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A DSP Based H.264/SVC Decoder for a Multimedia 
Terminal 

F. Pescador, Member IEEE, E. Juarez, Member IEEE, M. Raulet, Member IEEE, and C. Sanz, Member IEEE 

 
Abstract — In this paper, the implementation of a 

DSP-based video decoder compliant with the H.264/SVC 

standard (14496-10 Annex G) is presented. A PC-based 

decoder implementation has been ported to a commercial 

DSP. Performance optimizations have been carried out 

improving the initial version performance about 40% and 

reaching real time for CIF sequences. Moreover, the 

performance has been characterized using H.264/SVC 

sequences with different kinds of scalabilities and different 

bitrates. This decoder will be the core of a multimedia 

terminal that will trade off energy against quality of 

experience
1
. 

 
Index Terms — Scalable Video Coding, H.264/SVC, DSP 

algorithm optimization, performance characterization. 

I. INTRODUCTION 

In the last years, a speed-up in the deployment of all kinds 
of telecommunication networks supporting multimedia 
services and applications has been produced in many parts of 
the world. In this context, the consumer multimedia terminals 
play a central role. In these terminals, video decoding is one of 
the most demanding tasks in terms of computational load and 
energy consumption.  

The Scalable Video Coding (SVC) techniques [1] can be 
used in multimedia terminals to achieve a trade-off between 
quality and energy consumption. Though SVC techniques 
have been defined in most video coding standards [2][3][4], 
the SVC capabilities included in H.264 [4] have overcome the 
ones in former standards. 

In PccMuTe1 project, our research is focused on the energy 
and power consumption control in multimedia terminals. A 
multimedia terminal prototype with a DVB-H receiver, an 
H.264/SVC decoder and an audio decoder is going to be used 
to validate the experiments. In this context, the H.264/SVC 
decoder will be used to achieve a trade-off between user 
Quality of Experience (QoE) and energy consumption [5]. The 
multimedia terminal architecture is based on a commercial 
chip [6] having a General Purpose Processor (GPP) and a 
Digital Signal Processor (DSP). The GPP implements the user 
interface using a generic operating system and the DSP 
decodes the video streams. 
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Up to now, the available SVC decoder implementations 
are restricted to the PC domain [7][8]. In this work, the Open 
SVC decoder [8] has been ported to the DSP environment and 
the methodologies proposed in [9][10][11] to reduce its 
decoding time have been applied. The real-time performance 
has been reached for CIF sequences. Up to the best of our 
knowledge, no other H.264/SVC decoder implementation 
based on DSP has been reported. 

In this paper, a DSP implementation of a real-time 
H.264/SVC decoder is explained. The H.264/SVC standard 
and the Open SVC decoder are outlined in Section II. In 
Section III, the DSP decoder implementation is described. In 
Section IV the test-bench created to measure the decoder 
performance is outlined. The results of the profiling tests are 
discussed in Section V. Finally, Section VI concludes the 
paper. 

II. THE H.264/SVC STANDARD 

In this section, the H.264 standard and the Open SVC 
decoder are briefly explained for reference. 

A. H.264/SVC Standard 

An SVC algorithm was standardized as the annex G of 
H.264 [4][7] to cover the needs of scalability. In this standard, 
the video compression is performed by generating a unique 
hierarchical bit-stream structured in several levels or layers of 
information, consisting of a base layer and several 
enhancement layers. The base layer provides basic quality. 
The enhancement layers provide improved quality at increased 
computational cost and energy consumption. Because the 
energy consumption depends on the particular layer to decode, 
an H.264/SVC decoder is a very well-suited solution for 
managing the energy consumption by selecting the appropriate 
layer.  

H.264/SVC specifies three types of scalabilities: spatial, 
temporal and quality. In a temporally scalable video sequence, 
several frame rates (temporal layers) of a video sequence can 
be chosen when decoding. Fig. 1 shows an example of a 
Group of Pictures (GOP) where the user can select three frame 
rates. If the device decodes the four frames of the GOP (I1, 
B1, B2, B3), a full-frame-rate sequence will be obtained. If the 
decoder discards B1 and B3 frames and only decodes I1 and 
B2, a half-frame-rate sequence will be achieved. The third 
case is a quarter-frame-rate sequence, which will be obtained 
when the decoder discards B1, B2 and B3 frames and only 
decodes I1. 



