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ABSTRACT

In a previous work we introduced the Generalized LDPC-

Staircase codes for the Binary Erasure Channel, based on

LDPC-Staircase codes and Reed Solomon as component

codes. In this paper we perform an asymptotic analysis, in

terms of EXtrinsic Information Transfer functions and we de-

rive an upper bound of the ML decoding threshold based on

the area theorem. We use this analysis to study the impact

of the internal LDPC-Staircase code rate on the performance,

and show that the proposed Generalized LDPC-Staircase

codes closely approach the channel capacity, with only a small

number (E = 2, 3) of extra-repair symbols per check node.

1. INTRODUCTION

Generalized LDPC (GLDPC) codes [1], invented by Tanner,

are an extension of LDPC codes where the Single Parity Check

(SPC) nodes are replaced with linear block codes, referred to

as component codes. An advantage of GLDPC codes is that

more powerful component codes can be employed (instead

of SPC codes), therefore yielding better erasure recovery per-

formance. Many researches have been carried out in order

to improve GLDPC performance [2][3] [4][5][6]. The EX-

trinsic Information Transfer (EXIT) functions method, intro-

duced by Ten Brink [7][8], turned out to be a powerful tool.

This method first appeared as a handy way to visualize the

ITerative (IT) decoding process of LDPC codes, using EXIT

curves, to easily identify the bottlenecks in the decoding pro-

cess. Then the method has been used to design codes with

improved performance and has been applied to GLDPC codes

in [8] and in [6].

Our work relies on the GLDPC-Staircase codes [9], a class

of small rate GLDPC codes (i.e. that can efficiently produce a

large number of repair symbols, on demand) with interesting

erasure recovery performance under IT decoding. This per-

formance is achieved thanks to the use of the Density Evolu-

tion (DE) method [10] that enabled an optimization of the dis-

tribution of repair symbols produced by the component codes.

These codes are the core of the present work, but the decod-

ing scheme is extended: to the initial IT plus Reed-Solomon

This work is supported by the ANR-09-VERS-019-02 grant (ARSSO
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(RS) scheme of [9], we add a Maximum Likelihood (ML) de-

coding scheme to further improve the code performance (the

reasons why this is a good practical solution are detailed in

Section 2.2). This extension, called hybrid decoding, results

in exceptional performance gains (see Section 2.3).

The contributions of our work are twofold. First of all

we derive DE equations and EXIT functions for the proposed

GLDPC-Staircase codes. We follow the ideas from [11][12],

where a relationship between IT and ML decoding of LDPC

codes over the BEC is established, based EXIT functions and

the area theorem. In our work we extend this approach to our

GLDPC-Staircase codes with a hybrid decoding.

Secondly we use the EXIT method to tune an internal pa-

rameter of our codes. More precisely we explain (Section 2)

that a given GLDPC-Staircase code rate (i.e. as seen by the

user) can be achieved in different ways, for instance by adding

a large number E of extra-repair symbols produced by RS

encoding and a small number of repair symbols produced by

LDPC-Staircase encoding, or vice versa. Therefore we apply

the EXIT method and show that increasing the number E up

to a value of 2 or 3 enables to approach the channel capacity

very closely.

This paper is organized as follows. We detail GLDPC-

Staircase codes in Section 2. Then we propose the DE equa-

tions of GLDPC-Staircase codes in Section 3. We extend the

ideas of [13] to our case study and give the EXIT functions

of the (IT+RS) and ML decoding in section 4. We apply this

method and study the impacts of the internal parameter E in

Section 5. Finally we conclude.

2. INTRODUCTION TO GLDPC-STAIRCASE CODES

We first introduce the GLDPC-Staircase code design, their

hybrid decoding, and give a few results showing their excel-

lent performance and flexibility.

2.1. GLDPC-Staircase code construction

GLDPC-Staircase (NG, K) codes [9] [14] can be represented

by a Tanner graph (Fig. 1) with the following meaning:

• each check node corresponds to a RS code based on

Hankel matrices, a specific construction of RS codes



that has the interesting property that the first repair sym-

bol is also equal to the XOR sum of the source symbols.

This symbol can therefore be encoded either by means

of an LDPC-Staircase encoding (faster) or RS encod-

ing. This property does no hold for the other repair

symbols, called extra repair symbols;

• the variable nodes are broken into three categories: (1)

the source symbols; (2) the first repair symbol gener-

ated by each RS code (or by the LDPC-Staircase code),

that only depend on source and repair symbols (i.e. each

repair symbol depends on the previous repair symbol

because of the staircase structure of the LDPC code);

and (3) the extra-repair symbols generated by RS codes.
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Fig. 1. GLDPC-Staircase (13, 4) code with E = 2.

