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Abstract This paper explores the vertical upward jumping of a planar biped. The

jumping process is decomposed into the crouching phase, the thrust in the knees,

the flight phase, the touchdown and the straightening up movement of the biped. A

mathematical model for this kind of jump of the biped is developed. Torques are applied

in the hip and knee joints. The degree of underactuation of the mechanism is equal

to one in the support phase and to three in the flight phase. The control algorithm is

designed to ensure the jump of the biped. This algorithm is such that the center of mass

of the mechanism is always placed on the same vertical line. The biped touches the

ground in the same place where it starts from. The synthesis of the jumping process is

supported by simulations which give consistent results with human data from existing

biomechanical literature. Furthermore, the stick diagram of the jump derived from

these simulation results seems natural for the human jumping. The problem of energy

recovery is considered for the jumping of the biped by using springs in the hip and knee

joints. The springs have an influence to minimize the mechanical energy consumed by

the drives in the hip and knee joints. The springs in the knees help to increase the

lifting of the bipedal mechanism.
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1 Introduction

In the last 30 years many research efforts in the field of mobile robots have been

devoted to the development of bipedal robots and humanoid robots acting in a daily

life. Many research efforts have been devoted to study the human locomotion also.

Bipeds have unilateral constraints with the ground. Depending on their adopted gaits,

bipedal robots can be underactuated, fullactuated or overactuated mechanisms. Their

autonomy in energy, power of their actuators is limited. Despite these difficulties, one

of the most important objectives is to approach the human’s performances as close as

possible. Many results have been established about static stable walking gaits [1], [35],

dynamical stable walking gaits [16], [7], [32], [3], passive-dynamic walking gaits, [14],

[24], [10], [36] and running gaits, [31], [5], [8], [11].

Many works are also devoted to the jumping, with which this article deals. The

three-dimensional (3D) mechanism, which hops and runs on one springy leg has been

studied theoretically and experimentally by Raibert et al., [30]. In [18], Itiki et al.

present a study of vertical jumping through a biomechanical model of the leg. Meghdari

and Aryanpour [25] proposed a dynamical model for the human jumping process. This

model uses dynamic relations to compute the driving torques in the joints of the human

body. An integrated motion control method related to a bipedal humanoid walk, jump

and run is applied to the real humanoid ”QRIO” by Nagasaka et al., [26]. Zajac et

al. show in [40] that compliant tendons and calf muscles that are fast and strong are

essential for humans to jump as high as possible using only the ankles for propulsion.

In robotics, it would be a manner to increase the mobility of humanoid robots to

avoid an obstacle, for running. For example Kajita and his colleagues introduce the

bipedal robot HRP-2LR and its hopping with both legs as the first attempt towards

running [20]. Using data obtained from human jumping phases, Sakka and Yokoi [33]

define a humanoid reference jumping trajectory which is as close as possible, under

predefined constraints, to a human jump which is derived from the ground reaction

forces using an arm-swing. Landing stability of jumping gaits is studied for a four-

link planar biped model in [15]. Consider also this example about a quadruped robot

Semiquad, where a jump on the front leg (respectively the rear leg) allows it to adopt a

curvet walking gait [3]. For the take-off phase of a sub-optimal long jump several criteria

are evaluated with the comparison of the obtained movements through a parametric

optimization with an actual performance [19]. This paper aims to identify the criterion

which most closely approximated that spontaneously minimized by the athlete. An

actual jumping motion is used to define the local joint-constraint model for the shoulder

joint in [12].

From biomechanical data Ker et al. [21] observed that, during the walking 78 %

of the storage energy by the compliant elements of the stance foot are restored. Then,

one natural way to minimize a consumed mechanical energy is to equip the biped with

springs or with elastic actuators, see [28], [39], [38], [29], [37] or [34]. The development

of bipedal robots WL-14 [39], [38], [13] and Lucy [37] shows that the presence of the

variable stiffness in their drives reduces the transportation cost by tuning the drive

mechanism stiffness. Farrell et al. [13] show that optimizing the motion and the stiffness

of the springs located in the ankle of a five-link planar biped results in an energy efficient

walking. A bipedal robot with knees, which have a revolute series compliant actuator is

presented in [17]. Many problems are still open however, especially for the fast dynamics

during the jump. There is a lack of sound dynamic models for the complete jumping
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process with a phase to prepare the flight, a flight phase, a touchdown and so on.

Vertical jumping with minimal mechanical energy is still an object of investigation.