 

I1 B1 B2 B3 I2

 
Fig. 1. Example of a GOP in a temporally scalable bit-stream. 

 

In a spatially scalable video sequence, several spatial 
resolutions (spatial layers) of the video frames can be chosen 
when decoding. Fig. 2 depicts an example of a spatial scalable 
bit-stream containing three possible resolutions. As can be 
seen, the information related to the three resolutions of a frame 
is contained in the field reserved for such frame in the bit-
stream. 

Video Header GOP GOP GOP

Frame 1

Res 1 Res 2 Res 3

Frame 2 Frame 3 Frame 4

 
Fig. 2. Example of a spatially scalable bit-stream. 

 

In a quality-scalable video sequence (or Signal to Noise 
Ratio –SNR- sequence), it is possible to select several quality 
levels (quality layers) when decoding. Fig. 3 shows an 
example of a quality scalable bit-stream with three qualities. 
The information related to the three qualities of a frame is 
contained in the space reserved for this frame in the 
bit-stream. 

 
Video Header GOP GOP GOP

Frame 1 Frame 2 Frame 3 Frame 4

 
Fig. 3. Example of a quality-scalable (SNR) bit-stream. 

 

Finally, the three types of scalability specified in 
H.264/SVC can be combined into a unique bit-stream. As an 
example, consider an encoded video sequence that has three 
temporal layers, three spatial layers and three quality layers. 
An H.264/SVC decoder that has a medium charged battery 
may decode, for instance, the third spatial layer to get full 
spatial resolution, the second temporal layer to get half 
temporal resolution and the first quality layer to get a low-
quality level. A decoder that has a fully charged battery might 

decode the complete bit-stream to get the full temporal and 
spatial resolution as well as the higher quality. 

B. The Open SVC Decoder 

Open SVC Decoder has been developed within [12] from 
scratch in C language to be easily deployed over embedded 
systems. It is a flexible library [8] compliant with Scalable 
Baseline profile, it also encompasses tools allowing flexibility 
to easily deal with spatial, temporal and fidelity scalability 
changes. At the beginning it was based on a fully compliant 
H.264/AVC Baseline library with most of Main profile tools. 
Only interlaced coding and the weighted prediction are not 
supported because of their complexity for embedded systems. 

Contrary to the JSVM which decodes the upper layer of a 
given scalable bit-stream, i.e. the enhancement layer with the 
highest spatial, temporal and quality scalability, the Open 
SVC Decoder can partially decode the bit-stream until a 
specific layer is required with a specific temporal scalability. 
This particularity provides an adaptability of the decoder over 
different platforms by selecting the right layer in order to have 
a real-time decoding. 

The library contains also several mechanisms to switch of 
layer during the decoding process which allows the user to 
select the layer to display by specifying commands. In the case 
of a partial decoding of a bit-stream, the decoder will dismiss 
discardable layer. Fig. 4 shows the dataflow graph of the 
decoding process when the top layer of a 4-layer stream is not 
decoded. Variable Length Coding and Texture Decoding are 
processes for the first three layers but not for the fourth. 

 
Fig. 4. Dataflow of decoding process. 

 
The PC-version of the Open SVC Decoder has been 

compared to the JSVM 9.19 to benchmark and to test the 
conformance of the library using conformance test sequences. 
The benchmarks were executed on a PC with a dual core 
processor at 2.4GHz and show the speed up between the Open 
SVC Decoder and the JSVM decoder on several conformance 
test sequences with different configurations. Indeed, the 
performance of the library is up to 14 times faster than the 
JSVM decoder [8]. 

In Fig. 5, a simplified flow chart diagram of the decoding 
process for an H.264/SVC compliant bit-stream is shown. The 
decoder reads the H.264/SVC bit-stream from an input buffer 
and decodes the NAL units in sequence. After decoding the 
NAL header, the NAL unit content is identified as a slice 
header or another syntax element (i. e. a Sequence Parameter 
Set –SPS– or a Picture Parameter Set –PPS–). When the NAL 
unit contains a slice of interest for the selected layer, the 
decoder extracts all the syntactical elements from the 
bit-stream and stores them in intermediate buffers. If the 



 

processed NAL must be displayed, each macroblock (MB) is 
completely decoded, however, if the NAL must not be 
displayed the MB is partially decoded.  