For the reasons detailed in [14] (i.e. improved perfor-

mance under ML decoding compared to an irregular distri-

bution), we assume that all the check nodes have the same

number, E, of extra-repair symbols. So for a fixed GLDPC

code rate, rG, the code rate of the LDPC-Staircase base code

is given by:

rL =
rG(1 + E)

1 + rGE
(1)

Let NL and K be the LDPC-Staircase code length and di-

mension, and NG be the length of the GLDPC-Staircase code

(which is also of dimension K). Then NG = NL + nextra,

where nextra is the total number of extra-repair RS symbols.

Let HL be the binary parity-check matrix of the LDPC-

Staircase code, of size ML = NL−K rows and NL columns.

HL has the form (H1|H2). H1 is the ML × K left-hand

side part (information part) and each column is of degree N1

(number of ”1s” per column). H2 is the ML×ML right-hand

side part (redundancy part) and features a staircase (i.e. dou-

ble diagonal) structure. H1 is created in a fully regular way,

in order to have constant column and row degrees. More pre-

cisely, each column of H1 is of degree N1 (number of ”1s”

per column), which is an input parameter during the LDPC-

Staircase code creation [15]. Each row m of H1 is of degree
N1

1

rL
−1

, and because of the staircase structure of H2, depend-

ing on whether m = 1 or m > 1, a row m of HL is of degree:

d1 =
N1

1

rL
− 1

+ 1 and dm>1 =
N1

1

rL
− 1

+ 2 (2)

The E extra-repair symbols associated to the mth row

of HL are generated by RS(nm, km) encoding over GF (28).
Here nm and km are respectively the RS code length and di-

mension, and they are related to the other parameters of row

m as follows. For row m > 1, the various source symbols

(i.e. from the user point of view) that are involved in this

row plus the previous repair symbol are considered as source

symbols from the RS point of view. The new LDPC-Staircase

repair symbol for this row plus the E extra-repair symbols are

considered as repair symbols from the RS point of view. For

the first row the only difference is the fact there is no previous

repair symbol (it’s the beginning of the staircase). So:

nm = km + 1 + E (3)

with km = dm − 1 (no matter the row).

2.2. GLDPC-Staircase decoding

One approach consists in using an ML decoding over the

full system, with operations over GF (28), which enables to

achieve the best possible erasure recovery capabilities. How-

ever, it does not take into account the complexity reduction

gains made possible by GLDPC-Staircase specificities. There-

fore we chose a different strategy, called hybrid decoding, that

consists of a joint use of four decoders:

• IT decoder over the binary LDPC-Staircase system:

extra-repair symbols are ignored at this step. This solu-

tion features a linear complexity with sub-optimal era-

sure recovery capabilities;

• RS decoder for a given check node: this is a classic

RS decoding that takes into account the three types of

symbols. It has a higher complexity but is MDS;

• Binary ML decoder over the LDPC-Staircase system:

extra-repair symbols are once again ignored at this step.

If this solution features a quadratic complexity in terms

of the number of XOR operations between symbols, it

allows to reach the maximum correction capabilities

when ignoring extra-repair symbols;

• Non binary ML decoder: this solution also features a

quadratic complexity but operations are now signifi-

cantly more complex (performed on GF (28)) than sim-

ply XORing two symbols. However it allows reach-

ing the maximum correction capabilities of the code. It

is equivalent to the ML decoding over the full system

mentioned above, but the system on which it is applied

is hopefully simplified by the previous three decoders.

Decoding succeeds if one or several of these decoders succeed

and recover all the missing source symbols.

2.3. GLDPC-Staircase performance

As shown in [14], GLDPC-Staircase codes exhibit excellent

performances under hybrid decoding over the BEC, both for



large and very small objects, and both in terms of average

performance and low error floor. For instance, with a source

block of size K = 1 000 symbols (resp. K = 32 symbols), a

code rate rG = 1/2, an overhead of 5 symbols (resp. 3 sym-

bols) (i.e. after receiving 1 005 symbols (resp. 35 symbols)

chosen randomly in the set of NG symbols) is sufficient to

have a decoding failure probability below 10−4.1

Several additional benefits are detailed in [14], like their

small rate feature (a large number of repair symbols can be

produced, in an incremental way, on demand, while keep-

ing excellent performances) and their major flexibility (the

GLDPC-Staircase behavior can be tuned to look more like

MDS codes or LDPC-Staircase codes). It makes it possible

to adapt to the exact use-case and channel conditions (e.g.

when used in fountain like applications, e.g. within a FLUTE

carousel [16], over wireless networks).

