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Abstract

This paper proposes a general approach to obtain asymptotic lower bounds for the estimation

of random functionals. The main result is an abstract convolution theorem in a non parametric

setting, based on an associated LAMN property. This result is then applied to the estimation of

the integrated volatility, or related quantities, of a diffusion process, when the diffusion coefficient

depends on an independent Brownian motion.
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1 Introduction

A fundamental concept in the parametric estimation theory is the notion of Locally Asymptotically

Normal (LAN) families of distributions, introduced by Le Cam (see Le Cam and Yang [15], Van der

Vaart [19]). In particular, this notion permits to establish some asymptotic lower bounds for the

distribution of any ’regular’ estimator of a parameter θ. More precisely, a classical result, known

as Hajek convolution theorem, states that the asymptotic distribution of any ’regular’ estimator is

necessarily a convolution between a gaussian law and some other law. An advantage of this result is to
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France
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give a natural way to introduce the notion of efficiency, in the case where the asymptotic distribution

reduces to the gaussian part just mentioned above. In a lot of situations, the LAN property is not

satisfied but a more general condition, called Locally Asymptotically Mixed Normality (LAMN), can

be established. In this latter case, the Hajek convolution theorem can be extended (see Jeganathan

[13], [14]) and the asymptotic distribution of any ’regular’ estimator can be conditionally decomposed

as a convolution.

In the LAN situation, some extensions have been done in a non parametric setting by Millar [16]

and Ibragimov and Kha’sminskii [6] but it seems that, up to now, similar results are still unknown

in the LAMN case. The aim of this paper is to propose an Hajek type convolution theorem, for the

estimation of a random functional, in a LAMN setting. For a random variable F with value in a space

B, we consider the general estimation problem of Φ(F ), based on the observation of a random variable

with law Pn on a measurable space (En,Bn). The main assumption is that the probability Pn can be

decomposed as Pn(A) =
∫
B P

f
n (A)dPF , where PF is the law of the random variable F and {P fn , f ∈ B}

a statistical experiment, depending on an infinite dimensional parameter f and satisfying the LAMN

property. In this bayesian framework with prior PF , we establish a convolution theorem which does

not require any regularity assumption on the estimator, but requires some regularity on the prior

PF . This convolution theorem permits to define in a rigorous way the notion of asymptotic efficiency

for the estimation of random functionals. Moreover, we give some extensions to the estimation of a

quantity depending both on the observations and the prior PF . Such situations occur frequently in

practice.

In a second part, we apply our infinite dimensional convolution theorem to the estimation of some

functionals of a diffusion process discretely observed. We assume that we observe at times (tni )i the

process X, solution of

X(t) = x0 +

∫ t

0
b(X(s))ds+

∫ t

0
a(X(s), σ(s))dW (s),

where (σ(t))t is an Itô process, independent of W . This problem can be connected to the preceding

abstract framework since we observe a process depending on a random unknown infinite dimensional

parameter σ. Our applications concern among others the estimation of quantities which appears in

stochastic finance, such as the integrated volatility
∫ 1

0 a
2(X(s), σ(s))ds or some stochastic integrals∫ 1

0 χ(t,X(t))dX(t) related to hedging problems. From our convolution results, we derive explicit lower

bounds for the estimation of these quantities based on a discrete sampling of X. Another application

deals with the efficiency of discretization schemes such as the Euler scheme.
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The paper is organized as follows. In section 2, we derive an infinite dimensional convolution

theorem based on the LAMN property. The section 3 is devoted to the applications to a discretely

observed diffusion process. The technical proofs are postponed to the section 4.

2 Infinite dimensional convolution theorem

2.1 Definitions and notations

Throughout this paper we will consider a real separable Hilbert space H, equipped with the inner

product 〈., .〉 and the associated norm ‖.‖, and a subset B ⊂ H. Let I be a linear bounded positive

self-adjoint operator on H, then I admits a square-root I1/2, such that I1/2I1/2 = I, which is also

positive and self-adjoint. A gaussian process on H, defined on a complete probability space (Ω̃, F̃ , P̃ ),

with covariance operator I, is a centered gaussian family N = {N(h);h ∈ H} such that for all h and

k in H, EN(h)N(k) = 〈h, Ik〉. We can observe that this implies that the map h 7→ N(h) is linear

and continuous from H into L2(Ω̃, F̃ , P̃ ). A natural way to construct N , given the operator I and

a sequence of independent standard gaussian variables (ξi)i∈N, is to set N(h) =
∑

i ξi〈h, I1/2ei〉, for

(ei)i a complete orthonormal system in H.

Now consider a family of probabilities {P fn , f ∈ H} defined on a measurable polish space (En, En).

For f1 and f2 in H, we will denote by dP f1n /dP
f2
n the derivative of the absolute continuous part of the

probability P f1n with respect to the probability P f2n , and we are interested in the asymptotic situation

as n goes to infinity. We first define the Locally Asymptotically Mixed Normality property (LAMN

property) in the direction H0, where the linear subset H0 satisfies H0 ⊂ H and the closure H0 = H.

Definition 1 The family {P fn } satisfies the LAMN property at f ∈ B, in the direction H0, if there

exists a sequence of linear positive bounded operators (Ifn)n on H, and linear real valued functions Nf
n

on H, such that ∀h ∈ H0 :

i) Nf
n (h) and 〈h, Ifnh〉 are En-measurable,

ii) we have the decomposition

Zfn(h) := log
dP

f+h/
√
n

n

dP fn
= Nf

n (h)− 1

2
〈h, Ifnh〉+ o

P fn
(1),

iii) ∀(h1, . . . , hp) ∈ Hp
0 , we have the convergence in law under P fn (Nf

n (hi))1≤i≤p

(〈hi, Ifnhj〉)1≤i,j≤p

 =⇒
P fn

 (N(hi))1≤i≤p

(〈hi, Ifhj〉)1≤i,j≤p


3



where If is a random linear bounded positive self-adjoint operator on H, defined on a probability space

(Ω,F , P ), and conditionally on If , N is a gaussian process on H with covariance operator If .

In this definition, we could replace the rate of convergence
√
n by any sequence (un) going to infinity.

2.2 Convolution theorem

We are interested in estimating the quantity Φ(F ) = (Φk(F ))1≤k≤d, based on the observation of a

random variable with law Pn on the measurable space (En, En), where Φ : H 7→ Rd is a known function

and F a random variable with values in B ⊂ H. We note PF the law of F . Since H is a separable

Banach space, PF is a Radon measure. This statistical context can be related to a bayesian framework

with prior PF . We assume that the function Φ is B-measurable, where B denotes the Borel sigma-field

on H. In that follows, we still note B its trace sigma-field on B.

We make the following hypotheses on the probabilities Pn and PF and on the function Φ.

H0. Regularity of PF . For h ∈ H0, we note PF+h/
√
n the translation of PF by the map

f 7→ f + h/
√
n (that is for A ∈ B, PF+h/

√
n(A) = PF (A − h/

√
n). We assume that ∀h ∈ H0,

limn

∥∥∥PF+h/
√
n − PF

∥∥∥
V ar

= 0, where ‖.‖V ar denotes the total variation norm.

In finite dimension case (H = Rp), H0 is satisfied if PF admits a density with respect to the

Lebesgue measure.

H1. Relation between Pn and PF . We assume that there exists a family of probabilities

{(P fn )n; f ∈ H} on (En, En) such that, for all n and for all A ∈ En, the map f 7→ P fn (A) is mea-

surable on (H,B), and such that :

∀An ∈ En, Pn(An) =

∫
B
P fn (An)dPF (f).

We equip the measurable space (B × En,B ⊗ En) with the probability Pn defined by

∀A ∈ B, ∀An ∈ En, Pn(A×An) =

∫
B
P fn (An)1A(f)dPF (f).

