Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants

To cite this version:
Annelies P. Vandekerckhove, S. Glorieux, A.C. Gryspeerdt, L. Steukers, J. van Doorsselaere, et al.. Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants. Veterinary Microbiology, Elsevier, 2011, 152 (1-2), pp.21. 10.1016/j.vetmic.2011.03.038. hal-00719074
Accepted Manuscript

Title: Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants

PII: S0378-1135(11)00215-X
DOI: doi:10.1016/j.vetmic.2011.03.038
Reference: VETMIC 5264

To appear in: VETMIC

Received date: 14-1-2011
Revised date: 29-3-2011
Accepted date: 31-3-2011

Please cite this article as: Vandekerckhove, A.P., Glorieux, S., Gryseerdt, A.C., Steukers, L., Van Doorselaere, J., Osterrieder, N., Van de Walle, G.R., Nauwynck, H.J., Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants, Veterinary Microbiology (2010), doi:10.1016/j.vetmic.2011.03.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants

Annelies P. Vandekerckhovea#, S. Glorieuxa, A. C. Gryspeerdta, L. Steukersa, J. Van Doorselaereb, N. Osterriederc, G. R. Van de Walled,* and H. J. Nauwyncka,*

aDepartment of Virology, Parasitology and Immunology, dDepartment of Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
bKATHO Catholic University College of South-West Flanders, 8800 Roeselare, Belgium
cInstitut für Virologie, Freie Universität Berlin, Philippstrasse 13, 10115 Berlin, Germany
*shared senior authorship

#Corresponding author: Annelies Vandekerckhove
Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University
Salisburylaan 133, 9820 Merelbeke, Belgium
Phone: +32 9 264 73 75, Fax: +32 9 264 74 95
Email: annelies.vandekerckhove@UGent.be
Abstract

Equine herpesvirus type 1 (EHV-1) replicates extensively in the epithelium of the upper respiratory tract, after which it can spread throughout the body via a cell-associated viremia in mononuclear leukocytes reaching the pregnant uterus and central nervous system. In a previous study, we were able to mimic the *in vivo* situation in an *in vitro* respiratory mucosal explant system. A plaquewise spread of EHV-1 was observed in the epithelial cells, whereas in the connective tissue below the basement membrane (BM), EHV-1-infected mononuclear leukocytes were noticed. Equine herpesvirus type 4 (EHV-4), a close relative of EHV-1, can also cause mild respiratory disease, but a cell-associated viremia in leukocytes is scarce and secondary symptoms are rarely observed. Based on this striking difference in pathogenicity, we aimed to evaluate how EHV-4 behaves in equine mucosal explants. Upon inoculation of equine mucosal explants with the EHV-4 strains VLS 829, EQ1 012 and V01-3-13, replication of EHV-4 in epithelial cells was evidenced by the presence of viral plaques in the epithelium. Interestingly, EHV-4-infected mononuclear leukocytes in the connective tissue below the BM were extremely rare and were only present for one of the three strains. The inefficient capacity of EHV-4 to infect mononuclear cells explains in part the rarity of EHV-4-induced viremia, and subsequently, the rarity of EHV-4-induced abortion or EHM.

Key words: EHV-4; hampered spread; basement membrane barrier; mononuclear cells
1. Introduction

At first, the equine alphaherpesviruses equine herpesvirus type 1 (EHV-1) and equine herpesvirus type 4 (EHV-4) were considered as 2 subtypes of the same virus, designated EHV-1 subtype 1 and EHV-1 subtype 2 respectively (Sabine et al., 1981; Studdert et al., 1981). Additional sequence information confirmed that EHV-1 and EHV-4 are actually two closely related, but distinct viruses, with an amino acid (aa) sequence identity ranging between 54.9% and 96.4% (Telford et al., 1998). To date, EHV-1 and EHV-4 are both classified as members in the order Herpesvirales, subfamily Alphaherpesvirinae, genus Varicellovirus (Davison et al., 2009).