3. DENSITY EVOLUTION (DE) EQUATIONS

3.1. Preliminaries

In the sequel, we denote by d̂v and d̂c the maximum variable

and check node degrees in the bipartite (Tanner) graph as-

sociated with the LDPC-Staircase code. Following [10], we

define the edge-perspective Degree Distribution (DD) polyno-

mials by λ(x) =
∑d̂v

d=1
λdx

d−1 and ρ(x) =
∑d̂c

d=1
ρdx

d−1,

where λd (resp. ρd) represents the fraction of edges con-

nected to variable-nodes (resp. check-nodes) of degree d.

From a node perspective, the DD polynomials are given by

L(x) =
∑d̂v

d=1
Ldx

d and R(x) =
∑d̂c

d=1
Rdx

d where Ld

(resp. Rd) represents the fraction of variable-nodes (resp.

check-nodes) of degree d.

Given a GLDPC-Staircase code, DD polynomials λ and ρ
are defined by the underlying LDPC-Staircase code, defined

by the bottom graph of Figure 1 (that is, not containing the

extra-repair nodes). We denote by E(λ, ρ,E) the ensemble of

GLDPC-Staircase with edge-perspective DD polynomials λ
and ρ, and with E extra-repair symbols per check-node.

Assume that an arbitrary code from E(λ, ρ,E), of length

NG, is used over the BEC, and let ε denote the channel era-

sure probability. The probability threshold of the ensemble

E(λ, ρ,E) is defined as the supremum value of ε (that is,

the worst channel condition) that allows transmission with an

arbitrary small error probability, assuming that NG goes to

infinity. The threshold value of a given ensemble of codes

can be efficiently computed by using the Density Evolution

(DE) method [10], which recursively computes the fraction

of erased messages passed during the belief propagation de-

coding. Density evolution equations are derived in the next

section, by using the methodology introduced in [9].

1In these tests the LDPC-Staircase code rate is set to rL = 2/3 and

N1 = 5. Clearly, with K = 32 symbols, an option is to set rL = 1 so

that only extra-repair symbols are used, which means that GLDPC-Staircase

codes are turned into MDS codes.

3.2. DE equations for GLDPC-Staircase codes

In this section we derive the DE equation for the ensemble

E(λ, ρ,E) of GLDPC-Staircase codes. In the sequel, the de-

gree of a check or variable (source or repair) node will always

refer to its degree in the underlying LDPC-Staircase code.

We are interested in the erasure probability of messages ex-

changes by the IT+RS decoding along the messages of the

LDPC-Staircase code. We denote by Pℓ, the probability of a

LDPC symbol (source or repair) node sending an erasure at

iteration ℓ. Similarly, Qℓ denotes the probability of a check

node sending an erasure (to an LDPC symbol-node) at itera-

tion ℓ. Clearly, P0 is equal to the channel erasure probability

ε. In order to derive a recursive relation between Pℓ and Pℓ+1,

we proceed as follows.

Consider a constraint node c connected to symbol-nodes

(v1, . . . , vd, e1, . . . , eE) where vi denotes an LDPC (source

or repair) symbol node and ei denotes an extra-repair node.

Since c corresponds to an RS code, it can recover the value of

an LDPC symbol node, say v1, if and only if the number of

erasures among the other symbol-nodes (v2, . . . , eE) is less

than or equal to E. Now, at iteration ℓ, the LDPC symbols

are erased with probability Pℓ, while extra repair symbols are

always erased with probability ε, the channel erasure proba-

bility. It follows that the probability of a check node of degree

d recovering the value of an LDPC symbol at iteration ℓ + 1,

denoted by Q̄ℓ+1(d), is given by:

Q̄ℓ+1(d) =
∑

0≤i<d,0≤j≤E

i+j≤E

(

d−1

i

)

P i
ℓ (1 − Pℓ)

d−1−i

(

E

j

)

εj(1 − ε)E−j (4)

Averaging over all possible values of d, we get:

Qℓ+1 = 1 −

d̂c
∑

d=1

ρdQ̄ℓ+1(d) (5)

Conversely, an LDPC symbol node v of degree d, con-

nected to check nodes c1, . . . , cd, sends an erasure to the check

node c1 iff it was erased by the channel, and it received erased

messages from all check nodes c2, . . . , cd. Since this happens

with probability ε ·Qd−1

ℓ+1
, and averaging over all possible de-

grees d, we get:

Pℓ+1 = ε

d̂v
∑

d=1

λdQ
d−1

ℓ+1
= ελ(Qℓ+1) (6)

Using equations (4), (5), (6) we can determine a recursive

relation between Pℓ and Pℓ+1, with P0 = ε. The decoder can

recover from a fraction of ε erased symbols iff lim
ℓ→+∞

Pl = 0.