H2. LAMN property.

a) We assume that (P fn ) satisfies the LAMN property for all f ∈ B, in the direction H0, and that

the space (Ω,F , P ), appearing in the LAMN definition, does not depend on f .

b) We assume moreover that ∀h, h1 ∈ H0, Nf
n (h) and 〈h, Ifnh1〉 are measurable on (B×En,B⊗En)

and that (ω, f) 7→ If (ω) is measurable on (Ω×B,F ⊗ B).
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c) We assume that ∀f ∈ B and ∀h, h1, h2 ∈ H0, 〈h1, I
f+h/

√
n

n h2〉 − 〈h1, I
f
nh2〉 goes to zero in

P fn -probability.

H3. Regularity of Φ.

a) We assume that Φ : H 7→ Rd is Fréchet differentiable. For 1 ≤ k ≤ d, we note Φ̇k(f) the unique

vector in H such that ∀h ∈ H, Φk(f + h)− Φk(f) = 〈Φ̇k(f), h〉+ o(‖h‖). We will use the notation

〈Φ̇(f), h〉 = (〈Φ̇k(f), h〉)1≤k≤d.

b) We assume that, for 1 ≤ k ≤ d, P ⊗ PF almost surely, Φ̇k(f) ∈ (If (w))1/2(H).

From the orthogonal decomposition H = (If )1/2(H) ⊕ Ker(If )1/2, we note hf = (hkf )1≤k≤d the

unique vector in Hd such that for 1 ≤ k ≤ 1

(If )1/2hkf = Φ̇k(f) and hkf ∈ (If )1/2(H). (1)

Before stating our main result, we recall that a sequence (Φ̂n)n is an estimator of Φ(F ) if ∀n, Φ̂n

is En-measurable.

In all that follows, we will denote the convergence in law under a probability P by ’=⇒
P

’.

Theorem 1 Let (Φ̂n)n be any estimator of Φ(F ), such that

√
n(Φ̂n − Φ(F )) =⇒

Pn
Z. (2)

Then assuming H0, H1, H2, H3, the law of Z is a convolution :

Z =
law

Σ
1/2
F G+R, with ΣF = (〈(IF )−1/2Φ̇k(F ), (IF )−1/2Φ̇l(F )〉)1≤k,l≤d, (3)

where conditionally on (F, IF ), R is a random variable independent of G, G is a standard gaussian

vector in Rd, and (IF )−1/2Φ̇k(F ) = hkF is defined by (1).

Remark 1 We will say that an estimator Φ̂n satisfying (2) is efficient if

Z =
law

Σ
1/2
F G.

This means that the dispersion of the conditional asymptotic distribution of Φ̂n is minimal.

Remark 2 We can remark that the needless of regularity assumption for the estimator can be related

to Jeganathan results [12], where some almost everywhere convolution theorems are established for a

finite dimensional parameter (see Van der Vaart [19] p.115 in the LAN case).
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Proof Let (hi)i∈N be a complete family in H such that ∀i, hi ∈ H0. Such a family exists since

H0 = H. For p ∈ N∗, we note Vp the linear subspace of H0 generated by (h1, . . . , hp).

We first remark that from H1 and H2 a) b), we have the convergence in law under Pn
F

(NF
n (hi))1≤i≤p

(〈hi, IFn hj〉)1≤i,j≤p

 =⇒
Pn


F

(N(hi))1≤i≤p

(〈hi, IFhj〉)1≤i,j≤p

 . (4)

Now since
√
n(Φ̂n−Φ(F )) converges in law, the vector (

√
n(Φ̂n−Φ(F )), F, (NF

n (hi))1≤i≤p, (〈hi, IFn hj〉)1≤i,j≤p)

is tight and we deduce the convergence in law for a subsequence (n) (that we still note n)

√
n(Φ̂n − Φ(F ))

F

(NF
n (hi))1≤i≤p

(〈hi, IFn hj〉)1≤i,j≤p

 =⇒
Pn


Z

F

(N(hi))1≤i≤p

(〈hi, IFhj〉)1≤i,j≤p

 . (5)

Our aim is to describe the law of Z, given (F, IF ). Remarking that the law of (F, IF ) is char-

acterized by the finite dimensional distributions (F, (〈hi, IFhj〉)1≤i,j≤p), it is sufficient to compute

Eeiu∗Zϕ(F )ψ((〈hi, IFhj〉)1≤i,j≤p) for some continuous bounded functions ϕ : B 7→ R and ψ : Rp×p 7→ R

and where u∗ denotes the transpose of the vector u = (uk)1≤k≤d.

First we have immediately from (5) and using the notation ψp(I
F ) = ψ((〈hi, IFhj〉)1≤i,j≤p) and

ψp(I
F
n ) = ψ((〈hi, IFn hj〉)1≤i,j≤p)

Eeiu
∗Zϕ(F )ψp(I

F ) = lim
n

EPne
iu∗
√
n(Φ̂n−Φ(F ))ϕ(F )ψp(I

F
n ) (6)

On the other hand, using H1, we have

EPne
iu∗
√
n(Φ̂n−Φ(F ))ϕ(F )ψp(I

F
n ) =

∫
B

(
E
P fn
eiu
∗√n(Φ̂n−Φ(f))ϕ(f)ψp(I

f
n)
)
dPF (f).

Now we fix h ∈ Vp and we change PF into PF+h/
√
n. We deduce

EPne
iu∗
√
n(Φ̂n−Φ(F ))ϕ(F )ψp(I

F
n ) =

∫
B

(
E
P fn
eiu
∗√n(Φ̂n−Φ(f))ϕ(f)ψp(I

f
n)
)
dPF+h/

√
n(f)

+O
(∥∥∥PF+h/

√
n − PF

∥∥∥
V ar

)
,

and from H0, we obtain

lim
n

EPne
iu∗
√
n(Φ̂n−Φ(F ))ϕ(F )ψp(I

F
n ) = lim

n

∫
B

(
E
P fn
eiu
∗√n(Φ̂n−Φ(f))ϕ(f)ψp(I

f
n)
)
dPF+h/

√
n(f), (7)
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where the right hand side term of (7) is equal to∫
B

(
E
P
f+h/

√
n

n
eiu
∗√n(Φ̂n−Φ(f+h/

√
n))ϕ(f + h/

√
n)ψp(I

f+h/
√
n

n )
)
dPF (f).

Now from H2 a), we have

limn EP f+h/
√
n

n
eiu
∗√n(Φ̂n−Φ(f+h/

√
n))ϕ(f + h/

√
n)ψp(I

f+h/
√
n

n ) =

limn EP fn e
iu∗
√
n(Φ̂n−Φ(f+h/

√
n))ϕ(f + h/

√
n)ψp(I

f+h/
√
n

n )eZ
f
n(h).

It follows from H2 c), H3 and the uniform integrability of eZ
f
n(h) that the equation (7) can be rewritten

as

lim
n

EPne
iu∗
√
n(Φ̂n−Φ(F ))ϕ(F )ψp(I

F
n )

= lim
n

∫
B

(
E
P fn
eiu
∗√n(Φ̂n−Φ(f))ϕ(f)ψp(I

f
n)eN

f
n (h)− 1

2
〈h,Ifnh〉e−iu

∗〈Φ̇(f),h〉
)
dPF (f)

= lim
n

EPne
iu∗
√
n(Φ̂n−Φ(F ))ϕ(F )ψp(I

F
n )eN

F
n (h)− 1

2
〈h,IFn h〉e−iu

∗〈Φ̇(F ),h〉. (8)

From the convergence in law (5), we finally deduce, for all h ∈ Vp :

Eeiu
∗Zϕ(F )ψp(I

F ) = Eeiu
∗Zϕ(F )ψp(I

F )eN(h)− 1
2
〈h,IF h〉e−iu

∗〈Φ̇(F ),h〉,

and consequently

E(eiu
∗Z |F, IF ) = e−iu

∗〈Φ̇(F ),h〉− 1
2
〈h,IF h〉E(eiu

∗ZeN(h)|F, IF ), almost surely. (9)

Replacing h by zh, with z ∈ R, we obtain

E(eiu
∗Z |F, IF ) = e−izu

∗〈Φ̇(F ),h〉− 1
2
z2〈h,IF h〉E(eiu

∗ZezN(h)|F, IF ), almost surely. (10)

Using continuity and analyticity arguments, the preceding equality remains true for all complex num-

ber z and finally choosing z = −i, we deduce that ∀h ∈ Vp, we have almost surely

E(eiu
∗Z |F, IF ) = e−

1
2

(2u∗〈Φ̇(F ),h〉−〈h,IF h〉)E(eiu
∗Ze−iN(h)|F, IF ). (11)

By a density argument, observing that the right hand side of (11) is continuous as a function of h,

it follows that, almost surely, ∀h ∈ H, the equation (11) is true (up to consider a suitable version

of the conditional expectation). Now, our aim is then to maximize with respect to h the quantity

(2u∗〈Φ̇(F ), h〉 − 〈h, IFh〉).