EHV-1 and EHV-4 are major causative agents of respiratory disease in the horse (Allen and Bryans, 1986; Crabb and Studdert, 1995; Reed and Toribio, 2004). Initial infection starts with replication of the virus in epithelial cells lining the upper respiratory tract (URT). EHV-1 does not only have a tropism for epithelial cells, but also targets mononuclear leukocytes, misusing these cells for viral transportation through the basement membrane (BM) barrier (Kydd et al., 1994; Gryspeerdt et al., 2010). Indeed, we showed in a previous study that EHV-1-induced plaques cannot breach the BM, but that EHV-1 penetrates the deeper tissues of the respiratory tract in a more discrete manner, using migrating individual mononuclear cells as a Trojan horse (Vandekerckhove et al., 2010). Carried by these mononuclear leukocytes, EHV-1 can easily spread through the body via a cell-associated viremia, reaching its target organs, the pregnant uterus and the central nervous system. At these secondary replication sites, EHV-1 replicates in endothelial cells, causing vasculitis, thrombosis and disseminated ischemic necrosis, resulting in abortion and nervous system disorders (Smith et al., 1996; Wilson, 1997; Smith and Borchers; 2001; Reed and Toribio, 2004; Brosnahan and Osterrieder, 2009).

In contrast, EHV-4 infection remains mostly restricted to the URT and a cell-associated viremia, following primary replication in the URT is very rare (Patel et al., 1982; van
Maanen, 2002; Patel and Heldens, 2005). What determines this difference in pathogenic potential between EHV-1 and EHV-4 is unknown up till now. Strikingly, pathogenicity seems to be correlated with host cell range. EHV-1 has a broad host range and can replicate in equine, human, mouse, monkey, hamster, rabbit, pig, bovine, canine, feline and even avian cells (Studdert and Blackney, 1979; Trapp et al., 2005), whilst EHV-4 replication seems to be mainly restricted to equine cells. Furthermore, EHV-1 can infect mice and cause respiratory disease while this is not the case for EHV-4 (Awan et al., 1990; Azmi and Field, 1993).

In this study, we aimed to evaluate how EHV-4 interacts with the respiratory mucosa upon inoculation of equine respiratory mucosal explants and we wanted to compare these replication kinetics with those of its close relative, EHV-1.

2. Materials and Methods

2.1. Donor horses

Material from slaughter horses was used to obtain nasal explants. Horses negative for nasal/ocular discharge and lung pathology were selected. All horses were between 5 and 7 years old, as determined by inspection of dental incisive architecture (Muylle et al., 1996). A complement-dependent seroneutralization (SN)-test was performed on the serum of all horses and EHV-specific antibody titres ranged between 24 and 96. Nasal explants of at least three individual horses were used to evaluate replication kinetics of several EHV-1 and EHV-4 isolates.
2.2. **Cultivation of the nasal mucosal explants**

The cultivation of nasal mucosal explants was performed exactly as previously described (Vandekerckhove et al., 2009). In brief, immediately after slaughter, the head was removed from the carcass and longitudinally sawn into 2 equal sections. Tissue from the deep intranasal part of the septum was collected. The tissues were transported on ice in phosphate buffered saline (PBS), supplemented with 1 µg/mL gentamicin (Invitrogen, Paisley, UK), 1 mg/mL streptomycin (Certa, Braine l’Alleud, Belgium), 1000 U/mL penicillin (Continental Pharma, Puurs, Belgium), 1 mg/mL kanamycin (Sigma-Aldrich, St. Louis, MO, USA) and 5 µg/mL fungizone (Bristol-Myers Squibb, New York, USA), to the laboratory. Mucosal explants were stripped from the surface of the different tissues by use of surgical blades (Swann-Morton). The stripped mucosa of each tissue was divided into equal explants of 25 mm² and placed epithelium upwards on fine-meshed gauze for culture at an air-liquid interface. Only a thin film of serum-free medium (50 % Roswell Park Memorial Institute medium (RPMI, Invitrogen)/50 % Dulbecco's Modified Eagle Medium (DMEM, Invitrogen) supplemented with 0.3 mg/mL glutamine (BDH Biochemical, Poole, UK), 1 µg/mL gentamicin (Invitrogen), 0.1 mg/mL streptomycin (Certa) and 100 U/mL penicillin (Continental Pharma)) covered the explants, thereby mimicking the air/liquid interface found in the respiratory tract of the living animal. Explants were maintained at 37 °C in an atmosphere containing 5 % CO₂.