In the next step, if a frame has been completely decoded, 
the deblocking filter is applied. Finally, the decoded pictures 
are stored in images buffers and presented in the right order 
using the PC Simple Direct Media Layer (SDL) library. 
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Fig. 5. Simplified Open SVC decoder flow chart. 

III. DSP IMPLEMENTATION 

A. Processor Architecture 

The processor [5] basically consists of two processing 
cores, a GPP and a DSP. The former processor [13] is aimed 
to run a generic Operating System (OS) while the latter [14] 
has an architecture optimized for video processing.  

The GPP processor has two levels of cache memories (L1 
and L2). The program (L1P) and data (L1D) caches, within 
the Microprocessor Unit (MPU) Subsystem, consist of a 16 
KB memory space. The L2 cache consists of a 256 KB 
memory space, shared between program and data. In addition, 
the MPU integrates a coprocessor, optimized for multimedia 

applications, with its own multiplication-accumulation unit 
(MAC) and support for floating-point operations.  

The fixed-point DSP core has two levels of internal 
memory (L1 and L2). The L1P memory/cache consists of a 
32 KB memory space and the L1D memory consists of an 
80 KB memory space. Both memories can be configured as 
cache memories, general-purpose memories or a combination 
of both. Finally, the L2 memory/cache consists of a 64 KB 
memory space, shared between the program and data. L2 
memory can be configured as a general-purpose mapped 
memory, a cache memory, or a combination of both.  

A commercial prototyping board [15] (Fig. 6) based on this 
processor has been used to test the Open SVC decoder and its 
performance has been measured. The board has 256 MB of 
SDRAM external memory, 256 MB of Flash external memory 
and several interfaces. Note that the clock frequency of the 
GPP and DSP cores is 600 MHz and 500 MHz, respectively. 

 

 

 

Fig. 6. Prototyping system based on the commercial processor. 

B. Open SVC Decoder Porting Process 

It is worth noting that the Open SVC decoder has been 
developed for a PC-based platform. The decoder has been 
ported to the DSP as follows: 

• The decoder has been encapsulated into a Real Time 
Operating System (RTOS) [16] task executed by the DSP. 
The size of the stack associated to this task has been 
adjusted to 1 MB and has been allocated in external 
memory. Code and data have been allocated in external 
memory.  

• To limit the amount of memory of the DSP 
implementation, the decoder code has been modified and 
the maximum size of the decoded pictures has been reduced 
from HD (1920×1080) to SD (720×576). 

• Internal memory has been configured as follows: L1D is 
divided in 32 KB for cache memory and 48 KB for general 
purpose data; L1P is configured as a 32 KB cache program 
memory and L2 is splitted between level-2 cache memory 
and general purpose memory. Currently, neither the code 



 

nor the data are allocated in internal memory but these 
memories have available space for future optimizations. 

• The decoder output interface has been modified. In the 
original code, the decoded pictures are displayed on screen 
using the SDL library. In the DSP code, the decoded 
pictures are written in a YUV file. 

• Functions used to access the bit-stream files have been 
adapted to the functions available in the DSP real-time 
support libraries. 

• The way to select the layer to be decoded has been 
modified. In the original code, the layer was selected using 
the command line arguments while in the DSP version 
these parameters are introduced through a configuration file 
that is parsed at the beginning of the decoding process. 

C. Optimization Process 

The performance of the DSP-based decoder has been 
measured using several standard sequences and the 
manufacturer profiling tools. The modules having the highest 
computational load have been identified. The methodologies 
presented in [9][10][11] have been applied to reduce the 
number of CPU cycles needed to decode an H.264/SVC 
bit-stream. These methodologies improve the decoder 
performance taking advantage of the SIMD (Simple 
Instruction Multiple Data) architecture and using explicit 
DMA transfers to move data between internal and external 
memory. 

The SIMD architecture allows operating with several 
pels/coefficients at the same time using assembly instructions. 
As an example of the use of these instructions, the algorithm 
implemented to calculate the interpolated pels when the 
motion vectors have a ¼-pel resolution is summarized.  

