Non-Gaussianity and Dynamical Trapping in Locally Activated Random Walks

Abstract : We propose a minimal model of locally activated random walks, in which the diffusion coefficient of a one-dimensional Brownian particle is modified in a prescribed way -- either increased or decreased -- upon each crossing of the origin. Importantly, the case of a local decrease of the motion ability is at work in the process of formation of the atherosclerotic plaque, when describing the dynamics of a macrophage cell that grows when accumulating localized lipid particles. We show in the general case that localized perturbations have remarkable consequences on the dynamics of the diffusion process at all scales, such as the emergence of a non-Gaussian multi-peaked probability distribution and a dynamical transition to an absorbing state. In the context of atherosclerosis, this dynamical transition to an absorbing state can be viewed as a minimal mechanism leading to the segregation of macrophages in lipid enriched regions and therefore to the formation of the atherosclerosis plaque.
Type de document :
Pré-publication, Document de travail
MAP5 2012-18. 2012
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger
Contributeur : Nicolas Meunier <>
Soumis le : mardi 10 juillet 2012 - 13:54:15
Dernière modification le : mercredi 21 mars 2018 - 18:57:21
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 22:38:19


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00716339, version 1



Olivier Benichou, Nicolas Meunier, Sidney Redner, Raphael Voituriez. Non-Gaussianity and Dynamical Trapping in Locally Activated Random Walks. MAP5 2012-18. 2012. 〈hal-00716339〉



Consultations de la notice


Téléchargements de fichiers