Therefore, the threshold probability can be computed by:

ǫ(IT+RS)(λ, ρ,E) = max{P0 | lim
ℓ→+∞

Pl = 0} (7)

When no confusion is possible, the above threshold value will

be simply denoted by ǫ(IT+RS).



4. EXIT FUNCTIONS AND ML THRESHOLD UPPER

BOUND

EXtrinsic Information Transfer (EXIT) curves were first in-

troduced in [7] as a technique to analyse the convergence of it-

erative decoding process of parallel concatenated component

codes. For binary LDPC codes, a slightly different defini-

tion of the EXIT curve has been introduced in [11], where the

EXIT curve is associated with the sparse graph system rather

than with component codes). Roughly speaking, the EXIT

curve gives the fraction of erased bits “contained” in the ex-

trinsic information produced by the decoding algorithm, as-

suming that the code length tends to infinity. The EXIT curve

can be defined for any decoding algorithm (e.g. IT or ML de-

coding), and it relates to the asymptotical performance of an

ensemble of codes under the considered decoding. Obviously,

in case of IT decoding, there a tight relation between the EXIT

curve and the density evolution equations derived in the pre-

vious section. This relation will be discussed for GLDPC-

Staircase codes under (IT+RS) decoding in Section 4.1. For

the ML decoding, it has been shown in [11] that the area un-

der the EXIT curve is always equal to the asymptotic rate of

the ensemble. This allows deriving an upper bound of the

ML threshold, which is conjunctured to be tight in a quite

general settings, especially for codes defined by almost regu-

lar graphs. We extend this technique to our GLDPC-Staircase

codes in Section 4.2

4.1. EXIT curve for the (IT+RS) decoding

The EXIT curve defined in this section relates to the asymp-

totical performance of the ensemble E(λ, ρ,E) under the

(IT+RS) decoding. Precisely, we start with a fixed number

of decoding iterations, say ℓ, and let the code length tend to

infinity. Within this limit, we denote by p(ε) the probabil-

ity of the extrinsic information2 of a random LDPC symbol-

node being erased. Using the DE equations from Section

3.2, we obtain p(ε) =
∑d̂v

d=1
LdQ

d
ℓ = L(Qℓ), where L is

the node-perspective DD polynomial of LDPC symbol-nodes.

The EXIT curve of the (IT+RS) decoding is defined as the

limit of the above probability when the number of iterations

goes to infinity, that is, h(IT+RS)(ε) = lim
ℓ→+∞

L(Qℓ). Since L

is a finite-degree polynomial, we can also write:

h(IT+RS)(ε) = L(Q+∞), (8)

where Q+∞ = lim
ℓ→+∞

Qℓ. As a consequence, the probability

threshold and the EXIT-curve satisfy the following equality:

ǫ(IT+RS) = sup{ε ∈ [0, 1] | h(IT+RS)(ε) = 0} (9)

An example of EXIT function under the (IT+RS) decoding,

for an ensemble of GLDPC codes, will be discussed in the

next section.

2The information we get by tacking into account the messages from the

neighbor check-nodes, but not the channel output

4.2. EXIT curve for the ML decoding

As for the (IT+RS) decoding, the EXIT curve of the ML de-

coding is also defined in terms of extrinsic erasure probabil-

ity. Precisely, in the limit of infinite code length, for a given

channel erasure probability ε, hML(ε) is the probability of a

symbol node being erased after ML decoding, assuming that

the received value (if any) of this particular symbol has not

been submitted to the decoder. The ML probability threshold

is given by:

ǫML = sup{ε ∈ [0, 1] | hML(ε) = 0} (10)

The exact computation of the EXIT function for the ML de-

coding is a difficult task. However, using the area theorem3

[11], we get

∫ 1

ǫML
hML(ε) dε = rG, where rG is the designed

coding rate of the given ensemble of GLDPC codes. More-

over, since the (IT+RS) decoding is suboptimal with respect

to the ML decoding, we have h(IT+RS)(ε) ≥ hML(ε). Hence,

if for some ǭML

∫ 1

ǭML
h(IT+RS)(ε) dε = rG, (11)

we necessarily have ǭML ≥ ǫML. This gives an upper bound

on the ML-threshold, which is known to be tight in the binary

case.