7



To finish the proof, we first observe that from H3b) :

2u∗〈Φ̇(F ), h〉 − 〈h, IFh〉 = 2
d∑

k=1

uk〈I1/2
F hkF , h〉 − 〈h, IFh〉,

and since (IF )1/2 is self adjoint we deduce :

2u∗〈Φ̇(F ), h〉 − 〈h, IFh〉 = 2
d∑

k=1

uk〈hkF , I
1/2
F h〉 − 〈I1/2

F h, I
1/2
F h〉. (12)

Consequently, the optimization problem can be solved :

sup
h∈H

(2u∗〈Φ̇(F ), h〉 − 〈h, IFh〉) = sup
h∈(IF )1/2(H)

(2〈
d∑

k=1

ukhkF , h〉 − 〈h, h〉) = u∗ΣFu,

with ΣF = (〈hkF , hlF 〉)1≤k,l≤d, since hkF ∈ (If )1/2(H).

Now, considering a sequence (hkn)n in H such that hkF = limn(IF )1/2(hkn), we have, using (12)

u∗ΣFu = lim
n

(2〈Φ̇(F ), hn〉 − 〈hn, hn〉),

with hn =
∑d

k=1 u
khkn. Turning back to (11) with h = hn, and letting n go to infinity, it follows that

E(eiu
∗Z |F, IF ) = e−

1
2
u∗ΣFu lim

n
E(eiu

∗Ze−i
∑
k u

kN(hkn)|F, IF ). (13)

Remarking that the function u 7→ limn E(eiu
∗Ze−i

∑
k u

kN(hkn)|F, IF ) is continuous at zero, this is the

Fourier transform of a probability measure and the Theorem 1 is proved.

�

Remark 3 We can remark that if H3b) fails, sup
h∈H

(2u∗〈Φ̇(F ), h〉 − 〈h, IFh〉) can be infinite. This is

the case if there exists k such that Φ̇k(f) /∈ (If )1/2(H). This means that the rate of estimation of

Φ(F ) is slower than
√
n.

Now, we will extend the Theorem 1 by replacing Φ(F ) by a sequence of functions Φn(F ) defined

on H × En. This needs the following modification of the hypothesis H3.

H3(n). Regularity of (Φn)n.

a) We assume that for all n, the restriction of Φn on B × En is B ⊗ En-measurable and that

f 7→ Φn(f) is differentiable on H, in the following sense. For 1 ≤ k ≤ d, we note Φ̇k
n(f) the unique

vector in H such that ∀h ∈ H,

Φk
n(f + h/

√
n)− Φk

n(f) =
1√
n
〈Φ̇k

n(f), h〉+
1√
n
o
P fn

(1).

8



We assume moreover that for all h ∈ H0, and for all 1 ≤ k ≤ d, Φ̇k
n(f + h/

√
n) − Φ̇k

n(f) goes to

zero in P fn -probability.

b) We assume that ∀f ∈ B and ∀h1, . . . , hp ∈ H0, the following convergence in law holds
(Φ̇k

n(f))1≤k≤d

(Nf
n (hi))1≤i≤p

(〈hi, Ifnhj〉)1≤i,j≤p

 =⇒
P fn


(Φ̇k(f))1≤k≤d

(N(hi))1≤i≤p

(〈hi, Ifhj〉)1≤i,j≤p

 .

We assume that Φ̇ = (Φ̇k)1≤k≤d is B⊗F measurable and that for 1 ≤ k ≤ d, PF ⊗P almost surely,

Φ̇k(f) ∈ (If )1/2(H).

With these assumptions, we can state an extension of Theorem 1.

Theorem 2 Let (Φ̂n)n be any estimator, such that

√
n(Φ̂n − Φn(F )) =⇒

Pn
Z. (14)

Then assuming H0, H1, H2, H3(n), the law of Z is a convolution :

Z =
law

Σ
1/2
F G+R, with ΣF = (〈(IF )−1/2Φ̇k(F ), (IF )−1/2Φ̇l(F )〉)1≤k,l≤d, (15)

where conditionally on (F, IF , Φ̇(F )), R is a random variable independent of G, G is a standard

gaussian vector in Rd.

Proof The proof is similar to the proof of Theorem 1 and just consists to add Φ̇(F ) = (Φ̇k(F ))1≤k≤d

in the conditioning. We first remark that from H1 and H3(n) we have the convergence in law under

Pn : 
F

(Φ̇k
n(F ))1≤k≤d

(NF
n (hi))1≤i≤p

(〈hi, IFn hj〉)1≤i,j≤p

 =⇒
Pn


F

(Φ̇k(F ))1≤k≤d

(N(hi))1≤i≤p

(〈hi, IFhj〉)1≤i,j≤p

 . (16)

This leads to the modification of (6), adding Φ̇(F ):

Eeiu
∗Zϕ(F )ψp(I

F )χ(Φ̇(F )) = lim
n

EPne
iu∗
√
n(Φ̂n−Φn(F ))ϕ(F )ψp(I

F
n )χ(Φ̇n(F )), (17)

for a continuous bounded function χ : Hd 7→ R, where the limit is taken along a subsequence. We

conclude following the same steps as in the proof of Theorem 1. �
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3 Applications

In this section, we discuss various applications of the preceding abstract result, based on the obser-

vation of a discretized diffusion process. More precisely, we consider the process (X(t)) on the time

interval [0, 1], solution of

X(t) = x0 +

∫ t

0
b(X(s))ds+

∫ t

0
a(X(s), σ(s))dW (s), (18)

where W = (W i)1≤i≤q is a q-dimensional standard Brownian motion, b and a two functions such that

b : Rq 7→ Rq and a : Rq ×Rq′ 7→ Rq×q. We will note a∗ the transpose of the matrix a and in the sequel

we use the notation S = aa∗.

We assume that σ(t) is an Itô process, of dimension q′, solution of

dσ(t) = β(t)dt+ γ(t)dB(t) (19)

where B is a q′-dimensional Brownian motion independent ofW , and (β(t)) and (γ(t)) are progressively

measurable, square integrable processes.

We assume that we observe the process X at discrete time (tni )0≤i≤n with tn0 = 0 and tnn = 1 and

we are interested to apply our convolution theorem to the estimation of Φ(X,σ) =
∫ 1

0 φ(X(s), σ(s))ds

for φ : Rq × Rq′ 7→ Rd, from the observations (X(tni ))i. For example, if φ = a2 then Φ(X,σ) =∫ 1
0 a

2(X(s), σ(s))ds is the integrated volatility.

This statistical problem can easily be related to the abstract framework of section 2. In fact, the

statistical experiment is (En, En, Pn), where En = (Rq)n, En is its Borel sigma-field and Pn is the law of

(X(tni ))1≤i≤n. The random parameter F = σ takes value in the space B = C([0, 1],Rq′). The Hilbert

space H is L2([0, 1],Rq′) with inner product 〈f, g〉 =
∫ 1

0 f
∗(t)g(t)dt and H0 the Cameron Martin space.

We will note P σ the law of σ on C([0, 1],Rq′) and we assume that the matrix γ is non degenerated.