2.3. **Virus**

Three different EHV-4 strains were used in this study. EHV-4 isolate VLS 829 was provided by the Office International d’Épizooties Reference Laboratory (University of Kentucky, Lexington, KY) and was identified as EHV-4 by restriction fragment length polymorphism
(RFLP) (Van de Walle et al., 2007). Strain EQ1 012 was obtained from Intervet (Heldens et al., 2001) and strain V01-3-13 was isolated from a horse with respiratory disease and obtained from the Institut für Virologie in Berlin (kind gift of Dr. K. Borchers).

The EHV-1 isolate 03P37 was isolated from peripheral blood mononuclear cells (PBMC) of a paralytic horse in 2003 and typed as neurovirulent by the Animal Health Trust in the United Kingdom (Nugent et al., 2006). EHV-1 strain RacL11 was isolated in the late 1950s from an aborted foal and exhibits high virulence in the natural host and laboratory animals (Reczko & Mayr, 1963; Mayr et al., 1968).

2.4. Inoculation of the nasal mucosal explants

All explants were inoculated after 24 h of culture. Inoculation took place by immersion of the explant in 1 ml of inoculum, containing $10^{6.5}$ TCID$_{50}$ of EHV-1 or EHV-4 for 1 h at 37 °C and 5 % CO$_2$. After incubation, explants were washed twice with warm medium and transferred back to their gauze. At several time points post inoculation (pi), explants were collected, embedded in methylcellulose medium (Methocel® MC, Sigma-Aldrich) and frozen at -70 °C.

Nasal explants of three horses were collected. Of each horse, several explants were made and inoculated with different EHV-1 isolates (03P37, parental RacL11) and EHV-4 isolates (VLS 829, EQ1 012, V01-3-13), and collected at different time points pi (0, 24, 48 and 72 hpi).

2.5. Plaque analysis and quantification of individual infected cells

At 0, 24, 48 and 72 hpi, one hundred consecutive cryosections of 20 µm were made of the frozen explants and the cryosections were fixed in methanol for 20 min (-20 °C, 100 %). Subsequently, the basement membrane (BM) of the tissues was stained with monoclonal mouse anti-collagen VII antibodies (Sigma-Aldrich), followed by secondary Texas Red®-
labeled goat anti-mouse antibodies (Molecular Probes (Invitrogen)). In a second step, viral proteins were stained by incubation with biotinylated equine polyclonal anti-EHV-1 IgG (van der Meulen et al, 2003), followed by streptavidin-FITC® (Molecular Probes (Invitrogen)). This polyclonal antibody against EHV-1 shows cross-reactivity with EHV-4 and was therefore also used for staining of EHV-4. Antibodies were incubated for 1 h at 37 °C and 5% CO₂. Finally, cryosections were washed three times in PBS and mounted with glycerin-DABCO (Janssen Chimica, Beerse, Belgium). To reproducibly analyse the replication characteristics of several EHV-1 isolates, we used a system set up by Glorieux et al. (2009) and optimized by Vandekerckhove et al. (2010). Briefly, penetration of the virus through the BM was inspected and virus plaque latitudes were measured in one hundred consecutive cryosections using the ImageJ 1.28 software that is freely available from the National Institute of Mental Health webpage (http://rsb.info.nih.gov/ij/docs/intro.html). Plaque latitude was measured by means of the line tool in ImageJ. Number of plaques and number of individual infected cells below the BM were counted by confocal microscopy (Leica TCS SP2 laser scanning spectral confocal system, Leica Microsystems GmbH, Wetzlar, Germany) and the Leica confocal software.

