(s)

z′(s) = −
√

1− ρ′(s)2, (A.3)

z(s) = z(0)−
∫ s

0

ds′
√

1− ρ′(s′)2. (A.4)

The negative root is chosen for the derivative of z(s) because we have defined
the positive z-axis in the direction of growth, so that the surface itself evolves
towards the negative z-axis and, hence, z(0) is the maximum of z(s). We
note that the function z(s), and more specifically its starting value z(0), is
of significance only if there is a preferred location of the origin, such as a
vesicle supply center.

We use Eq. (1) to define the cell surface, parameterized by s and ϕ.
Locally, the geometry of this surface is characterized by the set of basis
vectors which span the plane tangential to the surface

rs ≡ ∂sr = (ρ′(s) cos(ϕ), ρ′(s) sin(ϕ), z′(s)) , (A.5)

rϕ ≡ ∂ϕr = (−ρ(s) sin(ϕ), ρ(s) cos(ϕ), 0) . (A.6)

Note that in this parametrization rs ·rs = 1. The outward normal unit vector
n̂(s, ϕ) on the surface, already presented in Eq. (2) is determined from the
definition

n̂(s, ϕ) =
rs × rϕ

|rs × rϕ| . (A.7)

For the further development, we need a few more geometrical quantities
related to the surface. The first is the metric tensor

gμν ≡ rμ · rν =

(
1 0
0 ρ(s)2

)
. (A.8)

where the Greek indices run over s and ϕ respectively. Note that the off-
diagonal zeroes mean that {rs, rϕ} form an orthogonal basis. This metric
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tensor has an inverse denoted by

gμν =

(
1 0
0 ρ(s)−2

)
. (A.9)

Given an arbitrary (covariant) tensor Tμν we use gμν to “raise” an index and
obtain the mixed form that allows us to calculate invariants, such as the
trace which is defined through

Tr (T ) = gμνTνμ ≡ T μ
μ, (A.10)

where we employ the Einstein summation convention. Next, we calculate the
curvature tensor

kμν ≡ ∂μn̂ · rν =

(
−ρ′′(s)√
1−ρ′(s)2

0

0 ρ(s)
√
1− ρ′(s)2

)
. (A.11)

The curvature tensor can be used to calculate the two invariant scalar curva-
tures, the extrinsic (mean) curvature and the intrinsic (Gaussian) curvature
of the surface. The mean curvature is given by

H(s) =
1

2
Tr(kμν) =

1

2
kμμ =

1

2
gμνkμν

=
1

2

(
−ρ′′(s)√
1− ρ′(s)2

+

√
1− ρ′(s)2

ρ(s)

)
, (A.12)

and the Gaussian curvature is given by

K(s) = det
(
kμν
)
= ημνk

s
μk

ϕ
ν = −ρ

′′(s)

ρ(s)
, (A.13)

where ημν is the rank-two Levi-Cevita tensor. Finally we note that the ele-
ment of surface area is given by

dA (s, ϕ) =
√

(rs × rϕ) · (rs × rϕ)dsdϕ =
√
det (gμν)dsdϕ = ρ (s) dsdϕ.

(A.14)
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Appendix B. Surface deformations and growth

In order to describe surface deformations and growth we first introduce
the notion of a material point. At an arbitrary initial t = 0 such a point is,
up to a rotation around the z-axis, uniquely identified by its distance from
the tip s0. In the co-moving frame the distance to the tip of this material will
increase, which we describe by the function S (t) with S (0) = s0. Because of
the assumed axisymmetry the motion of this point will be purely meridional,
so that the azimuthal angle ϕ is constant. The flow velocity of the material
point in the co-moving frame is therefore given by

V (t) =
dS (t)

dt
rs (S (t) , ϕ) . (B.1)

In the steady state these quantities no longer depend explicitly on time and
we can write

V (s, ϕ) = v (s) rs (s, ϕ) , (B.2)

which defines the flow speed used in the main text. To obtain the track,
X (t|r(s0, ϕ)) withX(0|r(s0, ϕ)) = r(s0, ϕ), of the material point in the space-
fixed laboratory frame, it suffices to realize that in the steady state the tip as
a whole by definition simply shifts with a constant velocity in the direction
of the symmetry axis, so that

X (t|r (s0, ϕ)) = r (S (t) , ϕ) + vtẑ, (B.3)

where ẑ is the unit vector in the positive z-direction. The time derivative of
this quantity yields the velocity of the material points at a certain position

u (s, ϕ) =
dX (t|r (s0, ϕ))

dt

∣∣∣∣
S(t)=s

= v (s) rs (s, ϕ) + vẑ. (B.4)

The components of this vector in a local frame are given by

us = u (s, ϕ) · rs (s, ϕ) = v (s) + vz′ (s) , (B.5)

uϕ ∝ u (s, ϕ) · rϕ (s, ϕ) = 0, (B.6)

u⊥ = u (s, ϕ) · n̂ (s, ϕ) = vρ′ (s) . (B.7)

The surface deformation induces a change in the metric of the surface, which
defines the rate of strain tensor

ε̇μν =
1

2

dgμν
dt

=
1

2

d

dt
[∂μX (t|r (s0, ϕ)) · ∂νX (t|r (s0, ϕ))]S(t)=s

=
1

2
{rμ · ∂νu+ rν · ∂μu} . (B.8)
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In our parametrization the rate of strain tensor takes the explicit form

ε̇μν =

(
v′ (s) 0
0 ρ (s) ρ′ (s) v (s)

.