To calculate the interpolated pels a 6-tap filter must be 
applied in horizontal and vertical directions. The Fig. 7 shows 
the pels used to calculate the intermediate values for an 8x8 
pel block (shadowed pels) with a fractional motion vector only 
in the horizontal direction. Thirteen pels (from p-2 to p10) must 
be read for each row. This pels are stored in four 32-bit 
variables (Data1 to Data4) using 4 double-word load 
instructions. 

p0 p1 p2 p3p-1 p4 p5 p6 p7p-2 p9p8 p10

8
 p

e
ls

Data1 Data2 Data3 Data4

. . . . . . . . . . . . . . . . . . . .

 

Fig. 7. Pels used to calculate the interpolated pels of a row. 

Fig. 8 summarizes the optimized algorithm used to 
calculate the interpolated pels for the first row. The first 
interpolated pel (I0) uses the pels stored in Data1 and Data2 
(from p-2 to p3). Each pel is multiplied by a constant 
coefficient, all the results are accumulated and finally the 
average is calculated. All these operations can be optimized 

using a specific SIMD instruction available in the DSP 
(_dotpsu4). Two of these instructions are needed and the final 
results are stored in two 16 bits variables (M1 and M3). The 
average between both data must be calculated as will be show 
later. 

The second interpolated pel (I1) is calculated using the 
same algorithm but in this case employ the pels from p-1 to p4. 
All these pels are stored in Data1 and Data2 so no additional 
loads are necessary. The results for this pel are stored in M2 
and M4 variables. 

The Mi results are stored in 16 bits variables. Package 
instructions can be used to store two of them in a 32-bits 
variable. M12 and M34 variables store the packed data. Using 
the addition (_add2) and right shift (_shr2) instructions is 
possible to calculate the average between M1 and M3 and, M2 
and M4, at the same time. Interpolated pels I0 and I1 are 
obtained after these operations with 16-bit resolution and 
packed in a 32-bit variable. These interpolated pels must have 
a resolution of 8 bits, so four pels (from I0 to I3) can be packed 
into a 32-bit variable. After the optimization process, the 
algorithm needs only 12 instructions (2 loads, 4 products, 3 
packages, 1 addition, 1 shift and 1 store).  

p0 p1 p2 p3p-1 p4 p5p-2

Data1 Data2

_dotpsu4

01FB1414

Multiply1 (M1) Multiply2 (M2)

_dotpsu4

FB010000

Multiply3 (M3) Multiply4 (M4)

_dotpsu4

0001FB14

_dotpsu4

14FB0100

M1 M2 M3 M4

_pack2

M1+M3 M2+M4

_pack2

_add2

I0 I1

_shr2

I2 I3

_pack4

I2 I3I1I0

M12 M34

 

Fig. 8. Algorithm implemented to calculate the interpolated pels with 

¼ pel resolution in horizontal direction. 

 

A similar methodology have been applied to CABAC 
entropy decoding, frames upsampling, motion compensation, 
IICT, coefficients interpolation and deblocking filter. In 
Subsection V.A, Table I presents the average improvement 
achieved in all the optimized modules. 

Moreover, the DMA controller has been used to improve 
the data transfers between internal and external memory 
during the motion compensation process. The data used in the 
MB loop (“MB fully decoded” block in Fig. 5) are allocated in 
internal memory to increase the execution speed. The 
reference data pointed by the motion vectors are moved from 
the reference picture buffers to a buffer in internal memory 
(REF_Y). The prediction is added with the residual MB and 



 

stored in a ping-pong buffer (REC). To move the reference 
and reconstructed data from/to external memory to/from 
internal memory, explicit DMA transfers are used. The Fig. 9 
shows the buffers allocated in internal memory for the motion 
compensation process. 

Reference pictures

(external memory)

REF_Y buffer

(internal memory)

1D-2D DMA

transfer

ICT_COEFFS

Motion

Compensation

+

Current unfiltered picture

(external memory)

REC_0

Ping_Pong buffers

(internal memory)

2D-1D DMA

Transfers

REC_1

 
Fig. 9. Transfers between internal and external memory and use of 

internal buffers to decode one MB. 

IV. TEST-BENCH 

A set of tests has been carried out to verify the decoder 
conformance and to characterize its performance using 
different combinations of scalability values and bitrates. A 
block diagram of the test-bench is shown in Fig. 10. As can be 
seen, first, a test stream is read from a file and written into a 
stream buffer allocated in external memory. Then, the decoder 
reads the stream from the memory and decodes it on a picture 
basis. At last, the decoded picture is written into a buffer and 
also into a component YUV video file. The test-bench has 
been executed in the prototype board used in PccMuTe project 
(see Fig. 6).  