Contribution. To modelize the human jump, it is necessary to choose a biped model,

which is at the same time relatively simple to define a rigorous statement of the prob-

lem and relatively close to human in order to evaluate the most important physical

phenomena. A compromise with a simple dynamic model of a planar biped composed

of a one-link trunk and two identical two-link legs with knees is proposed to study the

vertical jump. The degree of underactuation for the biped is one on the support phase

and equals three in the flight phase. The control algorithm to organize the jump is

developed. To the best of our knowledge there is not any similar model and control

algorithm in the literature. To prevent a horizontal displacement of the center of mass

of the biped the constraint is introduced in the model. After crouching of the biped, a

constant thrust torque in open loop is applied in the knees to cancel (after some time)

the ground reaction in the leg tips and then to obtain the flight phase. The jump height

is managed by this thrust torque. For the touchdown an absolutely inelastic impact

is assumed. For the jumping of human the ground reaction is large at the time of the

touchdown. Here this ground reaction is described by a Dirac delta-function. However

in reality for the jumping of human the ground reaction is bounded. Therefore, our

model can be considered as an asymptotical model. Springs are added in the knees and

hips to make the vertical jumping easier. Simulation results are proposed to analyze

this vertical jumping and they are consistent with biomechanical data given in the

existing literature. As far as energy consumption is concerned, numerical investigation

shows that for a given lifting of the biped, there is an optimal choice for the springs in

the knees and hips. But the influence of the spring to preserve energy is not large.

From our perspective this study is interesting for the modeling of the human jump

and for the design of a jumping bipedal robot.

This paper is organized as follows. Section 2 describes the methodology of the mod-

eling of the biped jump. This Section consists of several Subsections. In Subsection 2.1

we present the biped mechanism. Subsections 2.2 and 2.3 contain the dynamic and

impact models. Control algorithm to obtain the vertical jumping is presented in Sub-

section 2.4. Subsection 2.5 is devoted to the problem of energy recovery using springs

in the joints. The physical parameters of the biped used in simulation are described

in Subsection 2.6. In Section 3 we describe the results of simulation. We discuss our

simulation results and compare them with experimental data in Section 4. Section 5

offers our conclusions and perspectives.

2 Methods

In this section, we present the methodology of the mathematical modeling of the biped

jump. This methodology depends on the interaction with the ground and the degree

of underactuation for the different phases of the biped jump.

2.1 Biped Presentation

The object of our study is a three-link planar biped mechanism. The double takeoff

of this biped is studied. Assume that both shins are identical and coupled (see link

ab in Figure 1), both thighs are also identical and coupled (see link bc). The trunk is
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depicted in Figure 1 by link cd. Let link ab be the first, link bc - the second and link cd

- the third. Let us denote by li (i = 1, 2 and 3) the lengths of the first, second and third

link, by mi the masses of these links. Let Ii (i = 1, 2 and 3) be the inertia moment of

the i-th link about its center of mass, si be the distances between the center of mass of

the i-th link and joints a, b and c. M = m1 +m2 +m3 is the global mass of the biped.

d

c

b

a

Y

XO

b
G

GcG

s1

s2

s3

I , m1 1

I , m3 3

I , m2 2

Fig. 1 The three-link biped in the flight phase.

Two phases of the jumping are considered: a support phase when the leg tips are in

contact with the ground and a flight phase when the leg tips do not have any contact.

In support phase, the vertical component of the ground reaction must be directed

upwards. Flight phase starts when the ground reaction becomes zero. After the flight

phase the touchdown occurs with an impact and a new support phase starts. During

support phase, our system has three degrees of freedom. In the flight phase our biped

has five degrees of freedom.

Torques Γb and Γc can be applied in the knee and hip joints respectively (see Fig-

ure 1). Torques in the ankle joints a are always absent (equal to zero). The simulation
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of the three-link model (without feet) simplifies the transitions between the support

phase and the flight phase.

2.2 Planar Biped Model

In order to introduce the generalized coordinates of our system, we consider the fol-

lowing diagram of the three-link mechanism, Figure 2.
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3

(x, y)

Fig. 2 Generalized coordinates of the biped.

The Cartesian coordinates of the leg tips are denoted by x and y. The variables

α1, α2, and α3 are the angles between the vertical line and the first ab, second bc, and

third cd link respectively. Let α = [α1, α2, α3]
t be 1.

Using the second Lagrange method, we develop the equations of motion during the

flight phase in the following compact matrix form:

D(α)q̈+C(α)[q̇2i ] + gE[sin qi] =













1 0

−1 1

0 −1

0 0

0 0













[

Γb

Γc

]

(1)

1 Here symbol ”t” denotes transposition
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Here we denote

q =





























α1

α2

α3

x

y





























=





α

x

y



 ,
[

q̇2i
]

=





























α̇2
1

α̇2
2

α̇2
3

0

0





























, [sin qi] =





























sinα1

sinα2

sinα3

0

1





























(2)

Matrices D(α), C(α) and E, of size (5 × 5), are presented in Appendix. Inertia

matrix D(α) is definite positive and symmetrical.