)
(B.9)

The relative expansion rate of the surface can now be considered from its
defintion

Φ (s) =
1

dA (s, ϕ)

d

dt
dA (s, ϕ) =

1√
det (gμν)

d

dt

√
det (gμν). (B.10)

The time derivative involved is readily calculated from the Jacobi formula
for the derivative of the determinant of an invertible matrix

d

dx
detA(x) = detA(x) Tr

(
A(x)−1

d

dx
A(x)

)
, (B.11)

yielding

d

dt

√
det (gμν) =

√
det (gμν) Tr

(
gμσ

1

2

d

dt
gσν

)
=
√

det (gμν)Tr
(
ε̇μν
)
,

(B.12)
so that

Φ (s) = Tr
(
ε̇μν
)
=
ρ′(s)v(s)

ρ(s)
+ v′(s) =

1

ρ(s)

d(ρ(s)v(s))

ds
. (B.13)

Appendix C. The growth modes

In the orthogonal growth mode the meridional velocity component of
growth Eq. (B.5) vanishes, yielding

v (s) = −vz′ (s) , (C.1)

and the velocity of material points is given by

u = u⊥n̂. (C.2)

We now note that in this case

rν ·∂μu = rν ·∂μ
(
u⊥n̂

)
= ∂μu

⊥ (rν · n̂)+u⊥ (rν · ∂μn̂) = u⊥ (rν · ∂μn̂) , (C.3)
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so that
ε̇μν = u⊥kμν , (C.4)

where we have used the symmetry of kμν . We therefore have

Φ (s) = Tr
(
ε̇μν
)
= u⊥Tr

(
kμν
)
= 2vρ′ (s)H (s) . (C.5)

In the isometric growth rate, the two components of the mixed index rate
of strain tensor ε̇μν (cf. Eq. (B.9)) are equal, so that

v′(s) =
v(s)

ρ(s)
ρ′(s). (C.6)

This implies that v(s) and ρ(s) are proportional, where the proportionality
constant is readily found by considering v(∞) = v and ρ(∞) = R. This
yields the flow velocity

v (s) =
v

R
ρ(s), (C.7)

and the local expansion rate

Φ(s) = Tr
(
ε̇μν
)
= 2

v(s)

ρ(s)
ρ′ (s) = 2

v

R
ρ′ (s) . (C.8)

Appendix D. The isometric VSC model

In order to formulate the equations for the isometric growth VSC model
it is useful to introduce dimensionless quantities through the adoption of R
as a unit of length and R/v as a unit of time. With this prescription we have

Φ(s) = 2ρ′(s), (D.1)

and

f(s) = F0
ρ′(s) (ρ2(s) + z2(s))

3

2

[z(s)ρ′(s)− z′(s)ρ(s)]
, (D.2)

where F0 = 2/
[
(2 + κ)z2(0)

]
and the dimensionless ageing rate κ was intro-

duced in Section 4.1. Inserting this into the steady state equation for the
expansion propensity Eq. (19) yields

F0

√
ρ(s)2 + z(s)2 {ρ′(s) [ρ′(s)z(s)− ρ(s)z′(s)] ×[

ρ(s)2 (5ρ′(s) + κ) + 3ρ(s)z(s)z′(s) + z(s)2 (2ρ′(s) + κ)
]

+ρ(s)2
[
ρ(s)2 + z(s)2

]
(ρ′(s)z′′(s)− z′(s)ρ′′(s))

}
− 2ρ′(s) [ρ′(s)z(s)− ρ(s)z′(s)]

2
= 0. (D.3)
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Note that z(s) and ρ(s) are related through z′(s) = −√1− ρ′(s)2, so that

z′′(s) =
ρ′(s)ρ′′(s)√
1− ρ′(s)2

. (D.4)

By introducing the angle ψ (cf. Eq. (3)) as a dependent variable, we can
switch to ρ as our independent variable. We readily find

dψ

dρ
=

ρ′′(s)

ρ′(s)z′(s)
, (D.5)

dz

dρ
=
z′(s)

ρ′(s)
= − tanψ. (D.6)

Inserting these into Eq. (D.3) and simplifying yields

F0

√
ρ2 + z2(ρ) {[ρ sinψ(ρ) + z(ρ) cosψ(ρ)]

× [ρ2(5 cosψ(ρ) + κ)− 3ρz(ρ) sinψ(ρ) + z2(ρ)(2 cosψ(ρ) + κ)
]

−ρ2[ρ2 + z2(ρ)]ψ′(ρ)
}

− 2[ρ sinψ(ρ) + z(ρ) cosψ(ρ)]2 = 0. (D.7)

This last equation needs to be solved in conjunction with Eq. (D.6) under
the boundary conditions

ψ(0) = 0, (D.8)

z(0) =

√
2

(2 + κ)F0

, (D.9)

ψ(1) =
π

2
, (D.10)

z(1) = −∞. (D.11)

Note that both the equation (D.7) and the boundary condition for z(0) actu-
ally contain the as yet undetermined amplitude F0. The latter, however, can
be replaced with the known condition z′(0) = 0. The resulting set equations
is amenable to a shooting approach (see e.g. Press et al., 2007, Chapter 18),
which solves the two point boundary value problem by turning into into an
initial value problem, where a subset of initial conditions at one point is var-
ied until the boundary conditions at the other point are met. In our case we
vary z(0), through changing F0, and ψ

′(0). For each choice we solve the initial
value problem using a standard PDE solver (Mathematica’s NDSolve), and
then use a tailor-made root-finding algorithm to adjust the free parameters
until the boundary conditions at infinity are met.
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