
HAL Id: hal-00717485
https://hal.science/hal-00717485

Submitted on 13 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSP based H.264/SVC decoder for a multimedia
terminal

Fernando Pescador, Eduardo Juarez, Mickaël Raulet, César Sanz

To cite this version:
Fernando Pescador, Eduardo Juarez, Mickaël Raulet, César Sanz. A DSP based H.264/SVC decoder
for a multimedia terminal. IEEE Transactions on Consumer Electronics, 2011, 57 (2), pp.705 -712.
�10.1109/TCE.2011.5955211�. �hal-00717485�

https://hal.science/hal-00717485
https://hal.archives-ouvertes.fr

A DSP Based H.264/SVC Decoder for a Multimedia
Terminal

F. Pescador, Member IEEE, E. Juarez, Member IEEE, M. Raulet, Member IEEE, and C. Sanz, Member IEEE

Abstract — In this paper, the implementation of a

DSP-based video decoder compliant with the H.264/SVC

standard (14496-10 Annex G) is presented. A PC-based

decoder implementation has been ported to a commercial

DSP. Performance optimizations have been carried out

improving the initial version performance about 40% and

reaching real time for CIF sequences. Moreover, the

performance has been characterized using H.264/SVC

sequences with different kinds of scalabilities and different

bitrates. This decoder will be the core of a multimedia

terminal that will trade off energy against quality of

experience
1
.

Index Terms — Scalable Video Coding, H.264/SVC, DSP

algorithm optimization, performance characterization.

I. INTRODUCTION

In the last years, a speed-up in the deployment of all kinds
of telecommunication networks supporting multimedia
services and applications has been produced in many parts of
the world. In this context, the consumer multimedia terminals
play a central role. In these terminals, video decoding is one of
the most demanding tasks in terms of computational load and
energy consumption.

The Scalable Video Coding (SVC) techniques [1] can be
used in multimedia terminals to achieve a trade-off between
quality and energy consumption. Though SVC techniques
have been defined in most video coding standards [2][3][4],
the SVC capabilities included in H.264 [4] have overcome the
ones in former standards.

In PccMuTe1 project, our research is focused on the energy
and power consumption control in multimedia terminals. A
multimedia terminal prototype with a DVB-H receiver, an
H.264/SVC decoder and an audio decoder is going to be used
to validate the experiments. In this context, the H.264/SVC
decoder will be used to achieve a trade-off between user
Quality of Experience (QoE) and energy consumption [5]. The
multimedia terminal architecture is based on a commercial
chip [6] having a General Purpose Processor (GPP) and a
Digital Signal Processor (DSP). The GPP implements the user
interface using a generic operating system and the DSP
decodes the video streams.

1 This work was supported by the Spanish Ministry of Science and

Innovation under grant TEC2009-14672-C02-01 (PccMuTe: Power
Consumption Control in Multimedia Terminals).

F. Pescador, E. Juarez and C. Sanz, are with the Electronic and
Microelectronic Design Group (GDEM) at the Universidad Politécnica de

Madrid, Spain. (e-mail: {pescador, ejuarez and cesar}@sec.upm.es).
M. Raulet is with the Institut d’Electronique et de Télécommunications. De

Rennes (IETR)/ INSA Rennes, France (mraulet@insa-rennes.fr).

Up to now, the available SVC decoder implementations
are restricted to the PC domain [7][8]. In this work, the Open
SVC decoder [8] has been ported to the DSP environment and
the methodologies proposed in [9][10][11] to reduce its
decoding time have been applied. The real-time performance
has been reached for CIF sequences. Up to the best of our
knowledge, no other H.264/SVC decoder implementation
based on DSP has been reported.

In this paper, a DSP implementation of a real-time
H.264/SVC decoder is explained. The H.264/SVC standard
and the Open SVC decoder are outlined in Section II. In
Section III, the DSP decoder implementation is described. In
Section IV the test-bench created to measure the decoder
performance is outlined. The results of the profiling tests are
discussed in Section V. Finally, Section VI concludes the
paper.

II. THE H.264/SVC STANDARD

In this section, the H.264 standard and the Open SVC
decoder are briefly explained for reference.

A. H.264/SVC Standard

An SVC algorithm was standardized as the annex G of
H.264 [4][7] to cover the needs of scalability. In this standard,
the video compression is performed by generating a unique
hierarchical bit-stream structured in several levels or layers of
information, consisting of a base layer and several
enhancement layers. The base layer provides basic quality.
The enhancement layers provide improved quality at increased
computational cost and energy consumption. Because the
energy consumption depends on the particular layer to decode,
an H.264/SVC decoder is a very well-suited solution for
managing the energy consumption by selecting the appropriate
layer.