Motion of our biped in support phase, with point a on the ground, is governed by:

D(α)q̈+C(α)[q̇2i ] + gE[sin qi] =













1 0

−1 1

0 −1

0 0

0 0













[

Γb

Γc

]

+













0 0

0 0

0 0

1 0

0 1













[

Rx

Ry

]

(3)

Here Rx and Ry are the horizontal and vertical components of the ground reaction R

applied in point a respectively.

Of course we can choose the relative angle between links ab and bc, the relative

angle between links bc and cd as generalized coordinates, instead of the absolute angles

α2 and α3. But using these absolute angles α2 and α3 as generalized coordinates,

the mathematical model is more illustrative and understandable for the considered

problem. The absolute angles are used as generalized coordinates in [14] to develop the

mathematical model of a walking biped and in [22] to consider the problem of jumping.

So, it seems that using absolute angles as generalized coordinates is more convenient

from a methodical point of view.

Before the takeoff in the human vertical jump and after landing the feet usually do

not move in the horizontal direction. Then we can consider that the coefficient of the

friction is high enough to avoid to slide in support. (Pandy and Zajac [27] observed

experimentally and by simulation that before to jump the maximum amplitude of the

biphasic horizontal ground reaction represents near 30% of body weight. The maximum

amplitude of the vertical ground reaction represents 200% of body weight). Therefore,

we assume that in the support phase the biped never slides on the ground and the

abscissa of its leg tips is constant. Let this constant be zero.

x = 0 (4)

The y-coordinate of the leg tips is also zero in support phase

y = 0 (5)

After the vertical jump (after landing) human comes back to the ground at the

same place approximately. Therefore, looking ahead we note that the control strategy

is designed in this paper to satisfy equality (4) also in the flight phase.

Pandy and Zajac [27] show also that before to jump the value of the horizontal

component of the ground reaction is close to zero upon the average. After landing and
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the straightening up movement of human the position of its center of mass becomes

equal to initial one (approximately). It means that in the jumping process an ”average”

value of the horizontal component of the ground reaction is close to zero. Therefore,

for simplification we will design the control for our biped with the following constraint:

abscissa xG of the center of mass G of the biped is always constant. Let this constant

xG be zero.

xG = x−M−1[(m1s1 +m2l1 +m3l1) sinα1 +(m2s2 +m3l2) sinα2 +m3s3 sinα3] = 0

(6)

In the flight phase, only one external force is applied to the biped - the gravity force.

And this force is directed downwards. According to the law of conservation of momen-

tum [4,6], if at the beginning of the flight phase xG = 0, ẋG = 0, then equality (6) will

always be valid during this phase - ”automatically”.

By the differentiation of equalities (4), (5) and (6) we get the following relations:

ẋ = 0 (7)

ẏ = 0 (8)

and

ẋG = ẋ−M−1[(m1s1 +m2l1 +m3l1)α̇1 cosα1+

(m2s2 +m3l2)α̇2 cosα2 +m3s3α̇3 cosα3] = 0
(9)

By the differentiation of equalities (7), (8) and (9) we get:

ẍ = 0 (10)

ÿ = 0 (11)

and

ẍG = ẍ−M−1[(m1s1 +m2l1 +m3l1)α̈1 cosα1+

(m2s2 +m3l2)α̈2 cosα2 +m3s3α̈3 cosα3−

(m1s1 +m2l1 +m3l1)α̇
2
1 sinα1−

(m2s2 +m3l2)α̇
2
2 sinα2 −m3s3α̇

2
3 sinα3] = 0

(12)

Equalities (5), (8) and (11) are valid only during support phase.

Introducing the row matrix

J(α) = −M−1
[

(m1s1 +m2l1 +m3l1) cosα1 (m2s2 +m3l2) cosα2 m3s3 cosα3

]

,

(13)

both equalities (9) and (12) can be rewritten in the following simple matrix form:

ẋG = J(α)α̇+ ẋ = 0 (14)

ẍG = J(α)α̈+ J̇(α)α̇+ ẍ = 0 (15)
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2.3 Impact Model

After the flight phase at the touchdown an absolutely inelastic impact is assumed. It

means that the velocity ẏ becomes zero after impact. At the instant of impact the

velocity ẏ changes stepwise. Also we assume that the leg tips do not slip. In our control

strategy, the inter-link torque Γb is finite and it does not have any influence on the

result of the impact. The ground reaction R(Rx, Ry) and torque Γc at instant t = T of

an impact can be considered as an impulsive force and an impulsive torque respectively.