A0. ∃γ > 0, such that ∀t ∈ [0, 1], (γγ∗)(t) ≥ γId.

From Girsanov theorem, it is easy to check that, assuming A0, the regularity assumption H0 on

P σ is satisfied. Now, if we note P fn the law of (X(tni ))1≤i≤n conditionally on σ = f , then H1 is verified.

We can observe that P fn is the law of (Xf (tni ))1≤i≤n, where the process (Xf (t)) is solution of

Xf (t) = x0 +

∫ t

0
b(Xf (s))ds+

∫ t

0
a(Xf (s), f(s))dW (s). (20)

The first step to apply the results of section 2 is to prove the LAMN property (hypothesis H2) for the

family (P fn ).
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3.1 LAMN property

The proof of the LAMN property requires some regularity assumptions on the coefficients b and a of

equation (18) and on the discretization times (tni )i.

A1. Discretization times. a) We assume that the measure µn = 1
n

∑n−1
i=0 δtni converges weakly, as

n goes to infinity, to a measure µ, and that supi |tni+1 − tni | → 0.

b) We assume moreover that µ admits a density µ0 with respect to the Lebesgue measure such

that ∀x, µ0(x) ≥ m > 0.

A2. Regularity of the coefficients. a)The functions a and b are C3 with bounded derivatives. We

note ȧ(l)(x, y) = ∂a
∂yl

(x, y) the derivative of a with respect to the coordinate l of the second variable,

for 1 ≤ l ≤ q′.

b) There exist two constants a and a such that ∀x ∈ Rq, ∀y ∈ Rq′ , 0 < aId ≤ (aa∗)(x, y) ≤ aId.

To simplify the presentation, we give first the LAMN property in the case q′ = 1 and then extend

it to the general case.

3.1.1 Case q′ = 1

In this subsection, a is defined on Rq × R with value in Rq×q and we can simplify the notation given

in A2 a): we note ȧ(x, y) = ∂a
∂y (x, y) the derivative of a with respect to the second variable.

Proposition 1 We assume H1 and H2, then, for all f ∈ C([0, 1],R), the family (P fn ) satisfies the

LAMN property in the direction H0 as defined in definition 1, with Nf
n (h) given by :

Nf
n (h) =

n−1∑
i=0

h(tni )√
n(tni+1 − tni )

(
∆W ∗tni (a−1ȧ)∗tni ∆Wtni

− (tni+1 − tni )Tr(a−1ȧ)∗tni

)
, (21)

where ∆Wtni
= W (tni+1) −W (tni ) and (a−1ȧ)∗t = (a−1ȧ)∗(Xf (t), f(t)). The operator Ifn is the multi-

plication operator defined by :

(Ifnh)(t) := Ifn(t)h(t) = Tr
(

(a−1ȧ)∗tni (a−1ȧ)∗tni + (a−1ȧ)tni (a−1ȧ)∗tni

)
µ0(t)h(t), tni ≤ t < tni+1, (22)

and Ifh is given by:

(Ifh)(t) := If (t)h(t) = Tr
(
(a−1ȧ)∗t (a

−1ȧ)∗t + (a−1ȧ)t(a
−1ȧ)∗t

)
µ0(t)h(t). (23)

Moreover we have the convergence in law :
W

(Nf
n (hi))1≤i≤p

(〈hi, Ifnhj〉)1≤i,j≤p

 =⇒


W

(
∫ 1

0 hi(s)
√
If (s)dW̃ (s))1≤i≤p

(〈hi, Ifhj〉)1≤i,j≤p


11



where W̃ is a Brownian motion independent of W .

We can remark that the convergence in law in Proposition 1 is stronger than the one of Definition

1. This result is a straightforward consequence of the LAMN property given by Gobet [4] and we

postpone the sketch of the proof to the appendix.

Remark 4 Using the notation St = (aa∗)(Xf (t), f(t)), we can observe that

Tr
(
(a−1ȧ)∗t (a

−1ȧ)∗t + (a−1ȧ)t(a
−1ȧ)∗t

)
=

1

2
Tr
(

(ṠS−1ṠS−1)t

)
,

and consequently

If (t) =
1

2
Tr
(

(ṠS−1ṠS−1)t

)
µ0(t).

3.1.2 General case

The LAMN property remains true for the family (P fn ), with f ∈ C([0, 1],Rq′). For h = (hl)1≤l≤q′ ∈ H0,

we have :

Nf
n (h) =

n−1∑
i=0

1√
n(tni+1 − tni )

q′∑
l=1

hl(tni )
(

∆W ∗tni (a−1ȧ(l))∗tni ∆Wtni
− (tni+1 − tni )Tr(a−1ȧ(l))∗tni

)
, (24)

where (a−1ȧ(l))∗t = (a−1ȧ(l))∗(Xf (t), f(t)). Moreover, the operator Ifn and If are the multiplication

operators (Ifnh)(t) = Ifn(t)h(t), (Ifh)(t) = If (t)h(t), where the matrices Ifn(t) and If (t) (of dimension

q′ × q′) are respectively given by:

Ifn(t)l,l′ = Tr
(

(a−1ȧ(l))∗tni (a−1ȧ(l′))∗tni + (a−1ȧ(l))tni (a−1ȧ(l′))∗tni

)
µ0(t), tni ≤ t < tni+1, (25)

If (t)l,l′ = Tr
(

(a−1ȧ(l))∗t (a
−1ȧ(l′))∗t + (a−1ȧ(l))t(a

−1ȧ(l′))∗t

)
µ0(t). (26)

As previously, we can observe that

If (t)l,l′ =
1

2
Tr
(

(Ṡ(l)S−1Ṡ(l′)S−1)t

)
µ0(t). (27)

3.2 Asymptotic lower bound for the estimation of
∫ 1

0
φ(X(s), σ(s))ds

We state, in this section, the convolution theorem for the estimation of Φ(X,σ) =
∫ 1

0 φ(X(s), σ(s))ds

for φ : Rq × Rq′ 7→ Rd, from the observations (X(tni ))i. We make the following assumption on φ.
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A3. Regularity of φ. a) We assume that φ = (φk)1≤k≤d is C1 (with respect to both variables),

and that φ and its derivatives are bounded. We note φ̇k the vector, in Rq′ , of partial derivatives with

respect to the second variable : φ̇k(x, y) = (∂φ
k

∂yl
(x, y))1≤l≤q′ .

b) We assume that ∀k, ∀f ∈ C([0, 1],Rq′), there exists hkf ∈ (Ker(If )1/2)⊥ such that φ̇k(X(t), f(t)) =

(If (t))1/2hkf (t), where the matrix If (t) is defined in equation (27).

Note that if If (t) is invertible for all t, then A3b) is satisfied as soon as (If (.))−1/2φ̇k(X(.), f(.)) ∈

H.

With these assumptions, we deduce from Theorem 2 the following convolution theorem.

Theorem 3 Let Φ̂n be any estimator of Φ(X,σ) such that

√
n(Φ̂n − Φ(X,σ)) =⇒

Pn
Z. (28)

We assume A0, A1, A2, A3, and that limn
√
n supi |tni+1− tni | = 0. Then the law of Z is a convolution:

Z =
law

Σ1/2
σ G+R, (29)

with

Σσ =

(∫ 1

0
φ̇k(X(t), σ(t))∗(Iσ(t))−1φ̇l(X(t), σ(t))dt

)
1≤k,l≤d

, (30)

and where conditionally on (σ, Iσ, (φ̇k(X,σ))k), R is a random variable independent of G, G is a

standard gaussian vector in Rd.

Moreover, R is independent of G conditionally on (σ,X).

Proof We already proved that assuming A0, A1 and A2, the assumptions H0, H1 and H2 of section

2.2 are satisfied.