H.264/SVC specifies three types of scalabilities: spatial,
temporal and quality. In a temporally scalable video sequence,
several frame rates (temporal layers) of a video sequence can
be chosen when decoding. Fig. 1 shows an example of a
Group of Pictures (GOP) where the user can select three frame
rates. If the device decodes the four frames of the GOP (I1,
B1, B2, B3), a full-frame-rate sequence will be obtained. If the
decoder discards B1 and B3 frames and only decodes I1 and
B2, a half-frame-rate sequence will be achieved. The third
case is a quarter-frame-rate sequence, which will be obtained
when the decoder discards B1, B2 and B3 frames and only
decodes I1.

I1 B1 B2 B3 I2

Fig. 1. Example of a GOP in a temporally scalable bit-stream.

In a spatially scalable video sequence, several spatial
resolutions (spatial layers) of the video frames can be chosen
when decoding. Fig. 2 depicts an example of a spatial scalable
bit-stream containing three possible resolutions. As can be
seen, the information related to the three resolutions of a frame
is contained in the field reserved for such frame in the bit-
stream.

Video Header GOP GOP GOP

Frame 1

Res 1 Res 2 Res 3

Frame 2 Frame 3 Frame 4

Fig. 2. Example of a spatially scalable bit-stream.

In a quality-scalable video sequence (or Signal to Noise
Ratio –SNR- sequence), it is possible to select several quality
levels (quality layers) when decoding. Fig. 3 shows an
example of a quality scalable bit-stream with three qualities.
The information related to the three qualities of a frame is
contained in the space reserved for this frame in the
bit-stream.

Video Header GOP GOP GOP

Frame 1 Frame 2 Frame 3 Frame 4

Fig. 3. Example of a quality-scalable (SNR) bit-stream.

Finally, the three types of scalability specified in
H.264/SVC can be combined into a unique bit-stream. As an
example, consider an encoded video sequence that has three
temporal layers, three spatial layers and three quality layers.
An H.264/SVC decoder that has a medium charged battery
may decode, for instance, the third spatial layer to get full
spatial resolution, the second temporal layer to get half
temporal resolution and the first quality layer to get a low-
quality level. A decoder that has a fully charged battery might

decode the complete bit-stream to get the full temporal and
spatial resolution as well as the higher quality.

B. The Open SVC Decoder

Open SVC Decoder has been developed within [12] from
scratch in C language to be easily deployed over embedded
systems. It is a flexible library [8] compliant with Scalable
Baseline profile, it also encompasses tools allowing flexibility
to easily deal with spatial, temporal and fidelity scalability
changes. At the beginning it was based on a fully compliant
H.264/AVC Baseline library with most of Main profile tools.
Only interlaced coding and the weighted prediction are not
supported because of their complexity for embedded systems.

Contrary to the JSVM which decodes the upper layer of a
given scalable bit-stream, i.e. the enhancement layer with the
highest spatial, temporal and quality scalability, the Open
SVC Decoder can partially decode the bit-stream until a
specific layer is required with a specific temporal scalability.
This particularity provides an adaptability of the decoder over
different platforms by selecting the right layer in order to have
a real-time decoding.

The library contains also several mechanisms to switch of
layer during the decoding process which allows the user to
select the layer to display by specifying commands. In the case
of a partial decoding of a bit-stream, the decoder will dismiss
discardable layer. Fig. 4 shows the dataflow graph of the
decoding process when the top layer of a 4-layer stream is not
decoded. Variable Length Coding and Texture Decoding are
processes for the first three layers but not for the fourth.

Fig. 4. Dataflow of decoding process.

The PC-version of the Open SVC Decoder has been

compared to the JSVM 9.19 to benchmark and to test the
conformance of the library using conformance test sequences.
The benchmarks were executed on a PC with a dual core
processor at 2.4GHz and show the speed up between the Open
SVC Decoder and the JSVM decoder on several conformance
test sequences with different configurations. Indeed, the
performance of the library is up to 14 times faster than the
JSVM decoder [8].

In Fig. 5, a simplified flow chart diagram of the decoding
process for an H.264/SVC compliant bit-stream is shown. The
decoder reads the H.264/SVC bit-stream from an input buffer
and decodes the NAL units in sequence. After decoding the
NAL header, the NAL unit content is identified as a slice
header or another syntax element (i. e. a Sequence Parameter
Set –SPS– or a Picture Parameter Set –PPS–). When the NAL
unit contains a slice of interest for the selected layer, the
decoder extracts all the syntactical elements from the
bit-stream and stores them in intermediate buffers. If the

processed NAL must be displayed, each macroblock (MB) is
completely decoded, however, if the NAL must not be
displayed the MB is partially decoded.

In the next step, if a frame has been completely decoded,
the deblocking filter is applied. Finally, the decoded pictures
are stored in images buffers and presented in the right order
using the PC Simple Direct Media Layer (SDL) library.

START

Initiations

Read fragment from bitstream

Choose and set layer

Determine Nal unit type

CAVLC / CABAC Decoding

VCL NAL?

Last MB?
NO

MB fully decoded

Display the right order image

Loop filter

Last MB?
NO

YES

Filter?
NO

NAL to

Display?

Process Non-VCL

NAL

End bitstream?

NO
END

YES

Interesting

NAL?

NON VLC NAL?

VLC NAL?