Sequence

file

Decoding Task

File

Processing

Decoding

Process

File

Processing

Stream buffer Picture buffer

Reconstructed

YUV file

 

Fig. 10. Test-bench block diagram to profile the Open SVC decoder in 

real time. 

 

In order to assess the decoder performance with the 
test-bench depicted in Fig. 10, six well-known video 
sequences (Akiyo, Coastguard, Flower, Foreman, Mobile and 
News) have been encoded using a commercial H.264/SVC 
encoder [17]. The following subsections summarize the 
generated sequences. 

A. Performance Dependence on Scalability 

Two different types of test sequences have been generated 
to evaluate the influence of the specific layers embedded on 
the stream in the decoder performance. For each type of set, 
sequences that consist of six layers extracted out from the 
eight possible combinations among two spatial resolutions 
(QCIF and CIF), two frame-rates (12.5 and 25 frames per 
second) and two qualities (low and high) have been generated. 
Furthermore, the bitrate of these sequences is 512 Kbps and 
the base layer of each sequence has been encoded with 102 
Kbps (20% of a total bitrate of 512 Kbps). 

The stream structure of the first set of test sequences, 
exemplified with the Akiyo sequence, can be seen in Fig. 11. 
Note that the two possible temporal scalability values are 
omitted. In this type of test sequence, the first enhancement 
layers are derived from the corresponding base layers with 
only an increase in quality while the second enhancement 
layers are derived from the previous ones with only an 
increase in spatial resolution. In this paper, they are designated 
as quality-spatial sequences to stress the fact that the greatest 
quality layer is obtained from the base layer with, first, a 
quality improvement and, then, with a spatial resolution 
improvement. 

 

QCIF 
Low 

QCIF 
High 

CIF 
High  

Fig. 11. Quality-Spatial six-layered test sequence structure. – temporal 

resolution omitted. 

 

Fig. 12 shows the stream structure of the second set of test 
sequences. The first enhancement layers are derived from the 
base layers with only an increase in spatial resolution although 
the second enhancement layers are generated from the first 
enhancement ones with an increase in quality. In the rest of 
the paper the sequences belonging to this set are designated as 
spatial-quality sequence. 

 

QCIF 
Low 

CIF 
Low 

CIF 
High 

 
Fig. 12. Spatial-Quality six-layered test sequence structure.- temporal 

resolution omitted. 

 

As far as the codec parameters to generate the test 
sequences concern, the GOP size equals 8 progressive frames, 
the CABAC is used for entropy coding, the deblocking filter is 
active, all possible macroblock partitions are enabled for inter-
prediction, three reference frames are allowed, and one 
B-frame is coded for each I-frame.  

The decoder performance results using the previous 
sequences are presented in Table III and Table IV and they are 
discussed in Subsection V.B. 

B. Performance Dependence on Bitrate 

In addition, a set of sequences has been generated in order 
to evaluate the influence of the bitrate in the decoder 



 

performance. The foreman sequence has been selected to 
analyze the dependency between the bitrate and the decoder 
performance. The sequence has been encoded as a quality-
spatial stream using the codec parameters described in 
Subsection IV.A. Table V provides the performance results for 
three different bitrates (0.5 Mbps, 1 Mbps and 2 Mbps) and in 
Subsection V.C some conclusions are derived.  

V. RESULTS 

This section describes the decoder performance, measured 
as the number of CPU cycles employed to decode a frame of a 
sequence layer, after the optimization process. While in 
Subsection V.A, the performance improvement of each 
optimized module is summarized, in Subsection V.B the 
decoder performance is analyzed using quality-spatial and 
spatial-quality sequences. Finally, Subsection V.C presents the 
decoder performance using sequences with different bitrates. 

A. Decoder Modules Improvement after optimization 

The optimization techniques presented in Subsection III.C 
have been applied to the DSP-based decoder implementation. 
Each layer of the sequences described in Subsection IV.A has 
been decoded and the profile data of each module has been 
analyzed.  

