
HAL Id: hal-00715653
https://hal.science/hal-00715653

Submitted on 9 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete time queueing networks with product form
steady state. Availability and performance analysis

in an integrated model
Christian Malchin, Hans Daduna

To cite this version:
Christian Malchin, Hans Daduna. Discrete time queueing networks with product form steady state.
Availability and performance analysis in an integrated model. Queueing Systems, 2010, 65 (4),
pp.385-421. �10.1007/s11134-010-9181-2�. �hal-00715653�

https://hal.science/hal-00715653
https://hal.archives-ouvertes.fr

Queueing Syst (2010) 65: 385–421
DOI 10.1007/s11134-010-9181-2

Discrete time queueing networks with product form
steady state. Availability and performance analysis
in an integrated model

Christian Malchin · Hans Daduna

Received: 24 November 2006 / Revised: 17 May 2010 / Published online: 9 July 2010
© Springer Science+Business Media, LLC 2010

Abstract For a discrete time network of generalized Bernoulli servers with unreli-
able nodes we derive the steady state probabilities for the joint queue length vector
for all nodes and the availability status of the network. This allows us to assess the
performance behavior and the reliability, resp. availability, of the network in an inte-
grated model. Because our result exhibits a product form for the steady state distrib-
ution it opens the path to fast algorithmic evaluation of the desired performance and
reliability indices.

Keywords Networks of discrete time queues · Unreliable nodes · Availability ·
Time reversed process · Product form theorem · Geometrical nodes

Mathematics Subject Classification (2000) 60K25 · 90B22 · 68M20

List of symbols
N = {1,2, . . .} Positive Integers.
N0 = {0,1,2, . . .}.
Cj : N0 → N0 Capacity function; see pp. 6 and 24.
S : M → N Route length; see p. 5.
n(x), n(1xj) Global and local queue length; see p. 8.
A(x, (m, s)) = min{t | s < t � S(m), 2xw(m,t) = 0};

jumping customer’s new stage (upstream); see (10) on p. 18.
Ā(y, (m, s)) = max{t | 1 � t < s, 2yw(m,t) = 0};

jumping customer’s new stage (downstream); see (15) on p. 25.

This research is part of the DFG-research project “Stochastische Netzwerke in diskreter Zeit:
Analyse von Leistung und Verfügbarkeit” (DA774/1-1).

C. Malchin · H. Daduna (�)
University of Hamburg, Hamburg, Germany
e-mail: daduna@math.uni-hamburg.de

mailto:daduna@math.uni-hamburg.de

386 Queueing Syst (2010) 65: 385–421

UP(x) = {i ∈ {1,2, . . . , J } | 2xi = 0};
set of up-stations in state x; see (12) on p. 20.

UPOCC(x) = {i ∈ {1,2, . . . , J } | n(1xi) > 0, 2xi = 0},
set of active stations in state x; see (13) on p. 21.

Succ(x) Set of successor states of state x with respect to the original system
(see p. 20).

Succ(y) Set of successor states of state y with respect to the reversed system
(see p. 28).

1 Introduction

In this note we study the asymptotic and stationary behavior of discrete time queue-
ing networks. We extend product form results for discrete time open queueing net-
works [10, 12, 21, 43, 53], to include availability of unreliable nodes and state depen-
dent arrival intensities.

In continuous time queueing network theory, product form calculus has been
proven to be (possibly) the best route to efficient algorithms. Our contribution is in
the same spirit: We provide explicit steady state distributions for the networks which
(as in continuous time) show in equilibrium separability of the global state probabil-
ities into factors which are determined by local characteristics only. Our main result
shows, even more, that separability holds for the queue lengths as well as for the
availability of the nodes in the networks.

The field of discrete time queueing theory has developed considerably since
around fifteen years ago, motivated by the introduction of the ATM protocol in high-
speed transmission networks; for a short introduction see [5, Chap. 4]. For a survey
on discrete time networks see the books [5, 8, 10, 49]. The results described in these
books are on classical topics of performance analysis for queueing systems and their
networks.

Considering also availability of the nodes, with the model investigated in this note
we bridge for discrete time networks the gap to the area of performability (= per-
formance + reliability) where performance characteristics and availability (and their
interaction) are studied in integrated models; for a survey see [18].

The model: We consider an open network with general topology. The nodes are
generalized Bernoulli servers under First-Come-First-Served (FCFS). Customers ar-
rive with an intensity which depends on the total population size in the network. They
are of different types, and their type determines the route by which they want to pass
through the network.

Nodes may break down randomly; repair time is random. Nodes which are up
work properly; down nodes do not work at all, and customers are frozen there, while
newly arriving customers bypass these nodes (this is the jump over protocol often
introduced to resolve blocking in networks of queues; see [45]).

We further impose on the network model a regulation scheme that suppresses con-
current movements of customers. This regulation scheme is intimately connected to
the so-called ALOHA protocol, [27, Sect. 5.11], [49, Sect. 6.2], which was intro-
duced in transmission networks to resolve access conflicts to a shared medium by
several users.

Queueing Syst (2010) 65: 385–421 387

The main result of the paper is the steady state distribution of a Markov chain
which describes jointly the state of all queues and the availability of all nodes. The
steady state distribution is of product form and completely in line with the celebrated
results for Jackson, Gordon–Newell, BCMP, and Kelly networks; see [9]. Therefore,
similar to the product form theorems for pure queueing networks in continuous time
and the subsequently derived computational algorithms, our result opens the path to
jointly investigate the performance and availability of the network and their interde-
pendence, and to subsequently develop computational algorithms for availability and
performance.

Related work:

• Continuous time networks: The standard method to incorporate availability into
product form models is the reduced service speed method; for a review of the clas-
sical method and refined versions see [7]. The resulting model is a pure queueing
network where the unreliability of the servers is represented by slowing down the
service rates. Integrated models for jointly investigating performance and avail-
ability in continuous time models are to be found, for example, in [39–41].

• Discrete time linear systems: Open tandems and closed cycles of completely reli-
able Bernoulli servers under FCFS are investigated in several papers. Some repre-
sentatives are [23, 33, 34, 36]. A noteworthy observation in these linear networks
is: We obtain product form steady state results without suppressing concurrent
movements of customers.

• Unreliable stations: For the single unreliable Bernoulli server (often called unreli-
able Geo/Geo/1/∞ queue) and its refinements and generalizations there are many
results available in the literature; see [5, Sect. 3.2] for a detailed exposition of
a rather general one-node model with “server’s interruption” due to breakdowns.
More recent contributions in this direction are [14, 15, 47]. As expected, only for
the simplest models explicit steady state distributions are obtained.

In [29] availability was considered as an additional state characteristic in a linear
system of unreliable Bernoulli servers and product form steady state results were
obtained similar to those derived here.

• Discrete time analogs of Kelly networks of exponential and symmetric servers with
general topology: These systems with completely reliable geometrical and doubly
stochastic nodes date back to [12]; see [53] and [54] for more recent results similar
to that. A survey is [10, Sect. 5].

A distinguished property of these networks is (similar to those of Kelly- and the
BCMP networks) that customers may be of different types and their path through
the network can be traced for any of them individually, even on their dedicated
places in the nodes and the servers individual customers are identifiable.

In this general setting seemingly no explicit results for steady state distributions
can be obtained when concurrent customer movements are possible, unless the
network is linear.

The geometrical servers introduced in [12] are the discrete time counterparts of
Kelly’s generalized exponential servers, [24, Sect. 3.1]. The present paper investi-
gates networks of such geometrical servers which are unreliable.

• Concurrent movements of customers in discrete time networks: There is a rich
class of models described in the literature, often under the heading of batch service,

388 Queueing Syst (2010) 65: 385–421

batch arrivals, and batch movements, where customers indeed can move concur-
rently and some more or less explicit steady state distribution can be given; see [8]
for a detailed review of discrete and continuous time systems. Explicit steady states
are accessible here because it is not required that individual customers’ passages
through the network are followed, and special “departure rules” for groups of cus-
tomers (of the same type, and for several types in parallel) are applied. Some rep-
resentatives of such systems are dealt with in [2, 3, 19, 20, 31, 32], and from the
related viewpoint of generalized semi-Markov processes in [21]. For a short review,
emphasizing the necessity of investigating discrete time models, see the introduc-
tory section of [51].

In most of these papers continuous time is used and the authors propose that
their methodology applies to discrete time systems as well: Simply by using the
embedded jump chain as a model for its own. Applying this argument and proce-
dure to Kelly networks with generalized exponential servers (as pointed out these
are the counterpart of the geometrical servers) we obtain in a natural way discrete
time networks without concurrent movements of customers.

A class of systems with batch service and batch movements, closely related to
the models above, is the class of so-called S-queues introduced in [48].

Closely related to these models are the networks investigated in [50, 52], with
applications to ATM networks.

• Discrete time stochastic automata networks: Such networks have many structural
similarities with discrete time queueing networks. Their investigation suffers from
the curse of combinatorial complexity in the same way as the networks considered
here. In [16] it is shown that even for loosely coupled systems of automata one
has to revert to approximations for computing the steady state distribution of the
underlying Markov chains.

• Several further applications of models closely related to ours are described in some
detail in Sect. 2.3.2 (B) below.

The “reversed process method” used to prove the main theorem:
Our method of proof is a standard device in queueing network theory since it was

popularized in Kelly’s book [24]—at least in continuous time. The method exploits
the generator matrices of a stationary homogeneous Markov process (not necessarily
reversible) and its time reversed process, which is a stationary homogeneous Markov
chain again and has the same steady state; see [24, Sect. 1.7] for the general theory
and with Theorem 1.13 (p. 30) as center of the method. We provide necessary details
in Sect. 2.3.3 and quote the parallel theorem for discrete time.

In following the advice given by these theorems the main problem in proving our
theorem was

• To construct the one-step transition matrix of the time reversed process (which can
be interpreted as the state process of a rather weird network of queues), and

• To write down the matrices in a way that makes it possible to check the quasi-local
balance equations, provided by the theorem, and

• In course of checking these equations to adapt product form formulas from the
literature to the models investigated here

The rest of the paper is organized as follows: In Sect. 2 we describe the ingredients
of our network and its construction in detail, state the main theorem, and discuss the

Queueing Syst (2010) 65: 385–421 389

modeling assumptions and the methods applied in more detail. The formal description
of the (as we shall call it: original) system is in Sect. 3; in Sect. 4 we describe formally
the system which is the result of the time reversal of the original network process. The
proof of the main theorem is postponed to Sect. 5.