NO

YES

YES

YES

MB partially decoded

NO

Last MB?
NO

YES

Last MB?
NO

YES

YES

Present the frame using SDL

Fig. 5. Simplified Open SVC decoder flow chart.

III. DSP IMPLEMENTATION

A. Processor Architecture

The processor [5] basically consists of two processing
cores, a GPP and a DSP. The former processor [13] is aimed
to run a generic Operating System (OS) while the latter [14]
has an architecture optimized for video processing.

The GPP processor has two levels of cache memories (L1
and L2). The program (L1P) and data (L1D) caches, within
the Microprocessor Unit (MPU) Subsystem, consist of a 16
KB memory space. The L2 cache consists of a 256 KB
memory space, shared between program and data. In addition,
the MPU integrates a coprocessor, optimized for multimedia

applications, with its own multiplication-accumulation unit
(MAC) and support for floating-point operations.

The fixed-point DSP core has two levels of internal
memory (L1 and L2). The L1P memory/cache consists of a
32 KB memory space and the L1D memory consists of an
80 KB memory space. Both memories can be configured as
cache memories, general-purpose memories or a combination
of both. Finally, the L2 memory/cache consists of a 64 KB
memory space, shared between the program and data. L2
memory can be configured as a general-purpose mapped
memory, a cache memory, or a combination of both.

A commercial prototyping board [15] (Fig. 6) based on this
processor has been used to test the Open SVC decoder and its
performance has been measured. The board has 256 MB of
SDRAM external memory, 256 MB of Flash external memory
and several interfaces. Note that the clock frequency of the
GPP and DSP cores is 600 MHz and 500 MHz, respectively.

Fig. 6. Prototyping system based on the commercial processor.

B. Open SVC Decoder Porting Process

It is worth noting that the Open SVC decoder has been
developed for a PC-based platform. The decoder has been
ported to the DSP as follows:

• The decoder has been encapsulated into a Real Time
Operating System (RTOS) [16] task executed by the DSP.
The size of the stack associated to this task has been
adjusted to 1 MB and has been allocated in external
memory. Code and data have been allocated in external
memory.

• To limit the amount of memory of the DSP
implementation, the decoder code has been modified and
the maximum size of the decoded pictures has been reduced
from HD (1920×1080) to SD (720×576).

• Internal memory has been configured as follows: L1D is
divided in 32 KB for cache memory and 48 KB for general
purpose data; L1P is configured as a 32 KB cache program
memory and L2 is splitted between level-2 cache memory
and general purpose memory. Currently, neither the code

nor the data are allocated in internal memory but these
memories have available space for future optimizations.

• The decoder output interface has been modified. In the
original code, the decoded pictures are displayed on screen
using the SDL library. In the DSP code, the decoded
pictures are written in a YUV file.

• Functions used to access the bit-stream files have been
adapted to the functions available in the DSP real-time
support libraries.

• The way to select the layer to be decoded has been
modified. In the original code, the layer was selected using
the command line arguments while in the DSP version
these parameters are introduced through a configuration file
that is parsed at the beginning of the decoding process.

C. Optimization Process

The performance of the DSP-based decoder has been
measured using several standard sequences and the
manufacturer profiling tools. The modules having the highest
computational load have been identified. The methodologies
presented in [9][10][11] have been applied to reduce the
number of CPU cycles needed to decode an H.264/SVC
bit-stream. These methodologies improve the decoder
performance taking advantage of the SIMD (Simple
Instruction Multiple Data) architecture and using explicit
DMA transfers to move data between internal and external
memory.

The SIMD architecture allows operating with several
pels/coefficients at the same time using assembly instructions.
As an example of the use of these instructions, the algorithm
implemented to calculate the interpolated pels when the
motion vectors have a ¼-pel resolution is summarized.

To calculate the interpolated pels a 6-tap filter must be
applied in horizontal and vertical directions. The Fig. 7 shows
the pels used to calculate the intermediate values for an 8x8
pel block (shadowed pels) with a fractional motion vector only
in the horizontal direction. Thirteen pels (from p-2 to p10) must
be read for each row. This pels are stored in four 32-bit
variables (Data1 to Data4) using 4 double-word load
instructions.

p0 p1 p2 p3p-1 p4 p5 p6 p7p-2 p9p8 p10

8
 p

e
ls

Data1 Data2 Data3 Data4

.

Fig. 7. Pels used to calculate the interpolated pels of a row.

Fig. 8 summarizes the optimized algorithm used to
calculate the interpolated pels for the first row. The first
interpolated pel (I0) uses the pels stored in Data1 and Data2
(from p-2 to p3). Each pel is multiplied by a constant
coefficient, all the results are accumulated and finally the
average is calculated. All these operations can be optimized

using a specific SIMD instruction available in the DSP
(_dotpsu4). Two of these instructions are needed and the final
results are stored in two 16 bits variables (M1 and M3). The
average between both data must be calculated as will be show
later.