Table I presents the average performance improvement 
achieved in each of the optimized modules for the foreman 

quality-spatial sequence. The entry “others” in Table I 
includes functions optimized for bit-stream parsing, 
intra-prediction and motion vectors storage. To obtain these 
measurements, each layer of the sequence foreman, encoded 
with the parameters presented in Subsection IV.A, has been 
decoded with a decoder that encompasses all optimized 
versions of the modules shown in Table I. 

TABLE I 

OPTIMIZED MODULES AND AVERAGE PERFORMANCE IMPROVEMENT FOR 

THE FOREMAN SEQUENCE. 

Module Performance improvement 

CABAC entropy decoding 59.0% 

Deblocking filter 28.3% 

Motion compensation & interpolation 72.3% 

Inverse ICT 80.1% 

Coefficients Scalability & SNR 58.7% 

Others 58.6% 

 

In Table II, the average performance improvement 
percentage per module and sequence layer is shown. These 
values have been obtained as follows. First, different 
optimized decoder versions that comprehend optimizations for 
only one module have been generated. Afterwards, each layer 
of the quality-spatial foreman sequence, similarly encoded 
with the parameters presented in Subsection IV.A, has been 
decoded with each optimized decoder. At last, the average 
number of CPU cycles per layer frame is compared to that of 
the non-optimized decoder. 

The columns of Table II present the layers included in the 
sequence where S indicates the picture size of the frames, T 
the temporal resolution in frames per second and Q the level 
of quality (high or low). The rows present the percentage of 
improvement achieved when an optimized module is 
integrated. Finally, the last row shows the global improvement 
when all the optimized modules are integrated. 

TABLE II 

GLOBAL AND MODULE AVERAGE PERFORMANCE  IMPROVEMENT FOR THE 

QUALITY-SPATIAL FOREMAN SEQUENCE. 

 

Layer 0 

S=QCIF 

T=12.5 

Q=Low 

Layer 1 

S=QCIF 

T=25 

Q=Low 

Layer 2 

S=QCIF 

T=12.5 

Q=High 

Layer 3 

S=QCIF 

T=25 

Q=High 

Layer 4 

S=CIF 

T=12.5 

Q=High 

Layer 5 

S=CIF 

T=25 

Q=High 

CABAC 11.0 7.4 17.6 12.1 16.1 10.7 

Deblocking 
Filter 

7.2 5.6 5.5 4.1 6.2 7.1 

MC & 
Interpol. 

2.8 5.2 6.3 3.2 7.0 6.4 

IICT 7.0 3.6 4.9 3.5 3.4 4.8 

SNR 0.8 -0.3 12.4 13.8 0.4 -0.1 

Others 1.0 1.6 3.9 5.1 6.4 6.1 

Optimized 
Version 

35% 34% 39% 38% 40% 35% 

 

The two following conclusions can be drawn from the 
analysis of Table I and Table II: 

First, Table II shows that the global improvement achieved 
is not the addition of the improvement of each module. The 
reason of this loss is that the allocation of the modules in 
memory changes after each optimization and the number of 
data-cache misses increases when the code is optimized.  

Secondly, Table I indicates that some modules have been 
optimized achieving an improvement greater than 70%. But 
the global improvement shown in Table II is around 40%. This 
difference is justified by the flow chart of the decoder 
presented in Fig. 5. The decoder executes the decoding phases 
(entropy decoding, MC and deblocking filter) frame by frame 
generating data cache misses and increasing the number of 
cycles used to decode each picture. Currently the flow chart is 
being modified to reduce the cache misses. 

Finally, the performance improvement achieved with the 
“SNR” module for the layers 1 and 5 is negative. This module 
is only used if a quality enhancement layer is decoded (layers 
2 or 3). The rest of the enhancement layers do not use this 
module so the global improvement should be zero. However, 
the integration of this module modifies the allocation of the 
code and the data in memory and therefore the number of 
cache misses varies. This situation generates a negative 
improvement in the decoder performance for layers 1 and 5. 

The use of the DMA in the motion compensation process 
achieves an improvement lower than 4% in the global 
performance. This improvement is smaller than expected 
because the CPU must wait for the end of transfers before 
processing the transferred data. 



 

The modifications in the decoder flow chart proposed 
above to reduce the data cache misses will allow to reduce the 
CPU waits during the DMA transfers. The CPU will be able to 
execute some phases of the algorithm while the DMA is 
transferring data (further details in [10]). 