These force and torque can be defined by the Dirac delta-functions Rx = IRx
δ(t− T ),

Ry = IRy
δ(t−T ) and Γc = IΓc

δ(t−T ). Here IR(IRx
, IRy

) is the vector of magnitudes

of the impulsive ground reaction in both leg tips, (see [14]), IΓc
is the magnitude of an

impulsive torque Γc. Values IRx
, IRy

and IΓc
are unknown quantities. The equations

for the velocity jumps can be obtained through the integration of the matrix equations

(3) and (12) (or (15)) over an infinitesimal time interval (T+−T−). Consequently from

the matrix equation (3) we get the algebraic equation in the following matrix form:

D(α)(q̇+ − q̇−) =













0

1

−1

0

0













IΓc
+













0 0

0 0

0 0

1 0

0 1













[

IRx

IRy

]

(16)

Here α is the configuration-vector of the biped at instant T of the touchdown (impact).

This configuration α does not change at the impact. Vectors q̇− and q̇+ are the velocity

vectors just before (at time t = T−) and just after (at time t = T+) the touchdown

(impact) respectively. Just before the impact, the horizontal component of the velocity

of point a is ẋ−, the horizontal component of the velocity of the center of mass G

is ẋ−
G
. These velocity components just after the impact are denoted by ẋ+ and ẋ+

G

respectively. If the control strategy is such that ẋ− = ẋ+ and ẋ−
G

= ẋ+
G
, then from

equation (15) we obtain

ẋ+G − ẋ−G = J(α)(α̇+ − α̇−) + ẋ+ − ẋ− = J(α)(α̇+ − α̇−) = 0 (17)

Of course for the jumping of human the ground reaction is bounded. Therefore,

our model of the touchdown can be considered as an asymptotical model.

2.4 Control Strategy

At time t = 0, let the biped be in support phase and in vertical equilibrium position,

i.e. (see Figure 3)

x = 0, y = 0, α1 = α2 = α3 = 0

ẋ = 0, ẏ = 0, α̇1 = α̇2 = α̇3 = 0

(18)
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d
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b
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Y

XO

Fig. 3 Initial configuration of the biped.

At time t > 0 the biped prepares a jump. It starts to crouch, using the feedback

control

Γb = −kp(ϕb − ϕd
b )− kvϕ̇b (19)

Here ϕb = π + α1 − α2 is the joint angle between links ab and bc, ϕd
b = const < π is a

desired angle ϕb at the end of crouching, kp and kv are constant feedback gains. The

constant value ϕd
b is chosen adequately to bend the knees.

Equations (3), (10) and (11) are describing the process of the crouching of the biped.

To satisfy identity xG ≡ 0 we need to find the corresponding control torque Γc. So, the

constraint (equality) (12) (or (15)) is added to equations (3), (10), (11). System (3),

(10), (11), and (12) contains 8 scalar equations and 8 unknown variables: α1, α2, α3, x,

y, Rx, Ry and Γc. But it follows from equation (12) and by considering the dynamical

balance of the motion of the center of mass G, that the horizontal component of the

ground reaction Rx = 0. Thus, we can omit equation (12) and integrate only equations

(3), (10), (11) with Rx = 0. If the center of mass is constantly located along the vertical

line x = 0 and the external torque in point a is zero, then the angular momentum of the

biped mechanism around point a is equal to zero (according to the law of conservation

of angular momentum [4], [6]). In this case, there is no rotation of the biped as a

whole-body around the leg tips (around point a).

The feedback control (19) is applied until the instant when the term (ϕb−ϕd
b)

2+γϕ̇2
b

(the dimension of parameter γ is s2) becomes less than some previously given value ∆.

After this instant a thrust torque Γ p
b

Γb = Γ p
b
= const (20)

is applied (in open loop) in joint b. Identity xG ≡ 0 is satisfied under the suitable

control torque Γc. This control torque Γc can be found using constraint (12). Note we

do not prescribe torque Γc. It is calculated with constraint (12). The equations (3),

(10), (11), (12) or (3), (10), (11) with Rx = 0 can be integrated numerically to find

the biped motion under control (20). Control (20) is applied until the instant when the

vertical component Ry of the ground reaction R becomes zero. The flight phase starts

after this instant.
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In the flight phase, matrix equation (1) of the motion is valid. Equality (6) and

consequently (12) are valid in this phase as noted above. At the instant of the start of

the flight phase the angular momentum around point a is zero. During all the flight

phase without any external torque this angular momentum will be zero. Then the

angular momentum around the center of mass G is also equal to zero because xG = 0.

Due to this, during the flight phase the biped does not rotate as a whole around its

center of mass.

During the flight phase, the feedback control (19) with ϕd
b = π is used to straighten

up the biped. Constraint (10) is added to matrix equation (1) to allow the biped to

obtain the same position in frame XOY after touchdown and to straighten up (in the

next support phase). System (1), (10) contains six scalar equations with six unknown

variables: α1, α2, α3, x, y and Γc.