The second interpolated pel (I1) is calculated using the
same algorithm but in this case employ the pels from p-1 to p4.
All these pels are stored in Data1 and Data2 so no additional
loads are necessary. The results for this pel are stored in M2
and M4 variables.

The Mi results are stored in 16 bits variables. Package
instructions can be used to store two of them in a 32-bits
variable. M12 and M34 variables store the packed data. Using
the addition (_add2) and right shift (_shr2) instructions is
possible to calculate the average between M1 and M3 and, M2
and M4, at the same time. Interpolated pels I0 and I1 are
obtained after these operations with 16-bit resolution and
packed in a 32-bit variable. These interpolated pels must have
a resolution of 8 bits, so four pels (from I0 to I3) can be packed
into a 32-bit variable. After the optimization process, the
algorithm needs only 12 instructions (2 loads, 4 products, 3
packages, 1 addition, 1 shift and 1 store).

p0 p1 p2 p3p-1 p4 p5p-2

Data1 Data2

_dotpsu4

01FB1414

Multiply1 (M1) Multiply2 (M2)

_dotpsu4

FB010000

Multiply3 (M3) Multiply4 (M4)

_dotpsu4

0001FB14

_dotpsu4

14FB0100

M1 M2 M3 M4

_pack2

M1+M3 M2+M4

_pack2

_add2

I0 I1

_shr2

I2 I3

_pack4

I2 I3I1I0

M12 M34

Fig. 8. Algorithm implemented to calculate the interpolated pels with

¼ pel resolution in horizontal direction.

A similar methodology have been applied to CABAC
entropy decoding, frames upsampling, motion compensation,
IICT, coefficients interpolation and deblocking filter. In
Subsection V.A, Table I presents the average improvement
achieved in all the optimized modules.

Moreover, the DMA controller has been used to improve
the data transfers between internal and external memory
during the motion compensation process. The data used in the
MB loop (“MB fully decoded” block in Fig. 5) are allocated in
internal memory to increase the execution speed. The
reference data pointed by the motion vectors are moved from
the reference picture buffers to a buffer in internal memory
(REF_Y). The prediction is added with the residual MB and

stored in a ping-pong buffer (REC). To move the reference
and reconstructed data from/to external memory to/from
internal memory, explicit DMA transfers are used. The Fig. 9
shows the buffers allocated in internal memory for the motion
compensation process.

Reference pictures

(external memory)

REF_Y buffer

(internal memory)

1D-2D DMA

transfer

ICT_COEFFS

Motion

Compensation

+

Current unfiltered picture

(external memory)

REC_0

Ping_Pong buffers

(internal memory)

2D-1D DMA

Transfers

REC_1

Fig. 9. Transfers between internal and external memory and use of

internal buffers to decode one MB.

IV. TEST-BENCH

A set of tests has been carried out to verify the decoder
conformance and to characterize its performance using
different combinations of scalability values and bitrates. A
block diagram of the test-bench is shown in Fig. 10. As can be
seen, first, a test stream is read from a file and written into a
stream buffer allocated in external memory. Then, the decoder
reads the stream from the memory and decodes it on a picture
basis. At last, the decoded picture is written into a buffer and
also into a component YUV video file. The test-bench has
been executed in the prototype board used in PccMuTe project
(see Fig. 6).

Sequence

file

Decoding Task

File

Processing

Decoding

Process

File

Processing

Stream buffer Picture buffer

Reconstructed

YUV file

Fig. 10. Test-bench block diagram to profile the Open SVC decoder in

real time.

In order to assess the decoder performance with the
test-bench depicted in Fig. 10, six well-known video
sequences (Akiyo, Coastguard, Flower, Foreman, Mobile and
News) have been encoded using a commercial H.264/SVC
encoder [17]. The following subsections summarize the
generated sequences.

A. Performance Dependence on Scalability

Two different types of test sequences have been generated
to evaluate the influence of the specific layers embedded on
the stream in the decoder performance. For each type of set,
sequences that consist of six layers extracted out from the
eight possible combinations among two spatial resolutions
(QCIF and CIF), two frame-rates (12.5 and 25 frames per
second) and two qualities (low and high) have been generated.
Furthermore, the bitrate of these sequences is 512 Kbps and
the base layer of each sequence has been encoded with 102
Kbps (20% of a total bitrate of 512 Kbps).

The stream structure of the first set of test sequences,
exemplified with the Akiyo sequence, can be seen in Fig. 11.
Note that the two possible temporal scalability values are
omitted. In this type of test sequence, the first enhancement
layers are derived from the corresponding base layers with
only an increase in quality while the second enhancement
layers are derived from the previous ones with only an
increase in spatial resolution. In this paper, they are designated
as quality-spatial sequences to stress the fact that the greatest
quality layer is obtained from the base layer with, first, a
quality improvement and, then, with a spatial resolution
improvement.

QCIF
Low

QCIF
High

CIF
High

Fig. 11. Quality-Spatial six-layered test sequence structure. – temporal

resolution omitted.