2 System dynamics

2.1 Overview

We consider an open network of stations (queues) Q[1], . . . ,Q[J], J < ∞, in dis-
crete time N0.

Each station is a geometrical server (as introduced in [12]) with an infinite waiting
room under First-Come-First-Served regime (FCFS).

Customers of different types arrive from the outside in state dependent arrival
streams, travel through the network, and eventually depart to the outside. A cus-
tomers’ route is determined by his type according to Kelly’s deterministic routing
scheme [24, Sect. 3.1].

The servers are unreliable, break down randomly, and are repaired thereafter. Re-
pair commences immediately after break down, the repair time is random. At stations
with server under repair no service is provided and no further customers are admitted
there. Customers who encounter on their path broken down servers will bypass these
nodes.

2.2 The details

(1) Customer types, arrivals, and routing: The set M of customer types is count-
able; for simplicity we take either M := N or M := {1, . . . ,N} for some N ∈ N.

If at time t ∈ N0 the total population size in the network is n � 0, then in the next
time slot a customer of type m ∈ M will arrive with probability b(n) · α(m) ∈ (0,1),
where

∑
m∈M α(m) = 1. With probability c(n) = 1 − b(n) ∈ (0,1) no customer will

arrive. Given the total population size n the arrivals occur independently of the pre-
vious history of the network.

A customer of type m wants to pass the specified sequence of stations

Q
[
w(m,1)

]
,Q

[
w(m,2)

]
, . . . ,Q

[
w

(
m,S(m)

)]

which are not necessarily distinct; in particular immediate feedback is possible. The
route w is w(m) := (w(m,1),w(m,2), . . . ,w(m,S(m))) and S(m) ∈ N is the route
length for customers of type m ∈ M . Thus, type-m customers want to visit at stage s

of their route station Q[w(m, s)], s = 1, . . . , S(m).
Following Kelly [24] we call a pair (m, s) of a customer type m ∈ M and a stage

number s � S(m) a class of customer m.

(2) Geometrical servers: The stations (nodes) are geometrical servers with state de-
pendent service capacity and ample waiting room. Such a station can be considered
as a linearly ordered string of positions numbered {1,2,3, . . .}. If n customers are
present at station Q[j], they reside in positions {1,2,3, . . . , n}.

390 Queueing Syst (2010) 65: 385–421

Then the capacity function Cj : N0 → N0 determines the state dependent capacity
of the station which is provided to the customers there:

The positions {1, . . . ,Cj (n)} are busy, while positions {Cj(n) + 1,Cj (n) +
2, . . . , n} are idle. We require 1 � Cj(n) � n for n � 1 and Cj(0) = 0. We consider
Cj as a station parameter.

If n customers are present at time t ∈ N0 in station Q[j], then for any customer on
a busy position 1, . . . ,Cj (n) service ends (independently of another) with probability
pj ∈ (0,1] in the subsequent time slot, with probability qj = 1−pj this customer has
to obtain service for at least one more time slot. The service times of all customers
are mutually independent and are independent of the arrivals.

If n customers are present a new arrival occupies position n + 1 at the tail of the
queue.

Reorganization of the queue is according to the shift protocol: If a customer’s
service expires and he departs from station Q[j], jumping to the next station on his
specified path, the gap in the line is closed, and customers behind him move up one
position. In case of feedback the shift protocol applies before the customer is fed
back.

There will be some additional restrictions imposed on the departure rules; see (4)
below.

Examples Geometrical servers can be considered as discrete time analogs of Kelly’s
generalized exponential servers [24, Sect. 3.1]. We describe some examples:
(a) The standard multi-server with s � 1 service channels is obtained by setting

C1(n) =
{
n, for 1 � n � s;
s, for n � s.

(b) A server with an additional service channel which is working only if the queue
length n exceeds a prescribed critical value d � 1 is obtained by setting

C2(n) =
{

1, for 1 � n � d;
2, for n � d + 1.

Two special cases of (a) should be mentioned:
(c) A single server is obtained by setting

C3(n) = 1, for all n � 1.

(d) An infinite server is obtained by setting

C4(n) = n, for all n � 1.

(3) Breakdown, repair, and availability: Breakdown and repair are determined lo-
cally at the individual nodes. Station Q[j] is either up (0) or down (1). When a station
is up, service can be provided to customers and customers can enter this station. When
a station is down, no service is provided, old customers on their positions are frozen,
no new customers are admitted, and the server is under repair.

Queueing Syst (2010) 65: 385–421 391

The availability of station Q[j], which indicates whether this station is up or
down, is governed by a Markov chain with states {0,1} and one-step transition matrix
aj = (aj (k, �) : k, � ∈ {0,1}). These Markov chains act independently of one another
and of the queue lengths of the nodes. Therefore servers may break down if they are
idle, i.e., they are (in terms of reliability theory) in warm stand-by.

The network’s availability is described by some vector x ∈ {0,1}J , where xj ∈
{0,1} indicates whether node Q[j] is up or down, j ∈ {1, . . . , J }.
(4) Simultaneous departures and arrivals: Due to the discrete time scale, simulta-
neously several services may expire at one or more nodes and possibly an additional
external arrival may occur at the same time instant. We impose the following rules in
such a situation (for discussion of these rules, which will be termed ALOHA proto-
col, see Sect. 2.3.2):

• If there is only one event (departure or external arrival) at some time instant, it is
executed immediately and scheduled according to the rules described above.

• If there are multiple events that occur simultaneously at the same time instant,
none is granted: An arrival is rejected, any service that has expired is prolonged
for at least one further time slot. The residual service of such blocked customers
is provided according to the rules described in (2) independent of the system’s
history.

(5) Interaction of queueing processes and breakdown and repair: The simulta-
neous Markovian breakdown-repair processes develop free of restrictions, parallel
(simultaneous) availability updates are feasible, and they occur in parallel to the state
changes of the queueing processes.
Any change of the network’s state is scheduled as follows:

• The queueing process develops one step taking into consideration the possible
restrictions imposed by the nodes’ availability: possible arrivals, departures, and
inter-node transitions are performed under the side constraints prescribed by the
ALOHA protocol (4).

• Thereafter the network’s availability is updated according to the Markovian rules
described above: some down stations may be repaired, other down stations con-
tinue to be under repair, at other stations repair commences and customers are
frozen there.

Summarizing: Reorganization of the queues depends on the current state only and
is independent of the subsequent availability update.

(6) Rerouting in case of breakdowns: As described in (3) above, whenever a node is
down and under repair, no new customers are admitted there. The consequence of this
is that we have to implement a rerouting strategy for redirecting customers which on
their route encounter a station which is under repair and therefore do not allow them
to join the queue. We prescribe that a customer who is rejected by a station under
repair skips this node without any time delay, and joins the next available station of
his route. If there is none, he departs from the network. To be more specific:

If a customer of type m on his itinerary w(m) = (w(m,1),w(m,2), . . . ,

w(m,S(m))) finds station Q[w(m, s)], s < S(m), under repair, he immediately

392 Queueing Syst (2010) 65: 385–421

tries to enter Q[w(m, s + 1)], and, if this station is under repair as well, and if
s + 1 < S(m), he immediately tries to enter Q[w(m, s + 2)], and so on, until he
either finds a station Q[w(m, t)], s < t � S(m), which is up, where he joins the
queue, or, if there is no such station, he departs from the network immediately.

(7) State space description: The states of the network record for each station the
sequence of customer classes (i.e. type and current stage) present there and the net-
work’s availability. We separate the queueing information 1x and the availability in-
formation 2x in the global state of the network

x = (1x, 2x
) = ((1x1, . . . ,

1xJ

)
,
(2x1, . . . ,

2xJ

))
.

The second component 2x = (2x1, . . . ,
2xJ) ∈ {0,1}J of x describes the network’s

availability, where e.g., 2xj = 0 indicates that node Q[j] is up.
The first component 1x = (1x1, . . . ,

1xJ) of x encodes by 1xj for station Q[j] for
each position in the string of positions 1,2, . . . the class (m, s) of the customer who
reside in this position.

A typical queueing state of the network therefore is 1x = (1x1, . . . ,
1xJ), with

1xj = (1xj,1,
1xj,2, . . . ,

1xj,n(1xj), (0,0), (0,0), . . .
)

= ((1xj,1,1,
1xj,1,2

)
,
(1xj,2,1,

1xj,2,2
)
, . . . ,

(1xj,n(1xj),1,
1xj,n(1xj),2

)
, (0,0), (0,0), . . .

)
.

The meaning of the components of 1xj is

• n(1xj) is the local queue length at Q[j].
• (1xj,1,1,

1xj,1,2) indicates that on the first position of station Q[j] a type m =
1xj,1,1 customer resides, who is on stage s = 1xj,1,2 of his route through the net-
work.

• (1xj,n(1xj),1,
1xj,n(1xj),2) indicates that on the last occupied position of station

Q[j] a type m = 1xj,n(1xj),1 customer resides, who is on stage s = 1xj,n(1xj),2
of his route through the network.

• The intermediate positions can be described similarly.
• (0,0) indicates that this position is not occupied. (Incorporating this redundant

information for positions n(1xj) + 1, n(1xj) + 2, . . . will simplify the presentation
and several computations in the proofs, as will become visible later on: E.g., the
queueing situation at station Q[j] is described by a state in (N2

0)
N.)

The set of all feasible queueing-availability states x = (1x, 2x) of the network is
Ê, the set of all feasible queueing states 1x is E. So Ê ⊂ E ×{0,1}J . We call 1xj the
(local) queueing state at station Q[j] and 2xj the (local) availability of station Q[j].
The total number of customers in system is n(x) := ∑J

j=1 n(1xj) (using n(·) for local
and total queue length will not cause difficulties.)

