Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure

Baptiste Bergeot 1, 2 André Almeida 1 Christophe Vergez 2 Bruno Gazengel 1
2 Sons
LMA - Laboratoire de Mécanique et d'Acoustique [Marseille]
Abstract : Reed instruments are modeled as self-sustained oscillators driven by the pressure inside the mouth of the musician. A set of nonlinear equations connects the control parameters (mouth pressure, lip force) to the system output, hereby considered as the mouthpiece pressure. Clarinets can then be studied as dynamical systems, their steady behavior being dictated uniquely by the values of the control parameters. Considering the resonator as a lossless straight cylinder is a dramatic yet common simplification that allows for simulations using nonlinear iterative maps. In this paper, we investigate analytically the effect of a time-varying blowing pressure on the behavior of this simplified clarinet model. When the control parameter varies, results from the so-called dynamic bifurcation theory are required to properly analyze the system. This study highlights the phenomenon of bifurcation delay and defines a new quantity, the dynamic oscillation threshold. A theoretical estimation of the dynamic oscillation threshold is proposed and compared with numerical simulations.
Type de document :
Article dans une revue
Nonlinear Dynamics, Springer Verlag, 2013, 73 (1), pp.521-534. 〈10.1007/s11071-013-0806-y〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00719228
Contributeur : Baptiste Bergeot <>
Soumis le : jeudi 27 novembre 2014 - 11:10:36
Dernière modification le : mardi 2 décembre 2014 - 16:27:58
Document(s) archivé(s) le : vendredi 14 avril 2017 - 22:03:46

Fichiers

articleBB1_HAL_v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Baptiste Bergeot, André Almeida, Christophe Vergez, Bruno Gazengel. Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure. Nonlinear Dynamics, Springer Verlag, 2013, 73 (1), pp.521-534. 〈10.1007/s11071-013-0806-y〉. 〈hal-00719228v4〉

Partager

Métriques

Consultations de
la notice

213

Téléchargements du document

123