Fig. 12 shows the stream structure of the second set of test
sequences. The first enhancement layers are derived from the
base layers with only an increase in spatial resolution although
the second enhancement layers are generated from the first
enhancement ones with an increase in quality. In the rest of
the paper the sequences belonging to this set are designated as
spatial-quality sequence.

QCIF
Low

CIF
Low

CIF
High

Fig. 12. Spatial-Quality six-layered test sequence structure.- temporal

resolution omitted.

As far as the codec parameters to generate the test
sequences concern, the GOP size equals 8 progressive frames,
the CABAC is used for entropy coding, the deblocking filter is
active, all possible macroblock partitions are enabled for inter-
prediction, three reference frames are allowed, and one
B-frame is coded for each I-frame.

The decoder performance results using the previous
sequences are presented in Table III and Table IV and they are
discussed in Subsection V.B.

B. Performance Dependence on Bitrate

In addition, a set of sequences has been generated in order
to evaluate the influence of the bitrate in the decoder

performance. The foreman sequence has been selected to
analyze the dependency between the bitrate and the decoder
performance. The sequence has been encoded as a quality-
spatial stream using the codec parameters described in
Subsection IV.A. Table V provides the performance results for
three different bitrates (0.5 Mbps, 1 Mbps and 2 Mbps) and in
Subsection V.C some conclusions are derived.

V. RESULTS

This section describes the decoder performance, measured
as the number of CPU cycles employed to decode a frame of a
sequence layer, after the optimization process. While in
Subsection V.A, the performance improvement of each
optimized module is summarized, in Subsection V.B the
decoder performance is analyzed using quality-spatial and
spatial-quality sequences. Finally, Subsection V.C presents the
decoder performance using sequences with different bitrates.

A. Decoder Modules Improvement after optimization

The optimization techniques presented in Subsection III.C
have been applied to the DSP-based decoder implementation.
Each layer of the sequences described in Subsection IV.A has
been decoded and the profile data of each module has been
analyzed.

Table I presents the average performance improvement
achieved in each of the optimized modules for the foreman

quality-spatial sequence. The entry “others” in Table I
includes functions optimized for bit-stream parsing,
intra-prediction and motion vectors storage. To obtain these
measurements, each layer of the sequence foreman, encoded
with the parameters presented in Subsection IV.A, has been
decoded with a decoder that encompasses all optimized
versions of the modules shown in Table I.

TABLE I

OPTIMIZED MODULES AND AVERAGE PERFORMANCE IMPROVEMENT FOR

THE FOREMAN SEQUENCE.

Module Performance improvement

CABAC entropy decoding 59.0%

Deblocking filter 28.3%

Motion compensation & interpolation 72.3%

Inverse ICT 80.1%

Coefficients Scalability & SNR 58.7%

Others 58.6%

In Table II, the average performance improvement
percentage per module and sequence layer is shown. These
values have been obtained as follows. First, different
optimized decoder versions that comprehend optimizations for
only one module have been generated. Afterwards, each layer
of the quality-spatial foreman sequence, similarly encoded
with the parameters presented in Subsection IV.A, has been
decoded with each optimized decoder. At last, the average
number of CPU cycles per layer frame is compared to that of
the non-optimized decoder.

The columns of Table II present the layers included in the
sequence where S indicates the picture size of the frames, T
the temporal resolution in frames per second and Q the level
of quality (high or low). The rows present the percentage of
improvement achieved when an optimized module is
integrated. Finally, the last row shows the global improvement
when all the optimized modules are integrated.

TABLE II

GLOBAL AND MODULE AVERAGE PERFORMANCE IMPROVEMENT FOR THE

QUALITY-SPATIAL FOREMAN SEQUENCE.

Layer 0

S=QCIF

T=12.5

Q=Low

Layer 1

S=QCIF

T=25

Q=Low

Layer 2

S=QCIF

T=12.5

Q=High

Layer 3

S=QCIF

T=25

Q=High

Layer 4

S=CIF

T=12.5

Q=High

Layer 5

S=CIF

T=25

Q=High

CABAC 11.0 7.4 17.6 12.1 16.1 10.7

Deblocking
Filter

7.2 5.6 5.5 4.1 6.2 7.1

MC &
Interpol.

2.8 5.2 6.3 3.2 7.0 6.4

IICT 7.0 3.6 4.9 3.5 3.4 4.8

SNR 0.8 -0.3 12.4 13.8 0.4 -0.1

Others 1.0 1.6 3.9 5.1 6.4 6.1

Optimized
Version

35% 34% 39% 38% 40% 35%

The two following conclusions can be drawn from the
analysis of Table I and Table II:

First, Table II shows that the global improvement achieved
is not the addition of the improvement of each module. The
reason of this loss is that the allocation of the modules in
memory changes after each optimization and the number of
data-cache misses increases when the code is optimized.

Secondly, Table I indicates that some modules have been
optimized achieving an improvement greater than 70%. But
the global improvement shown in Table II is around 40%. This
difference is justified by the flow chart of the decoder
presented in Fig. 5. The decoder executes the decoding phases
(entropy decoding, MC and deblocking filter) frame by frame
generating data cache misses and increasing the number of
cycles used to decode each picture. Currently the flow chart is
being modified to reduce the cache misses.