An empty node has the queueing state ((0,0), (0,0), . . .). We set n((0,0), (0,0),

. . .) = 0.
Notational remark: For a concise notation of the concurrent state changes in the

availability component (availability update) we use the following notation:

Queueing Syst (2010) 65: 385–421 393

A change of the availability, say, at station Q[j], can be described by the transition
2xj → 2xj ⊕ 1, where ⊕ denotes addition modulo 2 on {0,1}. To keep notation
simple we denote the componentwise addition modulo 2 on {0,1}J by ⊕ as well.

We encode the network’s availability update in a vector u ∈ {0,1}J : if uj = 1 the
availability of Q[j] will change, if uj = 0 the availability remains unchanged. Then
the network’s availability 2x and an availability update vector u ∈ {0,1}J result in the
new network availability 2y = 2x ⊕ u.

2.3 The queueing-availability process

From the description of the network in Sect. 2.2 it is easy to see that with state space
Ê we can construct a Markov chain X = (Xn : n ∈ N0) to describe the network’s
evolution over time.

With the help of the notation in (7) we can state our main result. (Recall that
α is the type selection distribution for external arrivals; empty products are 1 by
definition.)

Theorem 1 Let X denote the homogeneous Markov chain for the queueing-
availability process. If X is ergodic then the unique steady state and limiting dis-
tribution of X is given by

π(x) = 1

K

(
n(x)∏

k=1

b(k − 1)

c(k)

)
J∏

l=1

(
n(1xl)∏

k=1

α(1xl,k,1)

Cl(k)

)
q

n(1xl)−Cl(n(1xl))
l

p
n(1xl)
l

al

(2xl ⊕ 1, 2xl

)
,

x ∈ Ê, (1)

where K is the normalizing constant.

Remark The result of Theorem 1 is new even for the case of classical discrete time
networks of completely reliable nodes; see [12, Theorem 1], [53], and [54], where the
arrival streams to the network are assumed to be state independent, which simplifies
analysis considerably.

2.3.1 Examples

We first consider single node systems with the service disciplines described in
Sect. 2.2 (2), and thereafter show how such nodes interact in networks.

(I) For simplicity of the presentation we always assume that there is only one
customer type arriving, M := {1}, and that no feedback occurs, i.e. S(1) = 1, which
leads to a simplified notation E = N0 for the set of all queueing states, and for the
state space: Ê = N0 × {0,1}. We denote a typical state as (n, 2x).

We further assume that the Bernoulli arrival stream is state independent, b(n) =
b, c(n) = c for all n ∈ N0.

Assuming ergodicity of the state process throughout we obtain the following
steady states.

394 Queueing Syst (2010) 65: 385–421

(a) For a multi-server with s � 1 service channels

π
((

n, 2x
)) = 1

K

(
b

c

)n 1

min(n, s)!
(

1

s

)(n−s)+ qn−min(n,s)

pn
a
(2x ⊕ 1, 2x

)
,

(
n, 2x

) ∈ Ê, (2)

(b) For a server with an additional service channel which is working only if the queue
length n exceeds a prescribed critical value d

π
((

n, 2x
)) = 1

K

(
b

c

)n(1

2

)(n−d)+ q(n−1)+

pn

(
1

q

)1((n−d)+>0)

a
(2x ⊕ 1, 2x

)
,

(
n, 2x

) ∈ Ê, (3)

(c) For a single server

π
((

n, 2x
)) = 1

K

(
b

c

)n
q(n−1)+

pn
a
(2x ⊕ 1, 2x

)
,

(
n, 2x

) ∈ Ê, (4)

(d) For an infinite server

π
((

n, 2x
)) = 1

K

(
b

c

)n 1

n!
1

pn
a
(2x ⊕ 1, 2x

)
,

(
n, 2x

) ∈ Ê. (5)

Note, that in any case the steady state availabilities a(2x ⊕ 1, 2x) are obtained as the
steady state of a two-state Markov chain, because we have {2x ⊕ 1, 2x} = {0,1} (set
equality!).

(II) Our first network example is a linear three-stage tandem of single-server sta-
tions (see (4)). To obtain a simple example, we assume that there is only one type
of arrivals and all customers intend to traverse the tandem stations subsequently
via route (1,2,3). The arrival stream is state-independent with arrival probability
b ∈ (0,1), and the service probability at station Q[j] is pj > b, j = 1,2,3 (these
relations guarantee ergodicity of the system).

Because of the simple routing and because there are no type distinctions we have
a simplified notation for the set of all queueing states E = N

3
0, and for the state space

Ê = N
3
0 × {0,1}3. We denote a typical state as ((n1, n2, n3), (

2x1,
2x2,

2x3)).
The steady state according to Theorem 1 is, with some smoothing due to our sim-

plifying assumptions and al := al(0,1) + al(1,0),

π
(
(n1, n2, n3),

(2x1,
2x2,

2x3
))

=
3∏

l=1

a−1
l

(

1 − b

pl

)(
b

1 − b

)nl (1 − pl)
(nl−1)+

p
nl

l

al

(2xl ⊕ 1, 2xl

)
,

(
(n1, n2, n3),

(2x1,
2x2,

2x3
)) ∈ Ê. (6)

Queueing Syst (2010) 65: 385–421 395

Due to our simplifying assumptions in this example the normalizing constant factor-
izes as well and we therefore obtain independence of the queue lengths in steady state
for a fixed time instant

K−1 =
3∏

l=1

K−1
l , K−1

l = a−1
l

(

1 − b

pl

)

.

Moreover, the normalizing constants factorize even for the queue lengths and the
availabilities of the servers, a−1

l is the normalization for the availability probabilities
of station Q[l], l = 1,2,3. The consequences of the observed factorization, resp.,
independence properties, are striking:

The joint steady state queue length distribution and the local steady state queue
length distributions are independent of the breakdown probabilities and the speed of
the repair at the stations and are the same as the station’s steady state queue length
distribution in isolation without breakdowns.

At node Q[l] the steady state queue lengths probabilities are

π(nl) =
(

1 − b

pl

)(
b

1 − b

)nl (1 − pl)
(nl−1)+

p
nl

l

, nl ∈ N0.

The intuition with this observation is that during repair periods no arrivals are admit-
ted at the node.

Nevertheless, there is degradation of the performance of the networks by unreli-
ability, which is reflected, for example, in rewards earned by servicing customers.
To be more specific: Let station Q[l] obtain a reward rl for servicing a customer
successfully. Then the steady state reward per period (time unit) of station Q[l] is

∑

((n1,n2,n3),(
2x1,

2x2,
2x3))∈Ê

π
(
(n1, n2, n3),

(2x1,
2x2,

2x3
)) · 1(nl>0,2xl=0)rlpl

= al(1,0)

al

· b · rl . (7)

If we set rl = 1 we obtain from (7) the throughput at station Q[l]:

THl = al(1,0)

al

· b,

which is obviously strongly influenced by the mean repair time al(1,0)−1.
Because in steady state the throughput equals the arrival rate it follows from Lit-

tle’s Theorem that individual customer’s (mean) sojourn times are strongly affected
by the availability and the repair time of the stations. The mean sojourn time E(Wl)

of a customer in steady state at station Q[l], l = 1,2,3, is

E(Wl) = 1 − b

pl − b
· al

al(1,0)
.

We conclude that the mean sojourn times E(Wl) of a customer and the local through-
put THl at a node strongly depend on the local breakdown probability and on the

396 Queueing Syst (2010) 65: 385–421

local mean repair times, but they do not depend on the breakdown probabilities and
on the mean repair times at the other nodes. This is clearly a consequence of the sim-
plifying assumptions which lead to an overall separability of the joint queue length—
availability process.

(III) We now consider a network with three nodes, Q[l], l = 1,2,3, and different
customer types which is a generalization of the so-called Simon–Foley network.

Node Q[1] is a multi-server with s > 1 service channels, node Q[2] is a server
with additional service channel which starts to work whenever the queue length ex-
ceeds the critical value d , and node Q[3] is a single server.

The set of customer types is M := {1,2,3,4} and the routes are specified as fol-
lows:

• w(1) := (1,3).
• w(2) := (1,2).
• w(3) := (2,2,3).
• w(4) := (2).

So, customers of type m ∈ {1,2,3} pass exactly two different nodes, but customers of
type m = 3 have three stages because of (exactly) one feedback at node Q[2], while
customers of type m ∈ {1,2} both have two stages on their itinerary. Customers of
type m = 4 visit only node Q[2].

Assuming ergodicity, the steady state according to Theorem 1 then is

π(x) = 1

K

(
n(x)∏

k=1

b(k − 1)

c(k)

)(
3∏

l=1

(
n(1xl)∏

k=1

α(1xl,k,1)

)

al

(2xl ⊕ 1, 2xl

)
)

× 1

min(n(1x1), s)!
(

1

s

)(n(1x1)−s)+ qn(1x1)−min(n(1x1),s)

pn(1x1)

×
(

1

2

)(n(1x2)−d)+ q(n(1x2)−1)+

pn(1x2)

(
1

q

)1
((n(1x2)−d)+>0) q(n(1x3)−1)+

pn(1x3)
, x ∈ Ê.

2.3.2 Discussion of the model and the result

(A) The regulation scheme for simultaneous departures and arrivals is in general
a severe restriction imposed on the network’s behavior, but seems to be common to
almost all discrete time networks for which an explicit steady state distribution of
product form is found; for a review see [10].

(1) We have in mind (at least) two general classes of networks where this regulation
scheme is justified as modeling assumption:

• Low traffic networks where simultaneous events will be rare.
• Small time slots; then some additional slots of service will cause only small per-

turbations of global performance behavior.

We believe that in both cases performance predictions obtained by using the distri-
bution described in the theorem will match well. This is in line with approximating

Queueing Syst (2010) 65: 385–421 397

the Round–Robin queueing discipline, which is a regime for discrete time systems
with multiple events, by the Processor Sharing discipline, a continuous time regime
where multiple events in general do not occur. For discussions of this concept, see for
example, [25, 37].

On the other hand, if these or similar conditions are not fulfilled, application of
the models investigated here clearly is questionable without additional arguments.