B. Decoder Performance with different kinds of scalabilities 

This subsection presents the decoder performance results 
using the sequences described in Subsection IV.A. The 
performance is calculated after decoding 100 frames. 

First, the decoder performance is measured using the 
quality-spatial sequences. Table III contains the percentage of 
CPU cycles needed to achieve real-time processing out of 
those available, using the un-optimized and optimized decoder 
versions and for all layers. Moreover, the percentage of 
improvement achieved for each layer is presented. These 
results have been obtained using a DSP running at 500 MHz.  

The last row presents only for reference the average 
improvement achieved. These results demonstrate that 
real-time performance has been achieved for all the layers of 
the generated streams.  

TABLE III 

OPEN SVC DECODER PERFORMANCE BEFORE AND AFTER THE 

OPTIMIZATION PROCESS FOR QUALITY-SPATIAL SEQUENCES. 

  

Layer 0 

S=QCIF 

T=12.5 

Q=Low 

Layer 1 

S=QCIF 

T=25 

Q=Low 

Layer 2 

S=QCIF 

T=12.5 

Q=High 

Layer 3 

S=QCIF 

T=25 

Q=High 

Layer 4 

S=CIF 

T=12.5 

Q=High 

Layer 5 

S=CIF 

T=25 

Q=High 

Akiyo 
Unoptim 10.1 20.5 22.7 50.5 60.7 127.7 

Optim 6.5 13.5 13.7 30.9 36.1 84.1 
Improve 36% 34% 40% 39% 41% 34% 

Coast 
Guard 

Unoptim 10.2 21.3 23.2 52.1 62.7 135.7 
Optim 6.6 14.0 13.8 31.7 37.2 86.5 

Improve 35% 34% 40% 39% 41% 36% 

Flower 
Unoptim 9.7 20.6 22.5 51.2 60.6 130.7 

Optim 6.3 13.5 13.3 30.9 36.0 84.2 
Improve 35% 35% 41% 40% 40% 41% 

Foreman 
Unoptim 10.3 21.5 22.8 51.7 61.3 133.1 

Optim 6.7 14.2 13.8 31.8 36.7 86.1 
Improve 35% 34% 39% 38% 40 35% 

Mobile 
Unoptim 10.7 21.4 23.1 52.2 63.8 132.6 

Optim 6.9 14.0 14.1 31.9 37.6 86.0 
Improve 36% 35% 39% 39% 41% 35% 

News 
Unoptim 9.9 20.5 22.6 49.6 59.8 128.0 

Optim 6.4 13.6 13.5 30.4 36.2 82.5 
Improve 35% 34% 40% 39% 39% 36% 

Average Improvement 35% 34% 40% 39% 40% 37% 

 

Later, the decoder performance is measured using the 
spatial-quality sequences. Table IV contains the percentage of 
CPU cycles needed to achieve real-time processing using the 
un-optimized and the optimized versions and the percentage of 
improvement achieved for each layer. The average 
improvement achieved for each layer is showed in the last 
row. In this case, the real time performance is not achieved for 
layer 5. 

TABLE IV 

OPEN SVC DECODER PERFORMANCE BEFORE AND AFTER THE 

OPTIMIZATION PROCESS FOR SPATIAL-QUALITY SEQUENCES. 

  