Finally, the performance improvement achieved with the
“SNR” module for the layers 1 and 5 is negative. This module
is only used if a quality enhancement layer is decoded (layers
2 or 3). The rest of the enhancement layers do not use this
module so the global improvement should be zero. However,
the integration of this module modifies the allocation of the
code and the data in memory and therefore the number of
cache misses varies. This situation generates a negative
improvement in the decoder performance for layers 1 and 5.

The use of the DMA in the motion compensation process
achieves an improvement lower than 4% in the global
performance. This improvement is smaller than expected
because the CPU must wait for the end of transfers before
processing the transferred data.

The modifications in the decoder flow chart proposed
above to reduce the data cache misses will allow to reduce the
CPU waits during the DMA transfers. The CPU will be able to
execute some phases of the algorithm while the DMA is
transferring data (further details in [10]).

B. Decoder Performance with different kinds of scalabilities

This subsection presents the decoder performance results
using the sequences described in Subsection IV.A. The
performance is calculated after decoding 100 frames.

First, the decoder performance is measured using the
quality-spatial sequences. Table III contains the percentage of
CPU cycles needed to achieve real-time processing out of
those available, using the un-optimized and optimized decoder
versions and for all layers. Moreover, the percentage of
improvement achieved for each layer is presented. These
results have been obtained using a DSP running at 500 MHz.

The last row presents only for reference the average
improvement achieved. These results demonstrate that
real-time performance has been achieved for all the layers of
the generated streams.

TABLE III

OPEN SVC DECODER PERFORMANCE BEFORE AND AFTER THE

OPTIMIZATION PROCESS FOR QUALITY-SPATIAL SEQUENCES.

Layer 0

S=QCIF

T=12.5

Q=Low

Layer 1

S=QCIF

T=25

Q=Low

Layer 2

S=QCIF

T=12.5

Q=High

Layer 3

S=QCIF

T=25

Q=High

Layer 4

S=CIF

T=12.5

Q=High

Layer 5

S=CIF

T=25

Q=High

Akiyo
Unoptim 10.1 20.5 22.7 50.5 60.7 127.7

Optim 6.5 13.5 13.7 30.9 36.1 84.1
Improve 36% 34% 40% 39% 41% 34%

Coast
Guard

Unoptim 10.2 21.3 23.2 52.1 62.7 135.7
Optim 6.6 14.0 13.8 31.7 37.2 86.5

Improve 35% 34% 40% 39% 41% 36%

Flower
Unoptim 9.7 20.6 22.5 51.2 60.6 130.7

Optim 6.3 13.5 13.3 30.9 36.0 84.2
Improve 35% 35% 41% 40% 40% 41%

Foreman
Unoptim 10.3 21.5 22.8 51.7 61.3 133.1

Optim 6.7 14.2 13.8 31.8 36.7 86.1
Improve 35% 34% 39% 38% 40 35%

Mobile
Unoptim 10.7 21.4 23.1 52.2 63.8 132.6

Optim 6.9 14.0 14.1 31.9 37.6 86.0
Improve 36% 35% 39% 39% 41% 35%

News
Unoptim 9.9 20.5 22.6 49.6 59.8 128.0

Optim 6.4 13.6 13.5 30.4 36.2 82.5
Improve 35% 34% 40% 39% 39% 36%

Average Improvement 35% 34% 40% 39% 40% 37%

Later, the decoder performance is measured using the
spatial-quality sequences. Table IV contains the percentage of
CPU cycles needed to achieve real-time processing using the
un-optimized and the optimized versions and the percentage of
improvement achieved for each layer. The average
improvement achieved for each layer is showed in the last
row. In this case, the real time performance is not achieved for
layer 5.

TABLE IV

OPEN SVC DECODER PERFORMANCE BEFORE AND AFTER THE

OPTIMIZATION PROCESS FOR SPATIAL-QUALITY SEQUENCES.