(2) Further, the ALOHA protocol was developed for some by now classical applica-
tions, and recently got increasing interest in new applications. A typical example is
as follows:

If several clients (transmission stations) share a common transmission medium
and if concurrent usage of the medium perturbs all concurrent transmissions then
none of these transmissions is successful.

A simple protocol which was implemented to deal with such transmission failures
was the slotted ALOHA protocol which regulates the retrials of the clients by lo-
cally determined random schemes. See [27, Sect. 5.11], and [49, Sect. 6.2], for more
details.

Our regulation scheme mimics exactly this protocol: successful transmission of
customers (= messages) to the next station is possible if and only if exactly one ser-
vice ends (= transmission request to some other node) or an external arrival (= new
external transmission request) occurs exclusively.

We therefore refer to the regulation scheme (4) in Sect. 2.2 as ALOHA protocol.

(3) An important example, where steady states are of product form without this
ALOHA-type restriction, are networks with linear structure: Open tandems and
closed cycles of single server queues with state dependent service probabilities; see
[10, Sects. 3 and 4].

Product form results for steady states of linear tandems with unreliable nodes can
be found in [29].

A completely different approach to deal with simultaneous events is developed for
Walrand’s S-queues [48], where batch departures are compensated by batch arrivals
without specifying positions in the queue.

Our experience with non-linear network topologies strongly suggests that there
will be no product form result without additional modeling assumptions. This is sup-
ported by similar problems with a departure protocol used in [32] for regulating batch
services. At every time epoch at most one node is selected to release a batch of cus-
tomers to the system. As Miyazawa puts it, this protocol is motivated not only by the
necessity to deal with discrete time networks, but also by its tractability for analysis.

In light of this discussion it is somewhat surprising that the main theorem allows
for concurrent state changes of the availability vector without destroying product
form steady state.

(B) The schedule for rerouting customers that are blocked because the destination
node is broken down and does not admit new arrivals is exactly the so-called jump
over protocol; see [45].

(1) The jump over protocol has become over the last decade a standard protocol to
resolve blocking situations due to finite waiting rooms. An early paper using this

398 Queueing Syst (2010) 65: 385–421

by-passing regime is [35], a more detailed discussion is in [42], where it is called
skipping. Van Dijk [45] provides some intuitive arguments which support the con-
jecture that this protocol should lead to product form steady states for networks with
blocking due to full waiting room.

More recent applications of this scheme can be found in [13] and [44, Chap. 3.6]
(where it is called “blocking and rerouting”).

Schassberger’s results [42] on blocking networks with skipping were the starting
point for an investigation of continuous time networks with unreliable nodes in [40]
and [38]. The blocking scheme was transformed there into a scheme for handling
unreliable nodes and their repair. This was introduced as rerouting scheme in case of
broken down nodes. Other rerouting schemes for networks with unreliable stations
can be found in [40] and [38] as well; these schemes will work in the present context
too.

The introduction of the jump over protocol, resp. skipping protocol, was moti-
vated mainly with the resulting product form steady state distributions for complex
networks with blocking. It was often observed that in networks blocking of customers
due to full stations leads to complicated steady state distributions, which are not ac-
cessible in explicit form. So simulation and numerical approximations have to be
applied for performance analysis, if one insists on direct transformation of the real
blocking protocols into the Markovian network models.

As an alternative approach, we can use approximating models, which lead to
tractable analysis of a hopefully closely related model.

Another application of these approximating models is to obtain provable (exact)
bounds for performance indices of networks. E.g., for mean values as throughput or
mean time in system which are not accessible in the original networks we may find
upper or lower bounds in comparing these quantities with those in related product
form networks. A similar approach is possible for obtaining bounds of quantiles,
utilizing stochastic orderings. An introduction to these principles is Chap. 4 of [46].

(2) Applications and related examples:
(i) Loss networks: Single and multi server loss systems have been investigated from
the beginning of queueing theory, the most prominent formula is Erlang’s loss for-
mula E1,m(λ/μ); see [26, p. 106]. This formula gives the loss probability at an
M/M/m/m-system (m servers, no waiting room) for an arriving customer, who finds
all servers occupied, i.e., the required resources are not available. These models and
the results were generalized considerably to circuit-switching models. A survey of
loss networks with product form steady state is [28]. The basic principle is described
there as follows: “. . . customers arrive in attempt to seize some of the available system
resources. At the time of arrival, a customer finding insufficient available resources
leaves the system. . .” immediately, [28, p. 147].

Clearly, this principle applies in many situations, where insufficient available re-
sources is a result of broken down servers. We sketch a simple example.

A network offers a variety of services, each service is represented by a service
node. Customers indicate their requirement (assumed to be exactly one of the service
types) by their type, so the route length is S(m) = 1 for all customers of “service”
type m. Furthermore, these customers of type m enter then the node Q[w(m,1)] with
w(m,1) := m, which offers exactly this type of service.

Queueing Syst (2010) 65: 385–421 399

Whenever on arrival of a type-m request node Q[w(m,1)] is broken down, the
arrival jumps over node Q[w(m,1)] and leaves immediately the network, which is
equivalent to being rejected. Assuming that the service is provided by geometrical
servers, and that the arrivals occur in a (state dependent) Bernoulli process, this prob-
lem fits into the realm of Theorem 1. We clarify the situation with a network with
the three nodes from our network example in Sect. 2.3.1; see Sect. 2.2 (2) for the
definition of the service regimes.

Because the routing is now such that there is exactly one customer type at each
node, M := {1,2,3}, and customers of type m = j try to visit node Q[j] only,
it follows that we have a simplified notation for the set of all queueing states
E = N

3
0, and for the state space Ê = N

3
0 × {0,1}3. We denote a typical state as

((n1, n2, n3), (
2x1,

2x2,
2x3)).

Assuming ergodicity, the steady state according to Theorem 1 is (for ((n1, n2, n3),

(2x1,
2x2,

2x3)) ∈ Ê)

π
(
(n1, n2, n3),

(2x1,
2x2,

2x3
))

= 1

K

(
n1+n2+n3∏

k=1

b(k − 1)

c(k)

)(
3∏

l=1

α(l)nl

)(
3∏

l=1

al(
2xl ⊕ 1, 2xl)

)

× 1

min(n1, s)!
(

1

s

)(n1−s)+ qn1−min(n1,s)

pn1

(
1

2

)(n2−d)+ q(n2−1)+

pn2

(
1

q

)1((n2−d)+>0)

× q(n3−1)+

pn3
. (8)

(ii) Facility reliability issues in network p-median problems were investigated by
Berman, Krass, and Menezes [1]. They “. . . analyze a facility location model where
facilities may be subject to disruptions, causing customers to seek service from op-
erating facilities.” They “. . . generalize the classical p-median problem on a network
to explicitly include the failure probabilities, and analyze structural and algorithmic
aspects of the resulting model.” In the introduction of the paper they describe a series
of real world scenarios where facility breakdowns happened due to various reasons—
often causing an avalanche of breakdowns.

Their model is as follows: Customers arriving at a node of the network want to
obtain service somewhere in the network; the main problem is where to position the
(unreliable) servers (= facilities) and to associate customers to the facilities. The lat-
ter is done by specifying a (deterministic) sequence (Q[w(m,1)],Q[w(m,2)], . . . ,
Q[w(m,S(m))]) (our notation) of different nodes where this customer asks for ser-
vice, i.e., if facility Q[w(m,1)] is disrupted (broken down), the customer jumps over
to facility Q[w(m,2)]; if this is disrupted too, he jumps over to facility Q[w(m,3)],
etc.; when all facilities are disrupted the customer fails to be served.

There are costs specified with not servicing, and the aim is to minimize a general-
ized weighted distance for customers to arrive at a functioning facility.

The model is static in that no repair process is considered, and the service process
and its duration are not taken into consideration. It should be noticed that nevertheless
the resulting optimization problem is already extremely complex.

400 Queueing Syst (2010) 65: 385–421

Our model opens a path to attack a dynamic version of this problem. We should
note that in our present model a customer may obtain more than one services if
there are more than one facility functioning on the path. Presumably, our model will
therefore overestimate the total time in system for customers, and underestimate the
throughput of the system. This is part of our ongoing research.

(iii) Flexible manufacturing systems (FMS) are from their very definition large
and complex production systems with multiple plants and stores, where within each
plant several production facilities (machines) are located, having a variety of spec-
ified product specific tools, and the additional property that machines are able to
perform various production steps on various intermediate products. “Even more im-
portant, because of integrated computer control, jobs in the FMS can follow a rather
flexible routing For instance, if one machine is not available (failed or occupied),
the job can be routed to another machine to perform the same operation or another
non-sequentially constrained operation” [6, p. 7]. So, machines can substitute other
machines in the production process, if these are broken down or overloaded.

Our general model was developed in this direction, with the jump over protocol
as a prescribed (rough and approximating) control policy to substitute broken down
machines.

It should be noticed that modeling FMS by queueing networks usually describes
the flexibility by random (Markovian) routing [6]. The transformation of our routing
to this setting is not difficult because it is well known that random routing and de-
terministic routing are equivalent in that either routing scheme can be described (via
type selection procedures) by using the other.

(iv) Further examples are discussed in [13, Sect. 2. Applications—examples] with
respect to resolving blocking of customers.

2.3.3 Sketch of the proof

We shall utilize the reversed process method, which was popularized by Kelly in
his book [24] to solve the complex steady state equations of continuous time sys-
tems, which arise from the interaction of many nodes of different structure and cus-
tomers of different behavior. This method resembles the principle of local balance in
time reversible processes. It exploits the fact that for stationary processes with state
space E and transition intensities q(x, y), x, y ∈ E, the time reversed process with
state space E and transition intensities q̄(x, y), x, y ∈ E, has the same steady state
distribution π as the original process. These transition intensities and the steady state
probabilities are coupled by the quasi-local balance equations (note, that the process
needs not to be reversible)

π(x)q(x, y) = π(y)q̄(y, x) for all x, y ∈ E.

The intensities q(x, y) usually are given, the main problem is to guess how the
time reversed process might look like: then write down the quasi-local balance equa-
tions. If we are able to solve with some q̄(·, ·) (from our guess) these equations, we
have found the steady state of both processes and in addition the intensities q̄(·, ·) of
the time reversed process as well. For more details see [24, Sect. 1.7].