2.6. **Statistical analysis**

The data were processed by the SPSS software (SPSS) for analysis of variance (ANOVA). The data are presented as means + standard deviations. Results with \(P \) values of \(\leq 0.05 \) were considered significant.
3. Results

3.1. EHV-4 strains replicate plaquewise in the epithelial cells of respiratory mucosal explants but are severely impaired in infecting mononuclear cells

Replication kinetics of several EHV-4 strains were evaluated in our respiratory nasal mucosal explant system. To this end, nasal explants of three individual horses were inoculated with $10^{6.5} \text{TCID}_{50}/\text{ml}$ of the EHV-4 isolates VLS 829, EQ1, V01-3-13 and of each animal and for every strain used, one explant was examined at each collected time point (0, 24, 48 and 72 hpi).

No significant differences were seen in the results obtained with different EHV-4 strains, and hence, results will not be discussed separately for each strain. In general, viral epithelial plaques were visible starting from 24 hpi (Figure 1A) and their latitudes increased over time (Figure 1B).

These results are similar to what is normally observed upon inoculation of nasal mucosal explants with EHV-1. Indeed, when comparing the replication kinetics of the EHV-4 strains with the replication kinetics of the EHV-1 strains 03P37 and RacL11 (Figure 2), following observations were made. Viral plaques in the epithelium were seen from 24 hpi onwards. In addition, plaque latitude of these epithelial plaques increased over time, with significant differences between the EHV-1 plaque latitudes and the EHV-4 plaque latitudes at all observed time points (Figure 2B). The number of plaques and plaque latitudes increased significantly between 24 and 48 hpi, but no longer between 48 and 72 hpi (Figure 2A).

When evaluating infection below the BM, no individual infected cells were noticed at any observed time point pi for the EHV-4 strains VLS 829 and V01-3-13, and for strain EQ1 012, only three EHV-4-infected cells were found below the BM in the explant of 1 horse at 72 hpi (Table I). As these individual infected cells below the BM were only noticed very rarely, this implies that there is hardly any passing of virus through the BM via individual infected
immune cells, which is in striking contrast to what is normally observed for EHV-1 strains. Indeed, upon inoculation with strains 03P37 and RacL11, the presence of single infected cells in the underlying connective tissue was observed from 24 hpi onwards and the number of these single EHV-1-infected cells increased over time with an average of 21 ± 4.4 cells at 24 hpi, 135 ± 58.3 cells at 48 hpi, and 546 ± 94.3 cells at 72 hpi for strain 03P37, and an average of 6 ± 1.2 cells at 24 hpi, 78.7 ± 20.3 cells at 48 hpi, and 156.3 ± 16.3 cells at 72 hpi for strain RacL11 (Table I). EHV-1 strain 03P37 infected significantly more cells below the BM than EHV-1 strain RacL11.

In conclusion, these experiments indicate that (i) EHV-4 spreads plaque-wise in epithelial cells of nasal mucosal explants, similar to EHV-1 albeit to a lesser extent, and (ii) EHV-4, in contrast to EHV-1, has no marked tropism for mononuclear leukocytes as single infected cells were rarely observed below the basement membrane at all time points pi.