Fig. 2 shows the EXIT curve, under (IT+RS) decoding,

for the ensemble of GLDPC codes with node-perspective DD

polynomials L(x) = 0.4x2+0.6x5 and R(x) = x10, and with

E = 2 extra repair symbols per check-node. We note that

the LDPC code is of rate rL = 3/5, with all source symbol-

nodes of degree 5 and all repair symbol-nodes of degree 2.

The coding rate of the GLDPC code is given by rG = 1/3.

The (IT+RS) threshold value is ǫ(IT+RS) = 0.5376. It can be

seen that h(IT+RS)(ε) = 0 for values ε < ǫ(IT+RS), then for

ε = ǫ(IT+RS) it jumps to a non-zero value and increases until

it reaches a value of 1 for ε = 1. The ML-threshold upper-

bound is the unique point ǭML ∈ [ǫ(IT+RS), 1] such that the

hatched area below the (IT+RS)-EXIT curve, delimited by

ε = ǭML at the left and by ε = 1 at the right, is equal to the

GLDPC rate rG = 1/3. In this case, we obtain ǭML = 0.6664.

5. APPLICATION: CHOOSING A VALUE FOR E

Let us consider a GLDPC-Staircase code of rate rG. Several

values of E, or equivalently of the internal LDPC-Staircase

code rate rL, enable to achieve this global code rate (see

Eq. 1). However choosing a value impacts the performance

achieved. Therefore we now apply the techniques developed

in section 4 to adjust E, by computing the upper bound on

the ML threshold for several values of E. These results are

3Note that the area theorem applies for the MAP decoding, but over the

BEC, MAP and ML decoding are equivalent.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε
(IT+RS)

 = 

0.5376 

ε (channel erasure probability)

h
(I

T
+

R
S

) (ε
)

(IT+RS) EXIT Function of GLDPC codes with rate r
G

 = 1/3     

 

 

 ε
ML

 = 

 0.6664

r
L
 = 0.6

Fig. 2. Example of EXIT function, (IT+RS) threshold value, and

ML threshold upper bound for an ensemble of GLDPC codes

Table 1. ǭML of GLDPC codes as a function of rG

rG E = 0 E= 1 E= 2 E= 3 E= 4 E=5 δsh

1/3.5 0.7054 0.7124 0.7138 0.7141 0.7142 0.7142 0.7142

1/3 0.6634 0.6652 0.6664 0.6665 0.6666 0.6666 0.6667

1/2 0.4946 0.4993 0.4999 0.4999 0.4999 0.4999 0.5000

2/3 0.3301 0.3330 0.3333 0.3333 0.3333 0.3333 0.3333

3/4 0.2484 0.2498 0.2499 0.2499 0.2499 0.2499 0.2500

9/10 0.0991 0.0999 0.0999 0.0999 0.0999 0.0999 0.1000

summarized in Table 1 and compared to the capacity limit

(δsh). We notice that increasing E (or equivalently increas-

ing the LDPC code rate) quickly increases the upper bound

on the ML threshold, until it reaches a stable value very close

to the Shannon limit δsh. Depending on rG this stable value

is obtained with E = 1, 2 or 3. Therefore, a small number

of extra-repair RS-symbols per check-node is sufficient to get

extremely close to the channel capacity.

Let us now compare these theoretical results with practi-

cal results, obtained by simulations with a software GLDPC-

Staircase codec that we designed. We see in Fig. 3 that the av-

erage erasure recovery performance (measured here in terms

of inefficiency, i.e. the ratio between the number of symbols

needed for decoding to succeed and k) quickly approaches 1
(i.e. no overhead, decoding is possible with exactly k sym-

bols) as E = 3, even for very small code dimension.

6. CONCLUSIONS

In this paper we have analyzed the asymptotic behavior of

GLDPC-Staircase codes for the BEC, through the DE and

EXIT functions methods. More specifically, after explaining

how these techniques apply to our use-case, we used them

to tune an internal parameter of the code. Our results in-

dicate that increasing the number E of extra repair symbols

quickly increases the upper bound on the ML thresholds un-

til it reaches a stable value very close to the Shannon limit.

In practice choosing E = 2 or 3 yield performance that ap-

proach those of an ideal, MDS code, even for very small code

dimensions.
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