Queueing Syst (2010) 65: 385–421 401

The discrete time counterparts can be formulated in the following way [4, Theo-
rem 6.1].

Let p be a stochastic matrix indexed by a countable set E, and let π be a proba-
bility distribution on E. Let p̄ be any stochastic matrix indexed by E such that for all
i, j ∈ E,

π(i)p(i, j) = π(j)p̄(j, i). (9)

Then π is a stationary distribution for p and p̄. Moreover, if we consider a station-
ary homogeneous Markov chain X with one-step transition probability matrix p and
initial distribution π , then p̄ is the one-step transition probability matrix of the sta-
tionary homogeneous Markov chain which is obtained from X by reversing time.

Proof In a first step we describe in Sect. 3 in complete detail the transition probabil-
ities of the network process. This is done in a three-step procedure:

1. We describe (deterministic) network transition operators which determine path-
wise the physical transformations of the system.

2. We associate with these operators their respective occurrence probabilities when
the state of the system is given; here we exploit explicitly the probabilistic as-
sumptions put on the network.

3. We accumulate these probabilities to sum up to the one-step transition probabili-
ties

p(x, y) for state transitions x → y.

From our experience with previous work in [10, 29], and from similar proofs in the
literature we have been able to guess

• The structure of the network under time reversal, and its transition probabilities,
which will be described in a similar three-step procedure in Sect. 4.

• A candidate π for a product form steady state, which was announced in Theorem 1.

In fact, the expression for π , given in Theorem 1, was developed in parallel with
the transition probabilities for the time reversed process in Sect. 4.2, following our
experience with previous work in [10, 12, 29], and from similar proofs in the litera-
ture. �

The essential part of the proof in Sect. 5 relies on classifying pairs (x, y) according
to the transition structure x → y within the network in Sect. 3.2 and x ← y under
time reversal in Sect. 4.2. We are able to partition suitably the squared state space
Ê × Ê containing all such pairs (x, y). We show that within each partition subset the
solution procedure of (9) follows the same lines for all (x, y) enclosed. This solution
is presented in some detail, and we show that the procedure is in fact exhaustive.

3 Evolution of the network

We construct in this section the one-step transition probability matrix for the network
process. This will be done with transition operators which describe the mechanics of

402 Queueing Syst (2010) 65: 385–421

the network and thereafter combining these operators with the respective probabilities
driving the network (for the continuous time analog see e.g. Kelly [24, Sect. 3.1]).

The transition operators are in fact only partial operators T [•] : D(T) ⊆ Ê → Ê

with domain D(T). Whenever we write T [•](x) for some pair x ∈ Ê, T [•], it is
understood that x ∈ D(T [•]) holds.

3.1 Network transitions

We need some notation for a concise description of the customers’ movements, espe-
cially to describe jumps if stations are not accessible for customers.

Consider a customer of type m ∈ M on stage s ∈ {1, . . . , S(m)} of his path through
the network, assume the network’s state is x ∈ Ê and that this customer’s service ex-
pires, and that he is allowed to depart from his present station Q[w(m, s)] in accor-
dance with the ALOHA protocol; see Sect. 2.2 (4). If he finds station Q[w(m, s + 1)]
in up status, i.e., 2xw(m,s+1) = 0, he immediately enters that station. Otherwise ac-
cording to the routing rules from Sect. 2.2 (1) he skips the subsequent broken down
nodes on his path and jumps to station Q[w(m, s′)] where the customer’s new stage
s′ is determined by

s′ = A
(
x, (m, s)

) := min
{
t | s < t � S(m), 2xw(m,t) = 0

}
, (10)

if such a station in up status exists, and otherwise he departs from the network. It will
be convenient to define A(x, (m, s)) := S(m)+1 in this case, and w(m,S(m+1)) :=
J + 1 . Node Q[J + 1] is considered as the external sink: entering node Q[J + 1]
means leaving the network.

We extend this notation for customer m arriving from the external source. For-
mally we set w(m,0) = 0 and consider Q[0] as the external source with the associ-
ated capacity function C0 ≡ 1.

We write s′ = A(x, (m,0)) for the first stage on the path, such that the associated
node Q[w(m, s′)] is up (here he joins the queue); if there is no such station, the arriv-
ing customer is rejected, and it will be convenient to write A(x, (m,0)) := S(m) + 1
again.

We call the direction of customers’ movements with respect to increasing stage
numbers upstream, and nodes before a customer on his residual path accordingly
upstream nodes.

Customers’ movements and availability update: In the following x ∈ Ê is a
generic state of the network, and u ∈ {0,1}J is a vector that determines the network’s
availability update. Each state transition is governed by a compound transition opera-
tor which consists of successive applications of (a) a customers’ movement operator,
and (b) an availability update operator.

(a) Operators T [•] : D(T [•]) ⊂ Ê → Ê determine customers’ movements (declared
below by specifying [•]). They leave the network’s availability unchanged. So

x �→ T [•](x)

results in
2(T [•](x)

) = 2x but usually 1(T [•](x)
) �= 1x.

Queueing Syst (2010) 65: 385–421 403

For simplicity we will erase the outer brackets

2(T [•](x)
) =: 2T [•](x) and 1(T [•](x)

) =: 1T [•](x).

(b) The subsequent availability update is determined by u ∈ {0,1}J .
With a little abuse of notation we denote by u as well the associated operator

u : Ê → Ê with

x = (1x, 2x
) �→ u(x) := (1x, 2x ⊕ u

)
.

Finally, the successor state of x is determined by applying the compound operator
u ◦ T [•], which results in:

x �→ (
u ◦ T [•])(x) = u

(
T [•](x)

) = (1T [•](x), 2x ⊕ u
)
.

The following transitions of the network are feasible:

(i) External arrival: ARRIVAL OF A TYPE-m CUSTOMER FROM OUTSIDE AND

AVAILABILITY UPDATE u.
We describe this transition by the compound operator u ◦ T [m] : Ê → Ê.
1T [m](x) ∈ E is determined componentwise for l ∈ {1, . . . , J }.
If node Q[l], l = w(m,A(x, (m,0))) ∈ {1, . . . , J }, is the first up node on m’s

path, then

(1T [m](x)
)
l
:= (1xl,1,

1xl,2, . . . ,
1xl,n(1xl)

,
(
m,A

(
x, (m,0)

))
, (0,0), (0,0), . . .

)
.

If l �= w(m,A(x, (m,0))), then

(1T [m](x)
)
l
:= 1xl.

Note that our definition of A(x, (m,0)) encompasses the case that the ar-
riving customer is rejected, i.e. w(m,A(x, (m,0))) = J + 1. This happens if
2xw(m,s) = 1 for all s ∈ {1, . . . , S(m)}. No customer movement is visible in the
state description: 1T [m](x) = 1x.

(ii) Departure: DEPARTURE OF THE CUSTOMER IN BUSY POSITION k OF STA-
TION Q[i] AND AVAILABILITY UPDATE u.

The network’s transition is described by the compound operator u ◦ T [i, k].
The moving customer’s destination node is Q[w(1xi,k,1,A(x, (1xi,k)))], and

this determines which of the following cases occurs. The moving customer
(a1) leaves the network, (a2) enters some other node, (b) re-enters the departure
node (feedback).

The new queueing state 1T [i, k](x) is determined componentwise for l ∈
{1, . . . , J } as follows:
(a1) and (a2) Here i �= w(1xi,k,1,A(x, (1xi,k))) =: j (j may be the external

sink). Then

(1T [i, k](x)
)
l
=

⎧
⎨

⎩

1xl if l �= i and l �= j,

(1xi,1, . . . ,
1xi,k−1,

1xi,k+1, . . . ,
1xi,n(1xi)

, (0,0), . . .)

if l = i.

404 Queueing Syst (2010) 65: 385–421

And, if Q[j] is not the sink,

(1T [i, k](x)
)
j

= (1xj,1, . . . ,
1xj,n(1xj),

(1xi,k,1,A
(
x,

(1xi,k

)))
, (0,0), . . .

)
.

(b) Here i = w(1xi,k,1,A(x, (1xi,k))). (Note that possibly some intermediate
nodes under repair on the customers’ path have been short circuited.) Then
for l �= i

(1T [i, k](x)
)
l
:= 1xl,

and

(1T [i, k](x)
)
i
:= (1xi,1, . . . ,

1xi,k−1,
1xi,k+1, . . . ,

1xi,n(1xi)
, (1xi,k,1,A(x, (1xi,k))), (0,0), . . .

)
.

(iii) No arrival, no departure: AVAILABILITY UPDATE u, NO ARRIVAL, NO DE-
PARTURE.

This is described by the compound operator u ◦ T [∅], where T [∅] is the
identity operator on Ê. So

(
u ◦ T [∅])(x) = u(x) = (1x, 2x ⊕ u

)
, u ∈ {0,1}J .

Remark: By denoting the identity operator on Ê as T [∅] we achieve a compact
description in (11) below.

3.2 One-step transition probabilities

With the help of the partial compound operators u ◦ T [•] we define the one-step
transition probabilities

p = (
p(x, y) : x, y ∈ Ê

)
.

We denote by Succ(x) the set of successor states of x, i.e. y ∈ Succ(x) if there
exist some u ◦ T [•] such that (u ◦ T [•])(x) = y.

A transition x → y ∈ Succ(x) may be generated by several of the described op-
erators. We denote by p̂(x,u ◦ T [•]) � 0 the probability that x → y is realized as
y = (u ◦ T [•])(x). It follows that

p(x, y) =
∑

u◦T [•]
p̂
(
x,u ◦ T [•]) · 1

[(
u ◦ T [•])(x) = y

]
, x, y ∈ Ê, (11)

where the summation runs over all u ◦ T [•] such that x ∈ D(T [•]).
For compact notation of the transition probabilities we need some abbreviations.