4. Discussion

The subfamily of the *Alphaherpesvirinae* is, within the family of the *Herpesviridae*, an extensive subfamily containing numerous mammal, bird and reptile viruses (Davison *et al.*, 2009). Pseudorabies virus (PRV or Suid herpesvirus 1, SHV-1), bovine herpesvirus 1 (BoHV-1), equine herpesvirus 1 (EHV-1) and -4 (EHV-4) are clinically and economically the most relevant veterinary mammalian viruses belonging to the alphaherpesvirus subfamily. Although these viruses share many similarities, differences between the viruses become apparent when considering the clinical picture and pathogenesis at the level of the upper respiratory tract (URT). While EHV-1 and EHV-4 cause mild respiratory problems, PRV and BoHV-1 have the possibility to cause severe respiratory disease accompanied by pustular, necrotic lesions that progress to large haemorrhagic and ulcerated areas in the respiratory
mucosa (Allen and Bryans, 1986, Crabb and Studdert, 1995; Reed and Toribio, 2004; Nauwynck et al., 2007; Nandi et al., 2009). Besides EHV-1, PRV and BoHV-1 can easily spread through the body via a cell-associated viremia, whereas EHV-4-induced viremia is an exceptional event (Nyaga and McKercher, 1980; Patel et al., 1982; Wang et al., 1988; Nauwynck and Pensaert, 1995; van Maanen, 2002; Patel and Heldens, 2005). These differences can partially be explained by the diverse replication and invasion strategies of these viruses in the respiratory mucosa. By means of respiratory mucosal explants, it was found that PRV and BoHV-1 spread horizontally as well as vertically in a plaquewise manner in the epithelium, and that virus-induced plaques penetrated the BM barrier (Glorieux et al., 2007; Steukers et al., 2010). In contrast, the spread of EHV-1-induced plaques was solely lateral, as plaques never crossed the BM at any time point pi, implying that the BM functions as an absolute barrier (Gryspeerdt et al., 2010; Vandekerckhove et al., 2010). However, a marked tropism of EHV-1 for mononuclear leukocytes was observed and EHV-1-infected mononuclear leukocytes were present both in the epithelium and below the BM in the vicinity of virus-induced plaques in vitro but also in vivo (Gryspeerdt et al., 2010; Vandekerckhove et al., 2010). Hence, these data suggest that closely related alphaherpesviruses use distinct ways of crossing the BM barrier and invading the respiratory mucosa. In the present study, replication of several EHV-4 strains was assessed for the first time in nasal mucosal explants of the horse. Thereby, it was found that EHV-4-induced virus plaques were present in the epithelium, starting from 24 hours post inoculation (hpi), although the lateral spread of EHV-4 was less extensive when compared to EHV-1. This is in accordance with the in vivo situation as respiratory signs following an infection with EHV-4 are less severe when compared to those following an EHV-1 infection (Heldens et al., 2001; Patel et al., 2003; Patel and Heldens, 2005). Remarkably, individual EHV-4-infected cells below the BM were only noticed very rarely and were only present for one of the three strains, implying that
passing of the virus through the BM via individual infected mononuclear leukocytes is an
exceptional event in comparison with EHV-1. Also this observation can be linked to the in
vivo pathogenesis, since a cell-associated viremia following an EHV-4-induced respiratory
infection is not at all consistent (Patel et al., 1982). This was in agreement with a study on
kinetics of EHV-4 viral DNA load in peripheral blood leukocytes (PBL) from foals during a
field outbreak of respiratory disease, showing that EHV-4 DNA loads in PBLs were low,
which indicates that EHV-4 viremia is rare (Pusterla et al., 2005). Hence, the induction of
abortion or nervous system disorders upon EHV-4 infection is also scarce (Patel et al., 1982).
Indeed, EHV-4 accounts for only 1 to 16% of herpesviral-induced abortions (Ostlund, 1993;
Whitwell et al., 1995a, b) and apart from a single case report in Europe (Meyer et al., 1987),
EHV-4 has not been found in association with herpesviral-induced neurologic disease
(Ostlund, 1993). This limited capability of EHV-4, in contrast to EHV-1, to initiate a cell-
associated viremia might be due to an inefficient infection of these circulating mononuclear
cells. Indeed, it has been previously shown that EHV-4 is incapable of efficiently infecting in
vitro cultured peripheral blood mononuclear cells (PBMC) and moreover, it was found by
using mutational analysis that an RSD motif, present in EHV-1 gD but not in EHV-4 gD, is
an important determinant for proper infection of mononuclear cells in vitro (Van de Walle et
al., 2008; Osterrieder and Van de Walle, 2010). As our study indicates that some strains are
incapable of infecting nasal mucosal mononuclear cells, while some strains are capable of
infecting very few mononuclear cells, this might imply that the latter strains are the ones able
to cause abortion or nervous system disorders in the field.