Remark: When a human jumps in order to touch the ceiling with one hand, in the

flight phase, he straightens up his legs and lets his other arm in a low position

along his torso. It is possible to explain this in the following way. According to the

law of variation of momentum ( [4], [6]), the motion of the center of mass of the

biped in the flight phase does not depend on the relative motions of its links (if

the air resistance is negligible). Thus, if the legs straighten up and one arm moves

down, then another arm raises up higher.

At a certain instant of the flight phase, altitude yG of the center of mass becomes

maximal. After this instant, the altitude of the center of mass decreases and the biped

prepares a touchdown. To prepare a touchdown feedback control (19) with an adequate

value ϕd
b = const < π is used. When the leg tips (point a) touches the ground (at the

origin x = 0, y = 0) an absolutely inelastic impact occurs. This impact is described by

algebraic equations (16) and (17). The five components of vector q̇− are the components

of the velocity-vector at the end of flight phase. We get these quantities from the

numerical solution of equations (1), (10) (note ẋ− = ẋ−
G

= 0). It is necessary to find

the components of vector q̇+. But, according to the assumption about the absolutely

inelastic impact, ẏ+ = 0. Also we want to obtain after an impact ẋ+ = ẋ+
G

= 0. Then

there are only three unknown components: α̇+
1
, α̇+

2
, α̇+

3
in this vector q̇+. System (16),

(17) contains 6 scalar equations with 6 unknown variables: α̇+
1
, α̇+

2
, α̇+

3
, IRx

, IRy
and

IΓc
. However, if ẋ+

G
= 0, then IRx

= 0. Thus, we can omit equation (17) and consider

only equations (16) with equality IRx
= 0.

The next support phase starts after touchdown. During this support phase the goal

of the control is to straighten up the biped, that is to bring it to the initial configuration

α1 = α2 = α3 = 0 (21)

To do this it is possible to use the feedback control (19) with ϕd
b = π. Equations (3),

(10), (11) with Rx = 0 can be used to find motion of the biped during this support

phase. Torque Γc can be also calculated from these equations.

Thus, the structure of the control torques Γb and Γc in the knees and hips changes

from one phase to another. The control torque Γb has the form of the linear feedback

(see (19)) in the crouching, the flight, and after the touchdown, but with different

presets ϕd
b for different phases. Besides, during the crouching, we limit this control

torque to prevent the canceling of the ground reaction and unplanned takeoff of the

biped. After the crouching, the torque in the knees varies quickly: the thrust torque

(20) in open loop is applied in joint b. We calculate the torque Γc in order to maintain
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a null horizontal component of the ground reaction in support phase and at the instant

of the touchdown. In the flight phase we calculate the control torque Γc to ensure

equality x = 0.

2.5 Energy Recovery Using Springs in Joints

The problem of recovery of the energy is discussed in several papers such as [28], [39],

[38], [29], [37], [13] or [34]. Here we study the problem of the energy recovery, using

passive springs in joints b and c.

Using Hooke’s law, the expressions of the torques developed by these linear springs

are

Γ s
b = ksb(π − ϕb), Γ s

c = ksc(π − ϕc) (22)

where ksb = const > 0 and ksc = const > 0 are the stiffness coefficients of the springs

in joints b and c respectively. For the two intervals

0 ≤ ksb ≤ ksbmax, 0 ≤ ksc ≤ kscmax (23)

with ksbmax = kscmax = 100 N .m/rad we calculated the energy consumed in joints b

and c by torques Γb (see the controls (19) and (20)) and Γc during the jumping process.

2.6 Physical Parameters of the Biped

The parameters of the biped, used in simulation are supplied from the book [14].

Table 1 gathers these physical data, which are valid for a normal adult male (the

gravity acceleration is 9.81 m.s−2). For the lower leg the mass of the foot is included

in m1.

Link ab Link cb Link cd
(coupled shins) (coupled thighs) (trunk)

Length (m) l1 = 0.5 l2 = 0.41 l3 = 0.84

Mass (kg) m1 = 9.2 m2 = 17.2 m3 = 48.6

Inertia moment I1 = 1.1 I2 = 0.51 I3 = 3.91
defined about

the center of mass
(kg.m2)

Center of mass s1 = 0.18 s2 = 0.23 s3 = 0.39
location (m)

Table 1 Biped’s parameters
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3 Results

We show here the results of the simulation with the following parameters of control:

angle ϕd
b for crouching is equal to 2.36 rad, angle ϕd

b for the preparation of the touch-

down equals 2.53 rad (both these values are taken from [25]), kp = 40000 N .m/rad,

kv = 4000 N .m.s/rad, ∆ = 5−4, in open loop (20) Γ p
b
= 300 N .m,

The stick diagram in Figure 4 is derived from the simulation of the biped jump

(without springs in the joints) and depicts several biped’s configurations during the

jump. This diagram seems natural for the human jump. The legs bend the knee forward