Layer 0

S=QCIF

T=12.5

Q=Low

Layer 1

S=QCIF

T=25

Q=Low

Layer 2

S=QCIF

T=12.5

Q=High

Layer 3

S=QCIF

T=25

Q=High

Layer 4

S=CIF

T=12.5

Q=High

Layer 5

S=CIF

T=25

Q=High

Akiyo
Unoptim 9.4 19.9 47.7 106.0 89.8 208.6

Optim 6.1 13.2 28.4 68.3 51.5 122.6
Improve 35% 34% 40% 36% 43% 41%

Coast
Guard

Unoptim 10.1 21.2 51.4 110.5 92.4 208.7
Optim 6.6 13.9 30.9 70.8 52.9 126.0

Improve 35% 34% 40% 36% 43% 40%

Flower
Unoptim 10.0 20.3 51.1 109.9 91.8 206.7

Optim 6.5 14.1 30.0 69.9 51.1 126.0
Improve 35% 31% 41% 36% 44% 39%

Foreman
Unoptim 10.1 21.6 50.3 110.7 91.0 109.2

Optim 6.6 14.2 30.5 70.6 52.7 126.4
Improve 35% 34% 39% 36% 42% 40%

Mobile
Unoptim 10.3 21.3 51.6 109.2 93.4 211.5

Optim 6.6 13.9 31.0 71.0 54.0 125.5
Improve 36% 35% 40% 35% 42% 41%

News
Unoptim 9.5 20.0 48.1 106.7 90.1 206.4

Optim 6.2 13.3 29.1 68.7 50.9 124.1
Improve 35% 34% 39% 36% 43% 40%

Average Improvement 35% 34% 40% 36% 43% 40%

The results presented in Table III and Table IV
demonstrate that the performance is higher if the first
enhancement layer is a SNR layer instead of a spatial
enhancement layer. Real-time performance is achieved for the
first subset of sequences presented in Subsection IV.A but not
for the second subset.

C. Decoder Performance with different bitrates

Finally, Table V shows the influence of the bitrate in the
decoder performance. As described in Subsection IV.B three
quality-spatial streams has been generated with different
bitrates (0.5, 1 and 2 Mbps) using the same parameters for the
encoder configuration. The sequence foreman has been used to
analyze the decoder performance.

The CPU percentage needed to achieve real time
performance is presented for all the layers included in the bit-
streams. Moreover, the percentage of increase in the number
of CPU cycles needed to decode the 1 Mbps and 2 Mbps
streams respect to 0.5 Mbps stream is shown. All the results
have been obtained after decoding 100 frames.

TABLE V

RELATIONSHIP BETWEEN BITRATE AND DECODER PERFORMANCE.

S=QCIF

T=12.5

Q=Low

S=QCIF

T=25

Q=Low

S=QCIF

T=12.5

Q=High

S=QCIF

T=25

Q=High

S=CIF

T=12.5

Q=High

S=CIF

T=25

Q=High

0.5 Mbps %CPU 6.7 14.2 13.8 31.8 36.7 86.1

1 Mbps
%CPU 7.7 16 15.6 35.3 40.8 91.9

Increase 14.9% 12.7% 13.0% 11.0% 11.2% 6.7%

2 Mbps
%CPU 9.2 18.8 18.6 40.5 46.8 104.7

Increase 37.3% 32.4% 34.8% 27.4% 27.5% 21.6%

The results presented in Table V show that the bitrate has a
higher influence in the decoder performance for the base layer
than for rest of the layers. Moreover, the increase in the
number of CPU cycles needed to achieve real time

performance is not linear with the bitrate, if the bitrate is
doubled; the number of the CPU cycles increase in about 15%.

VI. CONCLUSION & FUTURE WORK

An H.264/SVC decoder based on a commercial DSP has
been implemented by porting the Open SVC decoder from the
PC to the DSP environment. Several optimizations techniques
have been applied to reach real-time performance for CIF
sequences. Up to the best of our knowledge, no other
H.264/SVC decoder based on DSP has been reported. This
optimized decoder will be used in a multimedia terminal to
trade-off between quality and energy consumption.

It is worth noting that the gap between the module and
global improvements of the ported decoder is mainly due to
data-cache misses and the increasing number of CPU cycles
employed at the frame-by-frame decoding phase. Furthermore,
the motion compensation process achieves smaller
ameliorations than could be expected when the DMA is in
used. In addition, the optimized Open SVC decoder
accomplishes higher enhancements for quality-spatial test
sequences than for spatial-quality ones. Finally, the main
performance decrease at increasing bit rates is observed when
decoding base layers.

In near future the work will be focused on two lines. The
former consists in the distribution of data and code in the
different levels of memory and the flow chart reorganization
to reduce the number of cache misses, while the latter will
concentrate in evaluating the correlation between the decoded
layer and the DSP energy consumption.

ACKNOWLEDGMENT

The authors would like to thank D. Samper, E. Seisdedos
and J. J. Soriano from GDEM-UPM and M. Blestel from
INSA for their contributions to this work.

REFERENCES

[1] J-R Ohm, “Advances in Scalable Video Coding”. Proceedings of the
IEEE, vol. 93, nº 1 pp. 42-56, Jan. 2005.

[2] ISO/IEC 13818-2 (ITU-T Rec. H.262). Generic coding of moving
pictures and associated audio information: Video. 1995.

[3] ISO/IEC 14496-2. Information technology. Coding of audio visual
objects. Part 2: Video. 1998.

[4] ISO14496-10. Information technology. Coding of audio-visual objects.
Part 10: Advanced Video Coding. December 2005.

[5] E. Juárez, F. Pescador, P.J. Lobo, A. Groba, and C. Sanz. “Distortion-
Energy Analysis of an OMAP-Based H.264/SVC Decoder” 6th Int.
ICST Conference on Mobile Multimedia Communications Sept 2010.
Lisbon, Portugal. ISBN: 978-963-9799-98-1.