Another interesting observation in our present study was that the EHV-1 strain RacL11
showed a mild infection pattern in mucosal explants when compared to infection patterns
obtained upon inoculation with several other EHV-1 strains such as Ab4, NY03 and different
Belgian field isolates (Vandekerckhove et al., 2010). Epithelial plaques were smaller in size
and, when compared to other previously tested EHV-1 strains, only a fraction of individual infected cells below the BM was observed at 72 hpi (Vandekerckhove et al., 2010). This is in agreement with results obtained in in vivo studies comparing the pathogenic potential of EHV-1 strains in the horse. Upon infection with Ab4, horses displayed a significantly longer period of fever, a higher nasal virus excretion and a longer duration of viremia, when compared to RacL11 (Goodman et al., 2007; G. Van de Walle, personal communication). This seems to indicate that RacL11 is an attenuated EHV-1 strain with less virulent potential in the horse than other EHV-1 strains, such as Ab4. In mice however, inoculation with RacL11 does result in severe symptoms such as a dramatic body weight loss within days of infection, a strong inflammatory infiltration in the lungs and even death (von Einem et al., 2007). The murine model is frequently used as an in vivo model for investigation of virological and histological aspects of EHV-induced disease in the horse (Awan et al., 1990; Walker et al., 1999). However, to which extent valid comparisons and extrapolations can be made from mouse to horse remains highly questionable (Walker et al., 1999). Concerning the pathogenesis of equine herpesviruses, we conclude that our in vitro model appears to relate more closely to the in vivo situation in the natural host than the murine model. Indeed, the pathogenesis of an infection with EHV-1 strain RacL11 in the explant model closely resembles the situation in the natural host, whereas the clinical picture in the mouse model is much more dramatic (von Einem et al., 2007). Also, EHV-4 replication in equine explants is similar to the in vivo situation, with a solid replication in epithelial cells but an incapability to infect mononuclear cells, whereas EHV-4 is incapable of infecting murine respiratory mucosa (Awan et al., 1990; Azmi and Field, 1993). This indicates that our in vitro respiratory mucosal explant system is a valuable alternative model to provide novel information on pathogenesis or differences in pathogenic potential of different EHV-4 strains, in addition to the currently existing EHV-1/EHV-4 models.
Despite severe efforts from researchers worldwide, an adequate vaccine preventing the severe EHV-1-induced symptoms such as abortion and equine herpes myeloencephalopathy (EHM) remains to be developed (Patel & Heldens, 2005; Kydd et al., 2006; Rosas et al., 2006; Brosnahan and Osterrieder, 2009; Pusterla et al., 2009). The effect of the existing vaccines, both inactivated and attenuated, seems to be limited to the alleviation of viral shedding and clinical signs. An adequate protection against viremia, and thus severe EHV-1-induced symptoms such as abortion and EHM, might be reached by impeding the virus to cross the basement membrane (BM) barrier via single mononuclear leukocytes. To this end, it is important to induce a local immunity. The best way to raise local immunity is to administer an attenuated EHV strain intranasally. For safety reasons, this EHV vaccine may no longer infect mononuclear cells. An attenuated EHV-4 strain cannot be used as a vaccine virus since a study in ponies has shown that the immunity induced by an EHV-4 infection is not cross-protective against an EHV-1 challenge (Edington and Bridges, 1990). The most promising route for the design of more efficacious vaccines remains recombinant technology. For instance, when the glycoprotein(s) of EHV-1 responsible for efficient infection of the nasal mucosal mononuclear cells is (are) identified, genes coding for this (these) glycoproteins in EHV-4 could be introduced in the genome of EHV-1. This could result in a recombinant virus that is able to induce a powerful local immune response upon local intranasal administration, but is safe due to its inefficiency to infect mononuclear cells, markedly reducing its capability to initiate a cell-associated viremia.