(ϕb = π + α1 − α2 ≤ π) all the time, angle ϕc in the hip joints is such as ϕc =

π + α2 − α3 ≥ π. (Note that these ”human’s features” of the jump are not prescribed

previously by the statement of the problem.)
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a) initial configuration b) end of crouching

c) flight phase after the thrust d) flight phase, almost on straight line configuration

e) flight phase, preparation of the touchdown f) touchdown

g) final configuration coincides with the initial configuration

Fig. 4 Jumping motion as a sequence of stick figures; the position of the center of mass is
depicted with a dot.
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On Figures, 5-10, which are associated to the upward jump, there are three vertical

dashed lines to highlight successively the crouching phase, the thrust phase, the flight

phase, the touchdown and the straightening up movement. The rise of the center of

mass of the biped (the difference between the current and initial altitude) and the rise

of the leg tips are presented in Figure 5. The maximal rise of the center of mass is

equal to 0.0913 m. During the flight phase, the rise is similar for the center of mass

and for the leg tips. Before the thrust with control (20) the altitude of the center

of mass becomes less than at the initial configuration. Just after the touchdown this

altitude also becomes less than at the initial and final configurations. As noted above,

the motion of the center of mass G of the biped in the flight phase does not depend

on the relative motion of the links (if air resistance is neglected). However, duration of

the flight phase of course depends on the positions of the links. The nearer the leg tips

(point a) to the ground before the touchdown, the shorter the duration of the flight

phase.

The velocity of the center of mass as functions of time is shown in Figure 6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

m

time, s

Fig. 5 Rise of the center of mass (solid line), of the leg tips (dashed line) during jump.
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Fig. 6 Velocity of the center of mass during jump.

Figure 7 shows the vertical component Ry of the ground reaction R. Naturally, the

shape of this graph is the same as the shape of the graph of the acceleration of the

center of mass. The graph of the ground reaction Ry for the jumping motion is logical

physically because Ry > 0 in stance phase andRy = 0 in flight phase. At the initial time

this component is equal to the weight of the biped mechanism, which is 735.75 N . At the

beginning of the crouching it decreases, which is reasonable because the velocity of the

center of mass at this time decreases (see Figure 6) and consequently the acceleration

of the center of mass at this time is negative. The minimum value of the component

Ry is close to zero. Therefore, we assign a minimum value to feedback control (19) at

this time to avoid the canceling of the ground reaction and the corresponding takeoff

of the biped. At the end of the phase of crouching the ground reaction becomes equal

(approximately) to the biped’s weight. The ground reaction becomes large during the

thrust control (20), which begins at around 0.71 s. Then at time instant 0.783 s it

becomes zero. During the flight phase the ground reaction is naturally zero. At the

instant of the touchdown (at around 1.08 s), the vertical component of the ground

reaction and the acceleration of the center of mass equal +∞. At the end of the process

the ground reaction becomes again equal to the weight of the mechanism.

The profile of angle ϕb in the knee joints (see Figure 8) allows us to show clearly

the phases of crouching, of the thrust with control (20), of the flight phase, of the

touchdown and the straightening up movement of the biped. During flight phase, the

straight line configuration such as ϕd = π is not exactly reached. Just after the time

when the vertical component of the velocity of the center of mass ẏG becomes negative,

the control law starts to prepare the touchdown. At this time angle ϕb in the knees

decreases. After the touchdown the value of ϕb tends to π.

The profiles of the torques Γb and Γc are shown in Figure 9. We can see the

torques during the crouching, the preparation of the flight phase by applying in open

loop control torque Γb = Γ p
b

= 300 N . m, the flight phase, the touchdown and the

straightening up movement of the biped. The magnitude of torque Γc at the instant
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Fig. 7 Vertical component Ry of the ground reaction R.
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Fig. 8 Profile of the joint angle ϕb.

of the touchdown becomes infinite. Assuming that there is no recuperation of the

mechanical energy when the actuating torques are ” break-like ”, the energy used to

generate and control the movement is the integral of the absolute joint powers on the

time cycle, see [14] and [9]

W (t) =

∫ t

0

[|Γcϕ̇c|+ |Γbϕ̇b|]dτ (24)
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Fig. 9 Profiles of the joint torques Γb and Γc.

where ϕc = π + α2 − α3 and ϕ̇c = α̇2 − α̇3. At the instant of the touchdown (impact)

t = T , torque Γc = IΓc
δ(t− T ). To calculate the following energy

W (T ) =

∫ T+

T−

|Γcϕ̇c|dt (25)

consumed at the impact we use the formulas [14]:

W (T ) =

∣

∣

∣

∣

IΓc

ϕ̇c(T
−) + ϕ̇c(T

+)

2

∣

∣

∣

∣

, if ϕ̇c(T
−)ϕ̇c(T

+) ≥ 0

W (T ) =

∣

∣

∣

∣

IΓc

ϕ̇c
2(T−) + ϕ̇c

2(T+)

2 [ϕ̇c(T−)− ϕ̇c(T+)]

∣

∣

∣

∣

, if ϕ̇c(T
−)ϕ̇c(T

+) < 0

(26)

Figure 10 depicts the energy consumption of the knee and hip actuators, which is

defined by (24) and from the instant of impact with the additional quantity (26),

during the jumping process as a function of time.
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Fig. 10 Energy consumption in the knee and hip joints.