[6] Texas Instruments. OMAP 3530 Technical Reference Manual. Literature
Number: SPRUF98O. April 2010– Revised February 2011

[7] Joint Scalable Video Model JSVM-19, ISO/IEC JTC1/SC29/WG11
ITU-T SG16 Q.6, N9212, 2010.

[8] M. Blestel and M. Raulet. “Open SVC Decoder: a flexible SVC library”
International conference on Multimedia 2010, Open Source Software
Competition Program. October 2010. Firenze, Italy. Pp 1463-1466.

[9] F. Pescador, C. Sanz, M.J. Garrido, E. Juárez and D. Samper. “A DSP
Based H.264 Decoder for a Multi-Format IP Set-Top Box”. IEEE Trans.
on Consumer Electronics Vol. 54, Issue 1, February 2008 pp. 145-153.

[10] F. Pescador, G. Maturana, M.J. Garrido, E. Juárez and C. Sanz “An
H.264 video decoder based on a DM6437 DSP”. IEEE Trans. on
Consumer Electronics. Vol. 55, Nº 1. Pp. 205-212. February 2009.

[11] F. Pescador, D. Samper, M.J. Garrido, E. Juárez and M. Blestel. "A DSP
based SVC IP STB using Open SVC Decoder". Int. Symposium on
Consumer Electronics. Braunschweig Germany, 7-10. June 2010.

[12] M. Barkowsy, M. Blestel, M. Carnec, A. Ksentini, P. Le Callet, G.
Madec, R. Monnier, JF. Nezan, R. Pepion, Y. JF. Travers, M. Raulet,
and A. Untersee, “Overview of the svc4qoe project”, 6th Int. ICST
Conference on Mobile Multimedia Communications September 2010,
Lisbon, Portugal. ISBN: 978-963-9799-98-1.

[13] ARM Limited. Cortex-A8 Technical Reference Manual. Revision r2p1.
November 2007.

[14] Texas Instruments, TMS320C64x/C64x+ DSP CPU and Instruction Set,
SPRU732H, October 2008.

[15] BeagleBoard System Reference Manual Rev. C4, December 2009.
[16] Texas Instruments. TMS320 DSP-BIOS User's guide SPRU423H.

August 2009.
[17] MainConcept. SVC Baseline SDK DirectShow Documentation. Version

1.0.0. Aachen, Septembre 22, 2009.

Fernando Pescador (M’07) received the Ingeniero Técnico
de Telecomunicación degree in 1992 and the Ingeniero de
Telecomunicación degree in 2001, both from the Universidad
Politécnica de Madrid (UPM), Spain. He is Associate Lecturer
at the Department of Electronic and Control Systems at
E.U.I.T. de Telecomunicación of the UPM since 1995 and
researcher of the Electronic and Microelectronic Design

Group (GDEM) since 1999. His research interests are real time video coding
and digital video broadcasting.

Eduardo Juárez (M’96) received the Ingeniero de
Telecomunicación degree from the Universidad Politécnica
de Madrid (UPM), Madrid, Spain, in 1993 and the Docteur ès
Sciences Techniques degree from the École Polytechnique
Fédéral de Lausanne (EPFL), Lausanne, Switzerland, in
2003. In 1994, he joined the Digital Architecture Group
(GAD) of the UPM as a researcher. In 1998, he joined the

Integrated Systems Laboratory (LSI) of the EPFL as an Assistant. In 2000, he
joined Transwitch Corp., Switzerland, as Senior System Engineer. In 2004, he
joined the Electronic and Microelectronic Design Group (GDEM) as a post-
doctoral researcher. In 2007, he joined the faculty of the E.U.I.T. de
Telecomunicación of the UPM. His current interests are in the design of low-
power video and audio decoders for mobile applications.

Mickaël Raulet received the Engineering degree in electronic
and computer engineering from National Institute of Applied
Sciences (INSA), Rennes Scientific and Technical University.
In 2006, he received the Ph.D. degree from INSA in
electronic and signal processing in collaboration with the
software radio team of Mitsubishi Electric ITE (Rennes–

France). He is currently a researcher at the Institute of Electronics and
Telecommunications of Rennes (IETR). Since 2007, he has been contributing
to the ISO/IEC JTC1/SC29/WG11 (MPEG) standardization activities for the
development of the RVC standard.

César Sanz (S’87. M’88) received the Ingeniero de
Telecomunicación degree with honours in 1989 and the
Doctor Ingeniero de Telecomunicación degree with summa
cum laude in 1998 both from the Universidad Politécnica
de Madrid (UPM). Since 1984 he has been a member of the
faculty of the E.U.I.T. de Telecomunicación of the UPM,
since 1999 has been Associate Professor at the Department

of Electronic and Control Systems and since 2008 he is the director of the
E.U.I.T. de Telecomunicación. In addition, he leads the Electronic and
Microelectronic Design Group (GDEM) involved in R&D projects with
Spanish and European companies and public institutions. His areas of interest
are microelectronic design applied to image coding, digital TV and digital
video broadcasting.