• We denote by UP(x) the set of up-stations in state x,

UP(x) := {
i ∈ {1, . . . , J } | 2xi = 0

}
. (12)

Queueing Syst (2010) 65: 385–421 405

• Further, UPOCC(x) ⊂ UP(x) is the set of nodes that are active in state x, i.e. up and
busy,

UPOCC(x) := {
i ∈ {1, . . . , J } | 2xi = 0, n

(1xi

)
> 0

}
. (13)

• If the network is in state x and a new customer of type m arrives from the exter-
nal source, and if there is no node available (up) on his path then this customer
is rejected. For state x we denote the set of these rejected customer types m as
REJ(x).

The partial transition probabilities p̂(x,u ◦ T [•]) � 0 can now be classified ac-
cording to Sect. 3.1 as follows. These probabilities can be written down directly fol-
lowing the detailed description in Sect. 2.2.

(i) External arrival: For m ∈ M and u ∈ {0,1}J

p̂
(
x,u ◦ T [m]) := b

(
n(x)

)
α(m)

(∏

l∈UP(x)

q
Cl(n(1xl))
l

)(
J∏

l=1

al

(2xl,
2xl ⊕ ul

)
)

;

(ii) Departure: For i ∈ UPOCC(x), k � Ci(n(1xi)) and u ∈ {0,1}J

p̂
(
x,u ◦ T [i, k]) := c

(
n(x)

)pi

qi

(∏

l∈UP(x)

q
Cl(n(1xl))
l

)(
J∏

l=1

al

(2xl,
2xl ⊕ ul

)
)

;

(iii) No arrival, no departure: For u ∈ {0,1}J

p̂
(
x,u ◦ T [∅])

:=
(

1 − b
(
n(x)

) ∏

j∈UP(x)

q
Cj (n(1xj))

j − c
(
n(x)

)

×
∑

i∈UPOCC(x)

Ci

(
n
(1xi

))pi

qi

∏

j∈UP(x)

q
Cj (n(1xj))

j

)

×
(

J∏

l=1

al

(2xl,
2xl ⊕ ul

)
)

.

The one-step transition probabilities: We are now ready to accumulate all proba-
bilities defined so far to obtain explicit expressions for the one-step transition prob-
abilities of the network process. For a well-structured presentation we introduce a
partition {O1,O2,O3a,O3b,O4,O5} of the Cartesian state space product Ê × Ê and
give closed form expressions for the one-step transition matrix p restricted to Oi,
i = 1,2,3a,3b,4,5. The partition is chosen in a way that construction of the p(x, y)

is uniform for all (x, y) in the same Oi, when i is fixed.
A first observation is that the availability update by operator u in a transition

x → y is determined in any case by u = 2x ⊕ 2y.

406 Queueing Syst (2010) 65: 385–421

(O1) (x, y) ∈ O1 : ⇐⇒ y ∈ Succ(x) and n(y) − n(x) = 1.
An external arrival has happened, because due to the ALOHA protocol n(y) −
n(x) = 1 is equivalent to n(1yj) − n(1xj) = 1 for some j ∈ {1, . . . , J }
and n(1yl) = n(1xl) for all l ∈ {1, . . . , J } \ {j}. Thus, an external customer
of type m = 1yj,n(1yj),1 on position n(1xj) + 1 at node Q[j], with j =
w(m,A(x, (m,0))) has arrived.

We therefore have (u ◦ T [m])(x) = y with u = 2x ⊕ 2y, and this is the only
possibility to generate transition x → y. Hence

p(x, y) = b
(
n(x)

)
α
(1yj,n(1yj),1

)
(∏

l∈UP(x)

q
Cl(n(xl))
l

)(
J∏

l=1

al

(2xl,
2yl

)
)

.

(O2) (x, y) ∈ O2 : ⇐⇒ y ∈ Succ(x) and n(y) − n(x) = −1.
A departure to the exterior has happened, because due to the ALOHA protocol
n(y)−n(x) = −1 is equivalent to n(1yi)−n(1xi) = −1 for some i ∈ {1, . . . , J }
and n(1yl) = n(1xl) for all l ∈ {1, . . . , J } \ {i}. There is exactly one departure
from Q[i] to the outside. The class (m, s) of the departing customer can be
determined by comparing x and y. In general, the departure position is not
uniquely determined. We denote by

GO2
i

(1xi,
1yi

)

the set of possible departure positions.
Therefore, (u◦T [i, k])(x) = y holds if and only if k ∈ GO2

i (1xi,
1yi). Hence

p(x, y) = c
(
n(x)

)∣
∣GO2

i

(1xi,
1yi

)∣
∣pi

qi

(
∏

l∈UP(x)

q
Cl(n(xl))
l

)(
J∏

l=1

al

(2xl,
2yl

)
)

.

Note that the departing customer at Q[i] leaves the network if either s = S(m)

holds or all the upstream nodes (corresponding to stage numbers greater than
s) on the route of the type m-customer are down.

(O3) (x, y) ∈ O3 : ⇐⇒ y ∈ Succ(x) and n(y) = n(x) and 1x �= 1y.
An internal movement of some customer has happened; we separate O3 into
two subsets.
(O3a) No Feedback: Destination node �= departure node. Due to the

ALOHA protocol then n(y) = n(x), and 1x �= 1y is equivalent to
n(1yi) − n(1xi) = −1 for some i ∈ {1, . . . , J }, and n(1yj) − n(1xj) =
1 for some j ∈ {1, . . . , J }, i �= j , and n(1yl) = n(1xl) for all l ∈
{1, . . . , J } \ {i, j}.

Comparing x and y we determine:
• Departure node Q[i] and destination node Q[j].
• The set of possible departure positions GO3a

i (1xi,
1yi). In general it

is not possible to identify the departure position.

Queueing Syst (2010) 65: 385–421 407

Now (u ◦ T [i, k])(x) = y holds, if and only if k ∈ GO3a
i (1xi,

1yi).
Therefore

p(x, y) = c
(
n(x)

)∣
∣GO3a

i

(1xi,
1yi

)∣
∣pi

qi

(
∏

l∈UP(x)

q
Cl(n(1xl))
l

)

×
(

J∏

l=1

al

(2xl,
2yl

)
)

. (14)

(O3b) Feedback. A feedback has happened if and only if n(1yl) = n(1xl) for
all l ∈ {1, . . . , J }, and (due to the ALOHA protocol) 1yi �= 1xi for ex-
actly one i ∈ {1, . . . , J }, and 1yj = 1xj for all j ∈ {1, . . . , J } \ {i}.

Comparing x and y we determine:
• Feedback node Q[i].
• The set of possible departure positions GO3b

i (1xi,
1yi).

Now (u◦T [i, k])(x) = y holds, if and only if k ∈ GO3b
i (1xi,

1yi). Hence

p(x, y) = c
(
n(x)

)∣
∣GO3b

i

(1xi,
1yi

)∣
∣pi

qi

(
∏

l∈UP(x)

q
Cl(n(1xl))
l

)

×
(

J∏

l=1

al(
2xl,

2yl)

)

.

(O4) (x, y) ∈ O4 : ⇐⇒ y ∈ Succ(x) and 1y = 1x.
This happens in a transition x → y if either no external arrival occurs and
no service expires (where we have to incorporate the scheduling rules of the
ALOHA protocol), or if an arriving external customer of type m is rejected
because all nodes on his path are down: m ∈ REJ(x) �= ∅. Therefore

p(x, y)

=
(

1 − b
(
n(x)

) ∏

j∈UP(x)

q
Cj (n(1xj))

j − c
(
n(x)

)

×
∑

i∈UPOCC(x)

Ci

(
n
(1xi

))pi

qi

∏

j∈UP(x)

q
Cj (n(1xj))

j

+
∑

m∈REJ(x)

b
(
n(x)

)
α(m)

∏

l∈UP(x)

q
Cl(n(1xl))
l

)(
J∏

l=1

al(
2xl,

2yl)

)

=
(

J∏

l=1

al

(2xl,
2yl

)
)(

1 − b
(
n(x)

) ∑

m∈M\REJ(x)

α(m)
∏

j∈UP(x)

q
Cj (n(1xj))

j

− c
(
n(x)

) ∑

i∈UPOCC(x)

Ci

(
n
(1xi

))pi

qi

∏

j∈UP(x)

q
Cj (n(1xj))

j

)

.

408 Queueing Syst (2010) 65: 385–421

A little reflection shows that p(x, y) = 0 holds for all (x, y) /∈ (O1 ∪ O2 ∪ O3a ∪
O3b ∪ O4). We therefore define

O5 := Ê × Ê \ (O1 ∪ O2 ∪ O3a ∪ O3b ∪ O4),

and conclude that {O1,O2,O3a,O3b,O4,O5} is clearly a partition of Ê × Ê. Con-
sequently, our construction of the one-step transition matrix is exhaustive.

4 Evolution of the time reversed network

As announced below, we want to apply time reversal for solving the steady state equa-
tions. So we have to guess the transition probabilities of the time reversed queueing-
availability process and the steady state distribution. In continuous time network the-
ory there often exists an appealing guess of a system (usually of similar characteris-
tics) that is described by the time reversed process. Similar observation was made by
the authors in some discrete time settings before. The present setting does not lead to
such direct guess, as will be seen in the course of our description.

We call the network which is the result of our investigation here the (time) reversed
system and distinguish from the network of Sects. 2 and 3 to which from now on we
refer to as the original system. We shall see that the time reversed system can be
identified considering three ingredients.

1. Time reversal of the isolated single station
2. Time reversal of the customers’ routing, and
3. Time reversal of the interaction of routing, service, and availability

Our findings can be summarized as follows:

• The time reversed system is a queueing network with unreliable nodes, consisting
of the nodes Q[1], . . . ,Q[J].

• Customers arrive in a state dependent Bernoulli input stream with the same para-
meter as in the original system; types and type selection probabilities are as in the
original system.

1. The nodes.

◦ Every node has a waiting room of unlimited capacity, described by a sequence
of positions {1,2,3, . . .}.

◦ At every node Q[j] there is exactly one service position: departures occur from
the occupied position with the highest number only.
The probabilities for an ongoing service to expire are conditional Binomial dis-
tributions with suitably determined parameters Cj (n) and pj and will be de-
scribed in detail below.

◦ If there are n customers present at Q[j] new arrivals are inserted into one of the
entrance positions {1,2, . . . ,Cj (n + 1)} at random.