Function W (t) is naturally strictly monotonous. The most part of the energy is

consumed at the time of the thrust control (20). At the instant of the touchdown this

function changes stepwise. But the energy consumed at the instant of the touchdown

is much less than the energy consumed at the time of the thrust. During crouching

and after the touchdown, the energy consumption is relatively small. The final value

of W (t) is equal to 635.5 J .

The duration of the trust phase decreases when the trust torque increases. Then

if the thrust torque Γ p
b
in control (20) increases, the operating time ∆t of this control

decreases strictly monotonically. For example, in the case Γ p
b
= 300 N .m, the operating

time ∆t = 0.064 s, in the case Γ p
b
= 600 N .m, the operating time ∆t = 0.043 s.

In Figure 11, we show the energy consumed in the hip and knee joints as a func-

tion of the thrust torque Γ p
b
. This energy increases, if the torque Γ p

b
increases. The

dependency shown in Figure 11 is approximately linear.
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Fig. 11 Energy consumed in the hip and knee joints as a function of Γ p

b
.

In Figures 12 and 13 we show several results obtained for the case when the spring

in the joints are used.

For the five values ksb = 0, 25 N .m, 50 N .m, 75 N .m and 100 N .m, Figure 12

shows the mechanical energy W consumed in the knee and hip joints during the jump

as functions of gain ksc , with Γb = Γ p
b
= 300 N .m (in open loop (20)).
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Fig. 12 Mechanical energy consumed in the knee and hip joints during the jumping process
as functions of gain ksc for the five values of ks

b
.
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We can observe that, for each value ksb there is an optimal value for ksc that mini-

mizes the consumed mechanical energy. But the economy of energy is close to 3% only.

We also see from Figure 12 that for all values of ksb this optimal value ksc ≈ 61 N .m.

Figure 12 also shows that the greater the gain ksb , the more important the gap of energy.

Figure 13 shows the maximum rise of the center of mass depending on coefficient

ksb with Γ p
b
= 300 N .m and ksc = 61 N .m.

0 20 40 60 80 100
0.09

0.095

0.1

0.105

0.11

0.115

m

ks
b
, N .m

Fig. 13 Maximum rise of the center of mass of the bipedal mechanism during the jump as a
function of gain ks

b
with ksc = 61 N .m.

We observe on Figure 13 that if gain ksb increases, the maximum rise of the center

of mass also increases, and approximately linearly.

4 Discussion

In order to check the validity of the simulation results, they are now compared with

respect to experimental data. Linthorne [23] determines with a force platform the profile

of the ground reaction force during the counter movement phase labeled from a to c,

the jumping phase between c and d and the takeoff impulse phase around point d for

the maximal capacities of the human vertical jump, see Figure 15.
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Fig. 14 Ground reaction force for a human maximal capacities vertical jump obtained using
a force platform, see Linthorne [23].

Fig. 15 Ground reaction force for a human maximal capacities vertical jump obtained using
a force platform, see Linthorne [23].

The total duration of these three phases is close to 0.8 s as in our simulation (see

Figure 7). The peak vertical ground force measured just at the beginning of the takeoff

impulse phase is equal to 2000 N . In our modeling this peak is equal to 2445 N

approximately. The shape of the profile of the ground reaction force in Figure 15 is not

far from the shape of the profile in Figure 7. Perhaps, the difference between the shapes

of these profiles is due to absence in our model of the arms, the feet and the muscles [33].

Furthermore another source of discrepancy between Figure 15 and Figure 7 could be
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the use of different inertia moments, masses, lengths and localization of the centers of

mass.

In [2], authors proposed data about the experimental results for the vertical jump

of five human subjects. Measures of surface electrodes of electromyographic (EMG)

signals, force-plate, and kinematic data were recorded simultaneously during each jump.

From the obtained data, the authors observed the following results. Just before lift-off

the peak vertical ground forces measured for subjects range from 1500 to 2100 N .

Figure 7 shows that for our model with Γ p
b

= 300 N .m, the peak of the vertical

component Ry equals 2445 N , which is not far from these values. The peak fore-aft

components measured for the subjects range from 120 to 270 N . With the statement

of our problem, the horizontal component Rx is null.