Now, let Φn(X,σ) =
∫ 1

0 φ(X(ϕn(t)), σ(t))dt, where ϕn(t) = tni if tni ≤ t < tni+1. Assuming A3 a)

and limn
√
n supi |tni+1 − tni | = 0, then, by standard arguments,

√
n(Φ(X,σ)− Φn(X,σ)) goes to zero

in Pn-probability and consequently

√
n(Φ̂n − Φn(X,σ)) =⇒

Pn
Z.

So to apply Theorem 2, we just have to check H3(n). For f ∈ B, using the notations of section 2.2, we

have Φ̇k
n(f) = φ̇k(X(ϕn(.)), f(.)) and Φ̇k(f) = φ̇k(X(.), f(.)). We check easily that φ̇k(X(ϕn(.)), f(.))

converges to Φ̇k(f) in P fn -probability and assuming A3, we deduce H3(n). This gives the first part of

Theorem 3.
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To obtain the independence of R and G conditionally on (σ,X), we turn back to the proof of

Theorem 1 with the following modification. Let ψr : Rr 7→ R be a continuous bounded function. We

consider the instants 0 < t1 < . . . < tr < 1, r ≥ 1. Since we have the LAMN property with a stable

convergence in law, we deduce that we have the convergence in law (stronger than (4))
(σ(t))t

ψr(X(ϕn(t1)), . . . , X(ϕn(tr)))

(Nσ
n (hi))1≤i≤p

(〈hi, Iσnhj〉)1≤i,j≤p

 =⇒
Pn


(σ(t))t

ψr(X(t1), . . . , X(tr))

(
∫ 1

0 hi(s)
√
Iσ(s)dW̃ (s))1≤i≤p

(〈hi, Iσhj〉)1≤i,j≤p

 .

So by the same arguments as those given in the proof of Theorem 1 and replacing (6) by

Eeiu
∗Zϕ(σ)ψr(X(t1), . . . , X(tr)) = lim

n
EPne

iu∗
√
n(Φ̂n−Φ(F ))ϕ(σ)ψr(X(ϕn(t1)), . . . , X(ϕn(tr))), (31)

we deduce the decomposition of the law of Z conditionally on (σ,X).

�

3.3 Discussion on the efficiency in the p-variation estimation

3.3.1 X and σ of dimension 1

As an illustration of Theorem 3, we consider the estimation of
∫ 1

0 a
p(X(t), σ(t))dt in the simple case

d = q = q′ = 1, for p ≥ 2. We have φ(x, y) = ap(x, y) (φ : R×R 7→ R ). Then Iσ(t) = 2µ0(t) ȧ
2(X(t),σ(t))
a2(X(t),σ(t))

and φ̇(x, y) = p(ap−1ȧ)(x, y). We remark that A3 is true if a is C1. Consequently, from Theorem 3,

we deduce the proposition:

Proposition 2 We assume A0, A1, A2, and limn
√
n supi |tni+1 − tni | = 0, then any estimator of∫ 1

0 a
p(X(t), σ(t))dt, with rate of convergence

√
n, has an asymptotic conditional variance, on (σ,X),

greater than

Σσ =
p2

2

∫ 1

0
a2p(X(t), σ(t))1{ȧ(X(t),σ(t))6=0}

1

µ0(t)
dt. (32)

We can remark that assuming ȧ(x, y) 6= 0,∀x, y, the asymptotic minimal variance is

Σσ =
p2

2

∫ 1

0
a2p(X(t), σ(t))

1

µ0(t)
dt,

and in this case we can discuss the efficiency of classical power variation estimators defined by

Vn(p) =
1

mp

n−1∑
i=0

(tni+1 − tni )1−p/2|X(tni+1)−X(tni )|p,

14



where mp denotes the pth absolute moment of a standard normal law. We refer to Jacod [8] and

Hayashi-Jacod-Yoshida [5] for the asymptotic properties of these estimators. In our simple case,

where the discretization times are deterministic, one can easily see (assuming A1a) and A2) that

Vn(p) converges in probability to
∫ 1

0 a
p(X(t), σ(t))dt.

Now if we consider the uniform discretization scheme tni = i/n, then we have the convergence in

law

√
n(Vn(p)−

∫ 1

0
ap(X(t), σ(t))dt) =⇒

√
m2p −m2

p

mp

∫ 1

0
ap(X(t), σ(t))dW̃ (t).

In this case, A1 is verified with µ0 = 1, and from Proposition 2 we deduce that Vn(2) is efficient. For

p = 4, a simple calculation gives
m8−m2

4

m2
4

= 96
9 > 8, and consequently Vn(4) is not efficient (see Jacod

and Rosenbaum [11] for the construction of efficient estimator of
∫ 1

0 a
p(X(s), σ(s))ds in a more general

context).

The situation is more complicated for general discretization schemes, even in the deterministic

case, and we restrict ourself to the study of Vn(2). If we make the additional assumption on the

discretization scheme (see [5] )

n

Nn
t∑

i=0

(tni+1 − tni )2 →
∫ t

0
a2(s)ds, (33)

where Nn
t = supi{i; tin ≤ t} then we have (see Theorem 3.2 of [5])

√
n(Vn(p)−

∫ 1

0
ap(X(t), σ(t))dt) =⇒

√
m2p −m2

p

mp

∫ 1

0
ap(X(t), σ(t))

√
a2(s)dW̃ (t).

The comparison between µ0(s) and a2(s) is not straightforward in general. However if tni = g(i/n)

for a smooth, stricly increasing, function g, mapping [0, 1] to [0, 1], then a2(s) = g′(g−1(s)) = 1/µ0(s)

and we can conclude that Vn(2) is efficient.

3.3.2 Efficiency for higher dimensions

Assume that the dimension of the process X is q ≥ 1 and that one want to estimate the integrated

covariance matrix of the process V =
∫ 1

0 S(X(s), σ(s))ds, where S(x, y) = a(x, y)a(x, y)∗ is the q × q

symmetric local covariance matrix of X. Thus, V is a d = q(q + 1)/2 dimensional object, and it is

known that the multidimensional quadratic variation Vn =
∑n−1

i=0 (X(tni+1)−X(tni ))(X(tni+1)−X(tni ))∗

is a consistent estimator of V .

Assume, for simplicity that the sampling is regular tni = i
n , then the asymptotic behaviour of this

estimator can be found for instance in Jacod-Protter [10](Th.5.4.2 p.162). The error of estimation
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√
n(Vn−V ) converges to a conditionally Gaussian variable, with explicit conditional covariance matrix.

The asymptotic conditional covariance between the error of estimation of Vi1,j1 and Vi2,j2 where 1 ≤

i1 ≤ j1 ≤ q and 1 ≤ i2 ≤ j2 ≤ q is given by∫ 1

0
[S(X(s), σ(s))i1,i2S(X(s), σ(s))j1,j2 + S(X(s), σ(s))i1,j2S(X(s), σ(s))j1,i2 ] ds. (34)

Let us remark, that if the dimension of σ is too small, the quadratic variation might not be effi-

cient. For instance, choose X with dimension 2 and σ one dimensional with the choice a(x, y) = yI2

where I2 is the unit matrix of size 2. Then, clearly the two components of X are redundant for

the estimation of
∫ 1

0 σ
2(t)dt =

∫ 1
0 S(X(t), σ(t))1,1dt =

∫ 1
0 S(X(t), σ(t))2,2dt. As a consequence,

V n = 1
2

∑n−1
i=0 [(X1(tni+1) − X1(tni ))2 + (X2(tni+1) − X2(tni ))2] is clearly an estimator of V1,1 with a

conditional variance smaller than (34). Moreover, the application of Theorem 3 shows that V n is

efficient.

The following proposition states that if q′ is large enough, then the quadratic variation is an

efficient estimator of the covariance matrix.

Proposition 3 We assume that A0 and A2 hold. We denote by Sq the set of symmetric positive

definite matrices of size q and let q′ = q(q + 1)/2. We assume that for all x, the function y ∈ Rq′ 7→

S(x, y) ∈ Sq is differentiable, and its Jacobian denoted by DS is invertible for all x and y.