Comment: The multiple service positions in the nodes of the original system are
mirrored by the multiple entrance positions in the nodes of the reversed system.
Similarly, the single arrival position in the nodes of the original system is mirrored
by the single departure position in the nodes of the reversed system.

Queueing Syst (2010) 65: 385–421 409

2. The routing.

◦ The routing for a customer of type m is to visit the same nodes as in the orig-
inal system but in the reversed direction, i.e. with respect to decreasing stage
numbers. We call the direction of the customers’ movements with respect to de-
creasing stage numbers downstream and accordingly for a customer the residual
nodes on his path the downstream nodes.

◦ Broken down nodes are short circuited.

Comment: Interchanging upstream and downstream progress of customers is in-
tuitive and follows [24, Chap. 3]. Furthermore, the source Q[0] and the sink
Q[J + 1] can be thought to interchange their function.

3. The interaction:

◦ The availability updates follow the same Markovian rules as in the original
system (this is intuitive, because any two-state Markov chain is reversible).

◦ Sequencing of movements and availability updating in a one-step transition are
reversed: In a first step the availability of all nodes is updated, and thereafter
the customers’ movements are performed guided by the new availability status.

Comment: Reversing the sequential actions clearly represents time reversal.

• Finally, we apply a scheduling of simultaneous events according to the ALOHA
protocol.

4.1 Network transitions

Consider a customer of type m ∈ M on stage s ∈ {S(m),S(m) − 1, . . . ,1} of his path
through the network, assume the network’s state is y ∈ Ê and that this customer’s
service expires, and that he is allowed to depart from his present station Q[w(m, s)]
in accordance with the rules given above. If he finds station Q[w(m, s − 1)] in up
status, i.e., 2yw(m,s−1) = 0, he immediately enters that station. Otherwise he skips the
subsequent broken down nodes on his path and jumps to station Q[w(m, s′)] where
the customer’s new stage s′ is determined by

Ā
(
y, (m, s)

) := max
{
t | 1 � t < s, 2yw(m,t) = 0

}
, (15)

if such a station in up status exists, and otherwise he departs from the network. We
define Ā(y, (m, s)) := 0 in this case. Recall that we have defined w(m,0) = 0 (see
p. 402); now Q[0] is considered as the external sink: entering node Q[0] means
leaving the network.

We extend this notation for customer m arriving from the external source (recall
that we have defined w(m,S(m)+1) = J +1; see p. 402; we now consider Q[J +1]
as the external source). In this case s′ = Ā(y, (m,S(m) + 1)) determines the first
stage on the path, such that the associated node Q[w(m, s′)] is up (here he enters
the queue); if there is no such station, the arriving customer is rejected; we write
Ā(y, (m,S(m) + 1)) := 0 then. (Compare this with the definition of A(x, (m, s)) on
p. 402: The attentive reader will notice that the roles of source and sink, i.e., Q[0]
and Q[J + 1], are interchanged, and the customer for determining his progress has
to evaluate the “downstream nodes”.)

410 Queueing Syst (2010) 65: 385–421

Customer movements and availability update: In the following y ∈ Ê is a generic
state of the network. Each state transition is governed by a compound transition op-
erator which consists of successive applications of (a) firstly, an availability update
operator, and (b) secondly, a customers’ movements operator.

(a) The availability update is determined by some u ∈ {0,1}J , and again with a little
abuse of notation we denote by u as well the associated operator u : Ê → Ê, which
is exactly the same as that defined on p. 403.

(b) Operators T̄ [•] : D(T̄ [•]) ⊂ Ê → Ê determine customers’ movements (declared
below by specifying [•]). They leave the network’s availability unchanged.

y �→ T̄ [•](y), (16)

results in
2(T̄ [•](y)

) = 2y but usually 1(T̄ [•](y)
) �= 1y.

Similar to the case of the original system we erase the outer brackets:

2(T̄ [•](y)
) =: 2T̄ [•](y) and 1(T̄ [•](y)

) =: 1T̄ [•](y).

Finally, the successor state of y is determined by applying the compound operator
T̄ [•] ◦ u:

y �→ (
T̄ [•] ◦ u

)
(y) = T̄ [•](u(y)

) = (1T̄ [•](u(y)
)
, 2u(y)

)

= (1T̄ [•](1y, 2y ⊕ u
)
, 2y ⊕ u

)
.

(Recall that in the original system we prescribed the sequencing u◦T [•] for operating
the network’s transition.)

The following transitions of the network are feasible: For easier reading for a
generic given y and u we will abbreviate z := u(y). Note, that 1z = 1y holds.

(i) External arrival: AVAILABILITY UPDATE u AND SUBSEQUENT ARRIVAL OF

A TYPE-m CUSTOMER FROM OUTSIDE AT ENTRANCE POSITION k AT THE

DESTINATION NODE.
We describe this transition by the compound operator

T̄ [m,k] ◦ u. (17)

Then the resulting network state is
(
T̄ [m,k] ◦ u

)
(y) = (1T̄ [m,k](u(y)

)
, 2u(y)

)
. (18)

Recall z := u(y); we define 1T̄ [m,k](z) ∈ E componentwise for l ∈ {1, . . . , J };
let s′ := Ā(z, (m,S(m) + 1)) ∈ {1, . . . , S(m)}, j := w(m, s′) and k ∈ {1,2, . . . ,

Cj (n(1zj) + 1)}. Then

(1T̄ [m,k](z))
l
:= 1zl, if l �= j

(1T̄ [m,k](z))
j

:= (1zj,1, . . . ,
1zj,k−1, (m, s′), 1zj,k, . . . ,

1zj,n(1zj), (0,0), . . .
)
.

Queueing Syst (2010) 65: 385–421 411

Whenever a customer is rejected (all nodes on his path are down), his destination
is Q[0]; recall that we have defined C0 ≡ 1, and therefore we have k = 1, and
T̄ [m,1] ◦ u is well defined in this case:

T̄ [m,1] ◦ u(y) = u(y).

(ii) Departure: AVAILABILITY UPDATE u, DEPARTURE FROM NODE Q[i], AND

SELECTION FOR ENTRANCE POSITION k AT THE DESTINATION NODE.
We describe this transition by the compound operator

T̄ [i; k] ◦ u, (19)

and distinguish three cases: The moving customer (a1) leaves the network, (a2)
enters some other node, (b) re-enters the departure node (feedback). In any of
these cases the moving customer’s new stage is s′ = Ā(u(y), 1yi,n(1yi)

) and his
destination node therefore is j = w(m, s′) with m = 1yi,n(1yi),1.
(a1) The moving customer leaves the network. Recall C0 ≡ 1, it follows for the

coordinates of 1T̄ [i;1](z) that:

(1T̄ [i;1](z))
l
:=

{1zl if l �= i,

(1zi,1, . . . ,
1zi,n(1zi)−1, (0,0), . . .) if l = i.

(a2) Destination node Q[j], j ∈ {1, . . . , J }, is inside the network and no feed-
back occurs (i �= j); the moving customer enters position k at Q[j] (here
k ∈ {1,2, . . . ,Cj (n(1zj) + 1)} holds, because the capacity function Cj de-
termines the number of possible entrance positions). The coordinates of
1T̄ [i; k](z) are

(1T̄ [i; k](z))
l
:= 1zl, if l �= i and l �= j,

(1T̄ [i; k](z))
i
:= (1zi,1, . . . ,

1zi,n(1zi)−1, (0,0), . . .
)
,

(1T̄ [i; k](z))
j

:= (1zj,1, . . . ,
1zj,k−1,

(1zi,n(1zi),1, s
′), 1zj,k, . . . ,

1zj,n(1zj), (0,0), . . .
)
.

(b) A feedback occurs (i = j); the moving customer leaves node Q[i], the gap
is closed according to the shift protocol, and only thereafter he joins the
queue again, occupying some entrance position k ∈ {1,2, . . . ,Ci(n(1zi))}
at Q[i].

The coordinates of T̄ [i; k](z) are

(1T̄ [i; k](z))
l
:= 1zl, if l �= i,

(1T̄ [i; k](z))
i
:= (1zi,1, . . . ,

1zi,k−1,
(1zi,n(1zi),1, s

′), 1zi,k, . . . ,

1zi,n(1zi)−1, (0,0), . . .
)
.

412 Queueing Syst (2010) 65: 385–421

(iii) No arrival, no departure: AVAILABILITY UPDATE u. This is described by the
compound operator T̄ [∅] ◦ u, where T̄ [∅] is the identity operator on Ê. So

(
T̄ [∅] ◦ u

)
(y) = u(y) = (1y, 2y ⊕ u

)
, u ∈ {0,1}J .

Remark: Here we denote the identity operator on Ê as T̄ [∅] to achieve a com-
pact description in (20).

4.2 One-step transition probabilities

With the help of the partial compound operators T̄ [•] ◦ u we define the one-step
transition probabilities

p̄ = (
p̄(y, x) : x, y ∈ Ê

)
.

We denote by Succ(y) the set of successor states of y, with respect to the time re-
versed system; i.e. x ∈ Succ(y) if there exist some T̄ [•]◦u such that T̄ [•]◦u(y) = x .

A transition y → x ∈ Succ(y) can be generated by several of the described opera-
tors: x = T̄ [•] ◦ u(y). We denote by ˆ̄p(y, T̄ [•] ◦ u) � 0 the probability that y → x is
caused by an event that is described by T̄ [•] ◦ u.

The one-step transition matrix p̄ on Ê is for x, y ∈ Ê

p̄(y, x) :=
∑

T̄ [•]◦u
ˆ̄p(

y, T̄ [•] ◦ u
) · 1

[
T̄ [•] ◦ u(y) = x

]
, (20)

where the summation runs over all T̄ [•] ◦ u such that u(y) ∈ D(T̄ [•]).
The partial transition probabilities ˆ̄p(y, T̄ [•] ◦ u) for the time reversed system

can be classified as:
(i) External arrival: Let Q[j] denote the arriving customers’ destination

node, where j is uniquely determined by y, u and m (j = w(m, s′) with s′ =
Ā(u(y), (m,S(m) + 1))). Then for m ∈ M , u ∈ {0,1}J , and k ∈ {1,2, . . . ,Cj (n(1yj)

+ 1)} (recall C0 ≡ 1)

ˆ̄p(
y, T̄ [m,k] ◦ u

) := b(n(y))α(m)

Cj (n(1yj) + 1)

(
∏

l∈UP(u(y))

q
Cl(n(1yl))
l

)(
J∏

l=1

al(
2yl,

2yl ⊕ ul)

)

.