The vertical velocities of the whole-body center of mass at lift-off belongs to the

range from 2.0 to 2.5 m/s. The peak vertical accelerations at lift-off of the whole-

body center of mass, measured for the subjects range from 15 to 19 m/s2. A peak

vertical velocity in our simulation with Γ p
b

= 300 N .m at lift-off is almost 1.4 m/s.

The corresponding acceleration at lift-off is equal to 23 m/s2 approximately. Thus, the

order of magnitude of the peak velocities and accelerations for our model is the same as

for the experiments. The mean of the jump height for the subjects is 37 cm. With our

model for Γ p
b
= 300 N .m this jump height is 10 cm approximately. For Γ p

b
= 600 N .m,

this jump height is 22 cm.

The given above comparison shows satisfactory agreements between our simulation

results and the experimental data from the human jump. Thus, our model of the biped

jump gives coherent results for vertical jumping.

Is it efficient to add springs to joints of a bipedal robot to jump? It is shown in

Section 3 that without springs (ksc = 0, ksb = 0) and with the control torque Γ p
b

=

300 N .m (see an open loop (20)) the maximum rise of the center of mass equals

0.0913 m and the corresponding energy consumed by the drives in joints b and c

equals 635.5 J . Using the springs located in the hip and knee joints with the stiffness

coefficients ksc = 61 N .m/rad and ksb = 75 N .m/rad we can get the same maximum

rise of 0.0913 m of the center of mass, but with a smaller control torque Γ p
b
= 260 N .m.

The corresponding energy consumed in the joints is also less and almost equal to 564 J .

So, the economy of mechanical energy is almost 11.4 % to get the same maximum rise.

Their influence is greater to improve the performances of jumping than to recover

energy.

5 Conclusions

– A. Conclusions

This paper deals with the vertical upward jump of a planar biped. All the phases to

describe the jumping process are defined. The control torques are applied in the hip

and knee joints of the studied mechanism. The mechanical model of the biped jump

is chosen to be relatively simple and at the same time relatively close to human

in order to evaluate the important phenomena in the upward jump. The dynamic

model for this kind of jumping bipeds is developed through a compact matrix

form. The control strategy is designed to organize the jump. The designed control

law keeps the center of mass of the biped always on the same vertical axis. The

stick diagram, based on simulations results, seems natural for the human upward

jump. Our model shows that the major part of energy is consumed at the times
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of the thrust and the touchdown. The energy consumption at the instant of the

touchdown is much less than the energy consumption at the time of the thrust. We

have compared several characteristics of the jumping of our three-link biped with

experimental characteristics of the jumping of human. There is coherence between

these characteristics.

The problem of the energy recovery is considered for the jumping of the biped

through the addition of springs at the hip and the knee joints. Their contribution

can be viewed as a portion of the driving torques. The springs do not have a

large influence to minimize the mechanical energy consumed during the jump. The

springs at the knees help to increase the rise of the bipedal mechanism.

– B. Future Works

In this paper we have considered the biped model without feet. Thus the missing

of the controlled feet is a drawback of our study. But in the near future we intend

to extend the results to a more complex model with controlled feet. Feet-rotation

phases will be considered. Also we plan to study the forward jump.
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Appendix: Expressions for matrices D(α), C(α) and E



2
6

Symmetrical Matrix D(α):

d11 = I1 +m1s
2
1 + (m2 +m3)l

2
1,

d12 = (m2s2 +m3l2)l1 cos(α1 − α2),

d13 = m3l1s3 cos(α1 − α3),

d14 = −(m1s1 +m2l1 +m3l1) cosα1,

d15 = −(m1s1 +m2l1 +m3l1) sinα1,

d22 = I2 +m2s
2
2 +m3l

2
2,

d23 = m3l2s3 cos(α2 − α3),

d24 = −(m2s2 +m3l2) cosα2, d25 = −(m2s2 +m3l2) sinα2,

d33 = I3 +m3s
2
3,

d34 = −m3s3 cosα3,

d35 = −m3s3 sinα3,

d44 = d55 = m1 +m2 +m3,

d45 = 0,

dij = dji, i 6= j

Matrix C(α):





























0 (m2s2 +m3l2)l1 sin(α1 − α2) m3l1s3 sin(α1 − α3) 0 0

c21 0 m3l2s3 sin(α2 − α3) 0 0

c31 c32 0 0 0

(m1s1 +m2l1 +m3l1) sinα1 (m2s2 +m3l2) sinα2 m3s3 sinα3 0 0

−(m1s1 +m2l1 +m3l1) cosα1 − (m2s2 +m3l2) cosα2 −m3s3 cosα3 0 0





























c21 = −c12, c31 = −c13 and c32 = −c23
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Diagonal constant matrix E:





























−(m1s1 +m2l1 +m3l1) 0 0 0 0

0 −(m2s2 +m3l2) 0 0 0

0 0 −m3s3 0 0

0 0 0 0 0

0 0 0 0 m1 +m2 +m3






