Assume that V̂n is an estimator of V such that
√
n(V̂n − V ) =⇒

Pn
Z. Then, Z is the sum of a

conditionally centered Gaussian variable, whose conditional variance is described by (34), and some

conditionally independent variable.

Proof Note I = {(i, j) | 1 ≤ i ≤ j ≤ q} and define for (i, j) ∈ I, the symmetric matrix Ei,j as the

matrix with all entries equal to zero except the one with index (i, j) or (j, i) where the entry is one.

The family (Ei,j)(i,j)∈I defines a canonical basis of Sq.

We now apply Theorem 3 with φ(X(s), σ(s)) = S(X(s), σ(s)) = a(X(s), σ(s))a(X(s), σ(s))∗ ∈ Sq,

where we consider elements of Sq as vectors of dimension d = q(q + 1)/2 indexed by the set I =

{(i, j) | 1 ≤ i ≤ j ≤ q}. With the notation of Theorem 3, we have φ̇i,j = ( ∂
∂σl
S(X(s), σ(s))i,j)l=1,...,q′

for (i, j) ∈ I. The Jacobian matrix of y ∈ Rq′ ∈7→ S(x, y) ∈ Sq can be expanded using the canonical

basis of Rq′ and Sq as DS = [ ∂
∂σl
S(X(s), σ(s))i,j ](i,j)∈I,l∈{1,...,q′}.

Recall from (27) that the information matrix in the LAMN property with a multidimensional
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parameter is :

Iσ(s)l,l′ =
1

2
Tr

(
∂

∂σl
S(X(s), σ(s))S−1(X(s), σ(s))

∂

∂σl′
S(X(s), σ(s))S−1(X(s), σ(s))

)
(35)

for (l, l′) ∈ {1, . . . , q′}2.

With this setting, by comparison of the expressions (30) and (34), the proof of the proposition

consists in showing the relation

(φ̇i1,j1)∗(Iσ(s))−1φ̇i2,j2 = S(X(s), σ(s))i1,i2S(X(s), σ(s))j1,j2 + S(X(s), σ(s))i1,j2S(X(s), σ(s))j1,i2 .

(36)

For the sake of shortness we denote the matrix S(X(s), σ(s)) as S in the rest of the proof. Using

that (Ei,j)1≤i≤j≤q is the canonical basis of Sq, we can rewrite (35) as

Iσ(s)l,l′ =
1

2

∑
1≤i1≤j1≤q

∑
1≤i2≤j2≤q

∂Si1,j1
∂σl

∂Si2,j2
∂σl′

Tr(Ei1,j1S
−1Ei2,j2S

−1).

This relation can be restated as Iσ(s) = (DS)∗J(S)(DS) where J(S) is a matrix of size d × d, with

components indexed by I and with entries given by J(S)(i1,j1),(i2,j2) = 1
2Tr(Ei1,j1S

−1Ei2,j2S
−1), and

DS is the Jacobian matrix of S.

We now write for (i1, j1) and (i2, j2) in I:

(φ̇i1,j1)∗(Iσ(s))−1φ̇i2,j2 = (DS(Iσ(s))−1DS∗)(i1,j1),(i2,j2)

= (DS(DS)−1J(S)−1(DS∗)−1DS∗)(i1,j1),(i2,j2) = (J(S)−1)(i1,j1),(i2,j2).

Using Lemma 1 we know that (J(S)−1)(i1,j1),(i2,j2) = Si1,i2Sj1,j2 + Sj1,i2Si1,j2 , and the equation (36)

follows. �

Lemma 1 Let S ∈ Sq and define the matrix of size d × d indexed by I as J(S)(i1,j1),(i2,j2) =

1
2Tr(Ei1,j1S

−1Ei2,j2S
−1) where (Ei,j)(i,j)∈I is the canonical basis of Sq.

Then the matrix J(S) is invertible and its inverse is V (S) defined by V (S)(i1,j1),(i2,j2) = Si1,i2Sj1,j2+

Sj1,i2Si1,j2.
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Proof For (i1, j1), (i2, j2) in I we compute,

(V (S)I(S))(i1,j1),(i2,j2) =
∑

(i3,j3)∈I

V (S)(i1,j1),(i3,j3)I(S)(i3,j3),(i2,j2)

=
1

2

∑
(i3,j3)∈I

(Si1,i3Sj1,j3 + Sj1,i3Si1,j3)Tr(Ei3,j3S
−1Ei2,j2S

−1)

=
1

2
Tr

 ∑
(i3,j3)∈I

(Si1,i3Sj1,j3 + Sj1,i3Si1,j3)Ei3,j3S
−1Ei2,j2S

−1

 .

Denote M the symmetric matrix of size q×q whose entries are Mi3,j3 = Si1,i3Sj1,j3 +Sj1,i3Si1,j3 . Then

we equations above yield,

(V (S)I(S))(i1,j1),(i2,j2) =
1

2
Tr(MS−1Ei2,j2S

−1) =
1

2
Tr(S−1MS−1Ei2,j2)

=


1
2(S−1MS−1)i2,j2 if i2 = j2

(S−1MS−1)i2,j2 if i2 6= j2

With a few algebra, we show that (S−1MS−1)i2,j2 = (S−1S)i2,i1(SS−1)j1,i2 + (S−1S)i2,j1(SS−1)i1,j2 .

Then, it is straightforward to deduce that

(V (S)I(S))(i1,j1),(i2,j2) = 1 if (i1, j1) = (i2, j2) and (V (S)I(S))(i1,j1),(i2,j2) = 0 if (i1, j1) 6= (i2, j2).

This proves that I(S)−1 = V (S). �

3.4 Efficient scheme of approximation

In this section, we apply our convolution theorems to prove that some schemes of approximation are

efficient.

3.4.1 Approximation of stochastic integral

Assume that we are in the one dimensional case q = q′ = 1. Let χ be some C2 function from R2

to R and set Ψ =
∫ 1

0 χ(s,X(s))dX(s). The problem of approximating such stochastic integral from

(X(tni ))i has been the subject of many works ([3], [1], [18]). This problem is related to the hedging of

financial assets.

For simplicity, assume that the sampling is regular and consider Ψn =
∑n−1

i=0 χ( in , X( in))(X( i+1
n )−

X( in)) the associated Riemann sum. Then it can be shown (see [18], [7])

√
n(Ψn −Ψ) =⇒

Pn

1√
2

∫ 1

0
χ′x(s,X(s))a(X(s), σ(s))2dW̃ (s), (37)
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where W̃ is some independent Brownian motion and χ′x the derivative of χ with respect to the second

variable.

The following proposition shows that the Riemann sum can not be improved for reconstructing Ψ.

Proposition 4 Assume A0, A2 and let (Ψ̂n)n be any sequence of measurable functions of (X( in))i=0,...,n,

such that
√
n(Ψ̂n −Ψ) =⇒

Pn
Z. Then, the variable Z admits the decomposition

Z =
law

1√
2

∫ 1

0
χ′x(s,X(s))a(X(s), σ(s))2dW̃ (s) +R,

where R is independent of W̃ , conditionally on (σ,X).

Proof We set Φ(X,σ) = 1
2

∫ 1
0 χ
′
x(s,X(s))a(X(s), σ(s))2ds and F (t, x) =

∫ x
0 χ(t, u)du. From Ito’s

formula we have, Φ(X,σ) = F (1, X(1)) − Ψ −
∫ 1

0 F
′
t(s,X(s))ds. We define Φ̂n = F (1, X(1)) − Ψ̂n −

1
n

∑n−1
i=0 F

′
t(
i
n , X( in)), then we have

√
n(Φ̂n − Φ) =

√
n(Ψ− Ψ̂n) + oPn(1) and consequently

√
n(Φ̂n −

Φ) =⇒
Pn
−Z.