Layer 0 

S=QCIF 

T=12.5 

Q=Low 

Layer 1 

S=QCIF 

T=25 

Q=Low 

Layer 2 

S=QCIF 

T=12.5 

Q=High 

Layer 3 

S=QCIF 

T=25 

Q=High 

Layer 4 

S=CIF 

T=12.5 

Q=High 

Layer 5 

S=CIF 

T=25 

Q=High 

Akiyo 
Unoptim 9.4 19.9 47.7 106.0 89.8 208.6 

Optim 6.1 13.2 28.4 68.3 51.5 122.6 
Improve 35% 34% 40% 36% 43% 41% 

Coast 
Guard 

Unoptim 10.1 21.2 51.4 110.5 92.4 208.7 
Optim 6.6 13.9 30.9 70.8 52.9 126.0 

Improve 35% 34% 40% 36% 43% 40% 

Flower 
Unoptim 10.0 20.3 51.1 109.9 91.8 206.7 

Optim 6.5 14.1 30.0 69.9 51.1 126.0 
Improve 35% 31% 41% 36% 44% 39% 

Foreman 
Unoptim 10.1 21.6 50.3 110.7 91.0 109.2 

Optim 6.6 14.2 30.5 70.6 52.7 126.4 
Improve 35% 34% 39% 36% 42% 40% 

Mobile 
Unoptim 10.3 21.3 51.6 109.2 93.4 211.5 

Optim 6.6 13.9 31.0 71.0 54.0 125.5 
Improve 36% 35% 40% 35% 42% 41% 

News 
Unoptim 9.5 20.0 48.1 106.7 90.1 206.4 

Optim 6.2 13.3 29.1 68.7 50.9 124.1 
Improve 35% 34% 39% 36% 43% 40% 

Average Improvement 35% 34% 40% 36% 43% 40% 

 

The results presented in Table III and Table IV 
demonstrate that the performance is higher if the first 
enhancement layer is a SNR layer instead of a spatial 
enhancement layer. Real-time performance is achieved for the 
first subset of sequences presented in Subsection IV.A but not 
for the second subset.  

C. Decoder Performance with different bitrates 

Finally, Table V shows the influence of the bitrate in the 
decoder performance. As described in Subsection IV.B three 
quality-spatial streams has been generated with different 
bitrates (0.5, 1 and 2 Mbps) using the same parameters for the 
encoder configuration. The sequence foreman has been used to 
analyze the decoder performance. 

The CPU percentage needed to achieve real time 
performance is presented for all the layers included in the bit-
streams. Moreover, the percentage of increase in the number 
of CPU cycles needed to decode the 1 Mbps and 2 Mbps 
streams respect to 0.5 Mbps stream is shown. All the results 
have been obtained after decoding 100 frames. 

TABLE V 

RELATIONSHIP BETWEEN BITRATE AND DECODER PERFORMANCE. 

  
S=QCIF 

T=12.5 

Q=Low 

S=QCIF 

T=25 

Q=Low 

S=QCIF 

T=12.5 

Q=High 

S=QCIF 

T=25 

Q=High 

S=CIF 

T=12.5 

Q=High 

S=CIF 

T=25 

Q=High 

0.5 Mbps %CPU 6.7 14.2 13.8 31.8 36.7 86.1 

1 Mbps 
%CPU 7.7 16 15.6 35.3 40.8 91.9 

Increase 14.9% 12.7% 13.0% 11.0% 11.2% 6.7% 

2 Mbps 
%CPU 9.2 18.8 18.6 40.5 46.8 104.7 

Increase 37.3% 32.4% 34.8% 27.4% 27.5% 21.6% 
 

The results presented in Table V show that the bitrate has a 
higher influence in the decoder performance for the base layer 
than for rest of the layers. Moreover, the increase in the 
number of CPU cycles needed to achieve real time 



 

performance is not linear with the bitrate, if the bitrate is 
doubled; the number of the CPU cycles increase in about 15%. 

VI. CONCLUSION & FUTURE WORK 

An H.264/SVC decoder based on a commercial DSP has 
been implemented by porting the Open SVC decoder from the 
PC to the DSP environment. Several optimizations techniques 
have been applied to reach real-time performance for CIF 
sequences. Up to the best of our knowledge, no other 
H.264/SVC decoder based on DSP has been reported. This 
optimized decoder will be used in a multimedia terminal to 
trade-off between quality and energy consumption.  

It is worth noting that the gap between the module and 
global improvements of the ported decoder is mainly due to 
data-cache misses and the increasing number of CPU cycles 
employed at the frame-by-frame decoding phase. Furthermore, 
the motion compensation process achieves smaller 
ameliorations than could be expected when the DMA is in 
used. In addition, the optimized Open SVC decoder 
accomplishes higher enhancements for quality-spatial test 
sequences than for spatial-quality ones. Finally, the main 
performance decrease at increasing bit rates is observed when 
decoding base layers. 

In near future the work will be focused on two lines. The 
former consists in the distribution of data and code in the 
different levels of memory and the flow chart reorganization 
to reduce the number of cache misses, while the latter will 
concentrate in evaluating the correlation between the decoded 
layer and the DSP energy consumption. 
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