5. Conclusion

The following conclusions can be drawn from the observations presented in this study. EHV-4 spreads plaquewise in epithelial cells of nasal mucosal explants, similar to EHV-1 albeit to a
lesser extent. Remarkably, and in contrast to EHV-1, the EHV-4 strains in the present study have no marked tropism for mononuclear leukocytes as single EHV-4-infected cells are only rarely observed below the BM at all time points pi. Both these observations can be linked to the in vivo situation since respiratory signs following an infection with EHV-4 are less severe when compared to those following an EHV-1 infection, and since a cell-associated viremia following an EHV-4-induced respiratory infection is not at all consistent, and hence neither is the induction of abortion or nervous system disorders upon EHV-4 infection. The excellent correlation between the in vitro model and the in vivo situation in the horse indicates that our in vitro respiratory mucosal explant system is a valuable tool to provide novel information on pathogenesis or differences in pathogenic potential of different EHV-4 strains.

Conflict of interest statement

None of the authors of this paper has a financial or personal relationship with other people or organisations that could inappropriately influence or bias the content of the paper.

Acknowledgements

This research was supported by the Institute for the promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). We thank Carine Boone and Chantal Vanmaercke for their excellent technical assistance.

References

Pusterla, N., Leutenegger, C.M., Wilson, W.D., Watson, J.L., Ferraro, G.L., Madigan, J.E., 2009. Equine herpesvirus-4 kinetics in peripheral blood leukocytes and

Figure legends

Figure 1. Evolution of plaque formation in the epithelial cells of nasal explants for several EHV-4 isolates (VLS 829, EQ1 012, V01-3-13). Equine respiratory mucosal explants were inoculated (10^{6.5} TCID_{50}/ml of EHV-4) and at 0, 24, 48 and 72 hours post inoculation (hpi), explants were collected. One hundred consecutive sections were made and analysed. (A) Number of plaques was determined at 24, 48 and 72 hpi. (B) Plaque latitudes were always measured for 10 plaques at every time point and for every horse. All data represent means ± SD of triplicate independent experiment.

Figure 2. Evolution of plaque formation in the epithelial cells of nasal explants for EHV-1 and EHV-4. Equine respiratory mucosal explants were inoculated (10^{6.5} TCID_{50}/ml of EHV) and at 0, 24, 48 and 72 hours post inoculation (hpi), explants were collected. (A) Number of plaques was determined at 24, 48 and 72 hpi. (B) Plaque latitudes were always measured for 10 plaques at every time point and for every horse. The values for EHV-1 are the average of the 2 isolates 03P37 and RacL11, the values for EHV-4 are the average of the 3 isolates VLS 829, EQ1 012 and V01-3-13. All data shown represent means ± SD of triplicate independent experiments and P values for statistical significance are given for each strain. Asterisks indicate statistically significant differences (P ≤ 0.05). Representative confocal photomicrographs are given, illustrating viral plaques in the epithelium (green) at 72 hpi (objective 20x) for EHV-1 isolate 03P37 (C) and EHV-4 isolate VLS 829 (D). Single EHV-1-infected cells are clearly visible in the connective tissue below the basement membrane (red) for EHV-1 isolate 03P37 (c). For EHV-4 isolate VLS 829 (d), single EHV-4-infected cells in the connective tissue are absent.
Table 1. Quantification of EHV-infected cells below the BM

<table>
<thead>
<tr>
<th>Virus designation</th>
<th>No of EHV-infected cells below the BM at ... hpi / 100 cryosections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td>EHV-4 VLS 829</td>
<td>0 ± 0.0</td>
</tr>
<tr>
<td>EHV-4 EQ1 012</td>
<td>0 ± 0.0</td>
</tr>
<tr>
<td>EHV-4 V01-3-13</td>
<td>0 ± 0.0</td>
</tr>
<tr>
<td>EHV-1 03P37</td>
<td>21 ± 4.4</td>
</tr>
<tr>
<td>EHV-1 RacL11</td>
<td>6 ± 1.2</td>
</tr>
</tbody>
</table>
Figure 1. Vandekerckhove et al.
Figure 2. Vandekerckhove et al.