Now, the proposition follows, by a straightforward extension of Theorem 3 to the estimation

of Φ(X,σ) =
∫ 1

0 φ(s,X(s), σ(s))ds with φ(s, x, y) = 1
2χ
′
x(s, x)a2(x, y) and recalling that Iσ(t) =

2 ȧ
2(X(t),σ(t))
a2(X(t),σ(t))

. �

3.4.2 Approximation of solutions of stochastic differential equations

Assume again that X, σ are solutions of (18)–(19) with q = q′ = 1. Let g and k be smooth real

functions, with at most linear growth, and with 1/g bounded. We consider the stochastic differential

equation driven by X,

dY (t) = g(Y (t))dX(t) + k(Y (t))dt, Y (0) = y0 ∈ R. (38)

As an illustration of our convolution result, we can discuss about the efficiency of the approximation

of Y (1) from a functional of (X(i/n))i∈{0,...,n}. First, we recall results concerning the Euler scheme

approximation of (38). Let us denote ϕn(s) = sup{i/n | i/n ≤ s} and the Euler scheme equation is

dY n(t) = g(Y n(ϕn(t)))dX(t) + k(Y n(ϕn(t))dt, Y n(0) = y0. (39)

From the results in [9], the error of the Euler scheme is assessed by,

√
n(Y (1)− Y n(1)) =⇒

Pn
U(1),
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where (U(t))t is solution of

dU(t) = g′(Y (t))U(t)dX(t) + k′(Y (t))U(t)dt+
1√
2
g′(Y (t))g(Y (t))a(X(t), σ(t))2dW̃ (t), U(0) = 0.

(40)

The equation (40) is linear and can be solved explicitly using Doléans-Dade exponential. After several

computations, one can deduced that U(1) is a mixed normal variable with an explicit conditional

variance equal to
g(Y (1))2

2

∫ 1

0
g′(Y (s))2a(X(s), σ(s))4 exp

[∫ 1

s
α(u)du

]
ds (41)

with

α(u) = 2[k′(Y (u))− g′(Y (u))k(Y (u))

g(Y (u))
]− g(Y (u))g′′(Y (u))a2(X(u), σ(u)).

The following proposition shows that it is impossible to find a scheme with an error smaller than

the Euler scheme error.

Proposition 5 Assume that A0, A2 hold and let (Φ̂n)n be any sequence of measurable functions of

(X( in))i=0,...,n, such that
√
n(Φ̂n − Y (1)) =⇒

Pn
Z. Then, the variable Z admits the decomposition

Z =
law

U(1) +R,

where R is independent of W̃ , conditionally on (σ,X).

Proof We shall apply our Theorem 2. We need to approach the random variable Y (1) by some

sequence (Φn)n of random variables measurable with respect to (X(i/n))i and σ.

First, we transform the equation (38) into a simpler equation. To this end, we take H as a

primitive function of 1/g with H(y0) = 0, and set V (t) = H(Y (t)). Then, V is solution of the

stochastic differential equation

V (t) = X(t) +

∫ t

0
β(V (s), X(s), σ(s))ds, (42)

with β(v, x, y) = k◦H−1(v)
g◦H−1(v)

− 1
2a

2(x, y)×g′ ◦H−1(v). We note V f the solution of equation (42), where σ

is replaced by f and we have V = V σ. We construct an approximation of V (1) based on the sampling

(X(i/n)). More precisely for f a continuous function, we define (V f
n (t))t solution of

V f
n (t) = X(t) +

∫ t

0
β(V f

n (ϕn(s)), X(ϕn(s)), f(s))ds. (43)

20



The variable V σ
n (1) is an approximation of V (1), and the difference only involves drift terms of

the corresponding equations. Hence, it can be easily shown that the approximation has a rate greater

than
√
n:

√
n(V σ

n (1)− V (1))
n→∞−−−→
proba

0. (44)

For f any continuous function we set

Φn(f) = H−1(V f
n (1)). (45)

Using (44) it is simple to see that
√
n(Φn(σ) − Y (1)) converges to zero in probability and hence

√
n(Φ̂n − Φn(σ)) =

√
n(Φ̂n − Y (1)) +

√
n(Y (1)− Φn(σ)) =⇒

Pn
Z.

In order to apply the Theorem 2, we need to check H3(n) and especially compute Φ̇n. First, we

determine the derivative of f 7→ V f
n (1). From standard results about the differentiability of solution of

S.D.E. with respect to parameters, it comes that
√
n(V

f+h/
√
n

n (1)− V f
n (1))− Vfn(1, h)

n→∞−−−→ 0 where

Vfn(s, h) is solution of

Vfn(t, h) =

∫ t

0
{β̇(V f

n (ϕn(s)), X(ϕn(s)), f(s))h(s)+

∂β

∂v
(V f
n (ϕn(s)), X(ϕn(s)), f(s))Vfn(ϕn(s), h)}ds.

Solving this linear equation and using (45), we have
√
n(Φn(f +h/

√
n)−Φn(f))−〈Φ̇n(f), h〉 n→∞−−−→ 0

where Φ̇n(f) is the element of L2([0, 1],R) given by,

Φ̇n(f)(s) = g(H−1(V f
n (1))) exp

(∫ 1

s

∂β

∂v
(V f
n (ϕn(u)), X(ϕn(u)), f(u))du

)
β̇(V f

n (ϕn(s)), X(ϕn(s)), f(s)),

and, by simple computations,
∂β

∂v
(v, x, y) = k′ ◦ H−1(v) − kg′

g
◦ H−1(v) − 1

2
a2(x, y) × g ◦ H−1(v) ×

g′′ ◦H−1(v) and β̇(v, x, y) = −a(x, y)× ȧ(x, y)× g′ ◦H−1(v).

We deduce that assumption H3(n) is satisfied with Φ̇(f) the element of L2([0, 1],R) given by,

Φ̇(f)(s) = −g(Y f (1)) exp

[∫ 1

s
(k′(Y f (u))− kg′

g
(Y f (u))

−1

2
a2(X(u), f(u))g(Y f (u))g′′(Y f (u)))du

]
ȧ(X(s), f(s))× g′(Y f (s)), (46)

where Y f = H−1(V f (1)).

Now the proposition follows by application of Theorem 2, recalling that for h ∈ L2([0, 1],R),

Iσh(t) = 2 ȧ
2(X(t),σ(t))
a2(X(t),σ(t))

h(t), and remarking that by (46), the quantity 〈(Iσ)−1/2Φ̇(σ), (Iσ)−1/2Φ̇(σ)〉 is

equal to (41). �
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4 Appendix

4.1 Sketch of the proof of Proposition 1

The proof is given in Gobet [4] for the uniform discretization scheme and can be easily extend to

more general deterministic discretization schemes assuming A1. The expansion of Zfn(h) is based on

Malliavin calculus and we refer to Nualart [17] for the definitions and notations. We recall that q is

the dimension of X and we assume that f takes its values in R. We fix f ∈ B and h ∈ H0 and we

consider the process (Xθ(t))t solution of

Xθ(t) = x0 +

∫ t

0
b(Xθ(s))ds+

∫ t

0
a(Xθ(s), f(s) + θh(s)/

√
n)dW (s), (47)

where θ ∈ R. We omit the dependence in f and we can remark that for θ = 0, the equation (47) is

the equation (20) defining Xf .

We denote by pθn(tni , t
n
i+1, x, y) the density of the law of Xθ(tni+1) conditionally on Xθ(tni ) = x and

ṗθn its derivative with respect to θ. We first remark that Zfn(h) = log dP
f+h/

√
n

n

dP fn
is given by

Zfn(h) =
n−1∑
i=0

∫ 1

0

ṗθn
pθn

(tni , t
n
i+1, X

f (tni ), Xf (tni+1))dθ.

