Nonlinear channel modeling and identification using baseband Volterra-Parafac models

Abstract : Baseband Volterra models are very useful for representing nonlinear communication channels. These models present the specificity to include only odd-order nonlinear terms, with kernels characterized by a double symmetry. The main drawback is their parametric complexity. In this paper, we develop a new class of Volterra models, called baseband Volterra-Parafac models, with a reduced parametric complexity, by using a doubly symmetric Parafac decomposition of high order Volterra kernels viewed as tensors. Three adaptive algorithms are then proposed for estimating the parameters of these models. Some Monte Carlo simulation results are presented to compare the performance of the proposed estimation algorithms, in the case of third-order baseband Volterra systems excited by PSK and QAM inputs.
Type de document :
Article dans une revue
Signal Processing, Elsevier, 2012, 92 (6), pp.1492-1498
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00718654
Contributeur : Gérard Favier <>
Soumis le : mardi 17 juillet 2012 - 17:29:36
Dernière modification le : mardi 17 juillet 2012 - 17:29:36

Identifiants

  • HAL Id : hal-00718654, version 1

Collections

Citation

Thomas Bouilloc, Gérard Favier. Nonlinear channel modeling and identification using baseband Volterra-Parafac models. Signal Processing, Elsevier, 2012, 92 (6), pp.1492-1498. <hal-00718654>

Partager

Métriques

Consultations de la notice

134