Following [4], we have a representation of ṗθn
pθn

as a conditional expectation of some Malliavin operators

that we will explicit in that follows. This representation is based on Malliavin calculus on the time

interval [tni , t
n
i+1], conditionally on (W (t))t≤tni . We first observe that the process (Xθ(t)) admits a

derivative with respect to θ that we will denote by (Ẋθ(t)). Moreover (Xθ(t)) and (Ẋθ(t)) belong

respectively to the Malliavin spaces D2,p and D1,p, ∀p ≥ 1. Now, let ϕ be a smooth function with

compact support, we have from Lebesgue derivative theorem:

∂

∂θ
Ex,iϕ(Xθ(tni+1)) =

∫
ϕ(y)ṗθn(tni , t

n
i+1, x, y)dy,

where Ex,i is the expectation conditionally on Xθ(tni ) = x. On the other hand, we have:

∂

∂θ
Ex,iϕ(Xθ(tni+1)) =

q∑
j=1

Ex,iϕ′j(Xθ(tni+1))Ẋθ
j (tni+1).

Using the integration by part formula (see Nualart [17]), we can write

Ex,iϕ′j(Xθ(tni+1))Ẋθ
j (tni+1) = Ex,iϕ(Xθ(tni+1))δ

(
Ẋθ
j (tni+1)

q∑
r=1

(γ−1
Xθ(tni+1)

)j,rDX
θ
r (tni+1)

)
.
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The operator δ is the divergence operator, DXθ(tni+1) = (Dl′Xθ
l (tni+1))1≤l,l′≤q is the Malliavin deriva-

tive of the vector Xθ(tni+1) and γXθ(tni+1) is the Malliavin variance-covariance matrix of Xθ(tni+1).

This leads to the representation :

ṗθn
pθn

(tni , t
n
i+1, x, y) = Ex,i

(
δ
(
Ẋθ(tni+1)∗γ−1

Xθ(tni+1)
DXθ(tni+1)

)
|Xθ(tni+1) = y

)
, (48)

Moreover, we have some explicit expressions for Ẋθ(tni+1), DXθ(tni+1) and γXθ(tni+1) (see for example

[17]), that we give here for the sake of completeness . We note Y (t) the derivative of the flow of Xθ,

Y (t) is a matrix q × q solution of:

Y (t) = Id+

∫ t

0
b′(Xθ(s))Y (s)ds+

q∑
j=1

∫ t

0
a′j(X

θ(s), f(s) + θh(s)/
√
n)Y (s)dW j(s), (49)

where b′ = ( ∂bi∂xj
)i,j is a q × q matrix, aj is the jth column of the matrix a and a′j = (

∂ai,j
∂xk

)i,k its

derivative with respect to x. It is well known that assuming A2, Y is invertible and the pth moments

of Y and Y −1 are uniformly bounded. Moreover we have for s ∈ [tni , t
n
i+1]:

DsX
θ(tni+1) = Y (tni+1)Y −1(s)a(Xθ(s), f(s) + θh(s)/

√
n),

γXθ(tni+1) =

∫ tni+1

tni

DsX
θ(tni+1)DsX

θ(tni+1)∗ds,

Ẋθ(tni+1) = Y (tni+1)Y −1(tni )
∫ tni+1

tni
(Y (s)Y −1(tni ))−1

[
ȧ(Xθ(s), f(s) + θh(s)/

√
n)h(s)√

n
dW (s)

−
∑q

j=1

∫ tni+1

tni
a′j(X

θ(s), f(s) + θh(s)/
√
n)ȧj(X

θ(s), f(s) + θh(s)/
√
n)h(s)√

n
ds
]
.

The main point is that we can approximate the process Ẋθ(tni+1)∗γ−1
Xθ(tni+1)

DsX
θ(tni+1), for tni ≤

s < tni+1 as:

Ẋθ(tni+1)∗γ−1
Xθ(tni+1)

DsX
θ(tni+1) = Pn(s) + Un(s), (50)

where Pn(s) is constant for s ∈ [tni , t
n
i+1)

Pn(s) =
1√

n(tni+1 − tni )
h(tni )∆W ∗tni (ȧ∗(aa∗)−1a)(Xθ(tni ), f(tni ) + θh(tni )/

√
n), (51)

where ∆Wtni
= W (tni+1) − W (tni ). The process Pn gives the principal contribution and Un has a

negligible contribution. This leads to the decomposition

ṗθn
pθn

(tni , t
n
i+1, x, y) = Ex,i

(
δ(Pn) + δ(Un)|Xθ(tni+1) = y

)
. (52)

We can compute δ(Pn):

δ(Pn) =
1√

n(tni+1 − tni )
h(tni )

(
∆W ∗tni (a−1ȧ)∗∆Wtni

− (tni+1 − tni )Tr(a−1ȧ)∗
)
, (53)
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where a−1ȧ is evaluated at (Xθ(tni ), f(tni ) + θh(tni )/
√
n). Moreover, we remark that Ex,iδ(Un) = 0 and

that we have the following bounds on Un

Ex,i|δ(Un)|p ≤ C

(
supi

√
tni+1 − tni + supi |f(tni+1)− f(tni )|

√
n

)p
, p ≥ 1.

We omit the details, but these bounds are sufficient to prove that the contribution of Un is negligible

in the expansion of Zfn(h) (see [4] Proposition 4.2).

To compute the conditional expectation of δ(Pn) on Xθ(tni+1) = y, we remark that we can approx-

imate ∆Wtni
by a−1(Xθ(tni ), f(tni ) + θh(tni )/

√
n)(Xθ(tni+1)−Xθ(tni )) and so

Ex,i
(
δ(Pn)|Xθ(tni+1) = y

)
=

1√
n(tni+1 − tni )

h(tni )
[
(y − x)∗(a−1)∗(a−1ȧ)∗a−1(y − x)

−(tni+1 − tni )Tr(a−1ȧ)∗
]

+Rn,i

where now a−1ȧ and a−1 are evaluated at (x, f(tni )+θh(tni )/
√
n), and where Rn,i is a remainder term.

By a Taylor expansion up to order one with respect to θ, we obtain after some calculus:∫ 1

0
Ex,i

(
δ(Pn)|Xθ(tni+1) = y

)
dθ =

1√
n(tni+1 − tni )

h(tni )
[
(y − x)∗(a−1)∗(a−1ȧ)∗a−1(y − x)− (tni+1 − tni )Tr(a−1ȧ)∗

]
− 1

2n

h(tni )2

(tni+1 − tni )
(y − x)∗(a−1)∗

(
(a−1ȧ)∗(a−1ȧ)∗ + (a−1ȧ)(a−1ȧ)∗

)
a−1(y − x) + R̃n,i,

where now a−1ȧ and a−1 are evaluated at (x, f(tni )).

Finally, replacing (x, y) by (Xf (tni ), Xf (tni+1)), and using the approximation Xf (tni+1)−Xf (tni ) =

atni ∆Wtni
, we deduce:

Zfn(h) =
1√
n

n−1∑
i=0

h(tni )

(tni+1 − tni )

(
∆W ∗tni (a−1ȧ)∗tni ∆Wtni

− (tni+1 − tni )Tr(a−1ȧ)∗tni

)
− 1

2n

n−1∑
i=0

h(tni )2

(tni+1 − tni )
∆W ∗tni

(
(a−1ȧ)∗tni (a−1ȧ)∗tni + (a−1ȧ)tni (a−1ȧ)∗tni

)
∆Wtni

+ o
pfn

(1), (54)

where (a−1ȧ)tni = (a−1ȧ)(Xf (tni ), f(tni )). The second term in (54) converges in P fn -probability to

−1

2
〈h, Ifh〉 = −1

2

∫ 1

0
h2(s)Tr((a−1ȧ)∗s(a

−1ȧ)∗s + (a−1ȧ)s(a
−1ȧ)∗s)µ0(s)ds.

Moreover, we have

〈h, Ifh〉 = 〈h, Ifnh〉+ o
P fn

(1)
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where Ifnh is defined by (22). This leads to

Zfn(h) = Nf
n (h)− 1

2
〈h, Ifnh〉+ o

pfn
(1), (55)

with Nf
n (h) given by (21). We conclude by establishing the stable convergence in law of Nf

n (h) using

a central limit theorem for triangular arrays of random variables (see Jacod [7] , Genon-Catalot and

Jacod [2]).
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