(ii) Departure: Let Q[j] denote the jumping customers’ destination node, which
is uniquely determined by y and u. Then for u ∈ {0,1}J , i ∈ UPOCC(u(y)) and k ∈
{1,2, . . . ,Cj (

1n(yj) + 1 − δ(i, j))}

ˆ̄p(
y, T̄ [i; k] ◦ u

) := c(n(y))Ci(n(1yi))

Cj (n(1yj) + 1 − δ(i, j))

pi

qi

(
∏

l∈UP(u(y))

q
Cl(n(1yl))
l

)

×
(

J∏

l=1

al(
2yl,

2yl ⊕ ul)

)

.

Queueing Syst (2010) 65: 385–421 413

(iii) No arrival, no departure:

ˆ̄p(
y, T̄ [∅] ◦ u

) :=
(

J∏

l=1

al

(2yl,
2yl ⊕ ul

)
)

·
(

1 − b
(
n(y)

) ∏

j∈UP(u(y))

q
Cj (n(1yj))

j

− c
(
n(y)

) ∑

i∈UPOCC(u(y))

Ci

(
n
(1yi

))pi

qi

∏

j∈UP(u(y))

q
Cj (n(1yj))

j

)

.

The one-step transition probabilities: We are now in a position to accumulate all
probabilities obtained so far in a similar procedure as in the original system. We
introduce similarly a partition {R1,R2,R3a,R3b,R4,R5} of Ê × Ê and give closed
form expressions for the one-step transition matrix p̄ restricted to the Ri. Notice, “R”
indicates time Reversed system, similar to the “O” types in the Original system. As
the attentive reader will guess, we will eventually compare the transitions in an Oi

with their counterparts in the Ri, and we will in any case show that such counterpart
exists, and that the enumeration is exhaustive.

Similar to the original system, the availability update by operator u in a transition
y → x is determined here in any case by u = 2y ⊕ 2x.

(R1) (y, x) ∈ R1 : ⇐⇒ x ∈ Succ(y) and n(x) − n(y) = −1.
A departure to the exterior has happened, because due to the ALOHA pro-
tocol n(x) − n(y) = −1 is equivalent to n(1xi) = n(1yi) − 1 for some i ∈
{1,2, . . . , J } and n(1xj) = n(1yj) for all j ∈ {1,2, . . . , J } \ {i}. Thus the de-
parture occurred from node Q[i]. Only T̄ [i;1] ◦ u triggers this transition, and
therefore

p̄(y, x) = c
(
n(y)

)
Ci

(
n
(1yi

))pi

qi

(
∏

l∈UP(u(y))

q
Cl(n(1yl))
l

)(
J∏

l=1

al(
2yl,

2xl)

)

.

(R2) (y, x) ∈ R2 : ⇐⇒ x ∈ Succ(y) and n(x) − n(y) = 1.
An external arrival has happened, because due to the ALOHA protocol n(x) −
n(y) = 1 is equivalent to n(1xj) = n(1yj) + 1 for some j ∈ {1,2, . . . , J } and
n(1yl) = n(1xl) for all l ∈ {1,2, . . . , J } \ {j}. Thus, the arrival occurred at node
Q[j]. The type m of the new customer can be determined by comparison of y

and x. In general, the entrance position k can not be determined uniquely by
comparison of y and x. We denote the set of possible entrance positions at Q[j]
under this transition by

ḠR2
j

(1yj ,
1xj

)
.

Exactly the operators T̄ [m,k] ◦ u with k ∈ ḠR2
j (1yj ,

1xj) trigger this transition
and therefore

p̄(y, x) = b
(
n(y)

)
α(m)

|ḠR2
j (1yj ,

1xj)|
Cj (n(1yj) + 1)

(
∏

l∈UP(u(y))

q
Cl(n(1yl))
l

)

×
(

J∏

l=1

al(
2yl,

2xl)

)

.

414 Queueing Syst (2010) 65: 385–421

(R3) (y, x) ∈ R3 : ⇐⇒ x ∈ Succ(y) and n(x) = n(y) and 1x �= 1y.
Then an internal movement of some customer has happened; we split R3 into
two subsets.
(R3a) No Feedback: Destination node �= departure node. In this case

n(x) = n(y) and 1x �= 1y is equivalent to n(1xj) = n(1yj) − 1 for some
j ∈ {1,2, . . . , J } and n(1xi) = n(1yi) + 1 for some i ∈ {1,2, . . . , J },
i �= j , and n(1yl) = n(1xl) for all l ∈ {1,2, . . . , J } \ {i, j}. This is due
to a jump from node Q[j] to node Q[i]. By comparing y and x, the
departure node Q[j] and the arrival node Q[i] can be determined. The
entrance position at Q[i] can not be determined uniquely in general: we
denote the set of possible entrance positions by ḠR3a

i (1yi,
1xi). Hence

p̄(y, x) = c
(
n(y)

)
Cj

(
n
(1yj

)) |ḠR3a
i (1yi,

1xi)|
Ci(n(1yi) + 1)

pj

qj

×
(

∏

l∈UP(u(y))

q
Cl(n(1yl))
l

)(
J∏

l=1

al

(2yl,
2xl

)
)

. (21)

(R3b) Feedback. In this case n(x) = n(y) and 1x �= 1y is equivalent to
n(1xl) = n(1yl) for all l ∈ {1,2, . . . , J } and 1xi �= 1yi for one and
only one i ∈ {1,2, . . . , J }. Let ḠR3b

i (1yi,
1xi) be the set of possible

entrance positions k. Now x = T̄ [i; k] ◦ u(y) holds if and only if
k ∈ ḠR3b

i (1yi,
1xi). Consequently

p̄(y, x) = c
(
n(y)

)∣
∣ḠR3b

i

(1yi,
1xi

)∣
∣pi

qi

(
∏

l∈UP(u(y))

q
Cl(n(1yl))
l

)

×
(

J∏

l=1

al

(2yl,
2xl

)
)

.

(R4) (y, x) ∈ R4 : ⇐⇒ x ∈ Succ(y) and 1x = 1y.
This happens within a transition y → x if either no external arrival occurs

and no service expires (where we have to incorporate the scheduling rules of
the ALOHA protocol) or if the arriving external customer of type m is rejected
because after the availability update all nodes on his path are down. We denote
the set of types m of these rejected customers by REJ(u(y)), where u = y ⊕ x

is the availability update, associated with transition y → x.
Now T̄ [∅] ◦u triggers the transition y → x. But also the operators T̄ [m,1] ◦u,
m ∈ REJ(u(y)), transform y into x. Hence

p̄(y, x) =
(

J∏

l=1

al

(2yl,
2xl

)
)

×
(

1 − b
(
n(y)

) ∑

m∈M\REJ(u(y))

α(m)
∏

j∈UP(u(y))

q
Cj (n(1yj))

j

− c
(
n(y)

) ∑

i∈UPOCC(u(y))

Ci

(
n
(1yi

))pi

qi

∏

j∈UP(u(y))

q
Cj (n(1yj))

j

)

. (22)

Queueing Syst (2010) 65: 385–421 415

A little reflection shows that p̄(y, x) := 0 holds for all (y, x) /∈ R1 ∪ R2 ∪ R3a ∪
R3b ∪ R4. We therefore define

R5 := Ê × Ê \ (R1 ∪ R2 ∪ R3a ∪ R3b ∪ R4),

and conclude that {R1,R2,R3a,R3b,R4,R5} is clearly a partition of Ê × Ê. Conse-
quently, our construction of the one-step transition matrix is exhaustive for the time
reversed process as well.

5 Proof of Theorem 1

Proof The reversed process method described in Sect. 2.3.3 requires to show

π(x)p(x, y) = π(y)p̄(y, x) for all x, y ∈ Ê, (23)

with (see Theorem 1)

π(x) = 1

K

(
n(x)∏

k=1

b(k − 1)

c(k)

)
J∏

l=1

(
n(1xl)∏

k=1

α(1xl,k,1)

Cl(k)

)
q

n(1xl)−Cl(n(1xl))
l

p
n(1xl)
l

al

(2xl ⊕ 1, 2xl

)
.

(24)
When determining the transition matrices (p(x, y) : x, y ∈ Ê) and (p̄(y, x) : x,

y ∈ Ê) we classified the transition pairs x → y in the original system according to
the partition {O1,O2,O3a,O3b,O4,O5} of Ê × Ê and the transition pairs x ← y

in the time reversed system according to the partition {R1,R2,R3a,R3b,R4,R5} of
Ê × Ê.

We shall utilize the fact that there is a natural bijection between members of the
respective partition sets. In fact the partition elements are connected by the relation

(x, y) ∈ Oi ⇐⇒ (y, x) ∈ Ri, i = 1,2,3a,3b,4, (25)

(hence, (x, y) ∈ O5 ⇐⇒ (y, x) ∈ R5).
Then we prove for i = 1,2,3a,3b,4,5

π(x)p(x, y)|Oi = π(y)p̄(y, x)|Ri for all (x, y) ∈ Oi (and therefore (y, x) ∈ Ri)

(the restrictions p|Oi and p̄|Ri of the one-step transition matrix are given in Sects. 3.2
and 4.2).

We explain in full detail the proof for the case where x → y is due to a customer’s
transition from a network node to some other network node, i.e., (x, y) ∈ O3a, and
refer to [30] for the other cases.

Let (x, y) ∈ O3a and let the transition x → y (in the original system) be trig-
gered by a customer of class (m, s) departing from node Q[i] and jumping to node
Q[j], where i �= j , and let k be this customer’s departure position at Q[i]. It follows
(m, s) = 1xi,k , i = w(m, s), and j = w(m, s′) with s′ = A(x, (m, s)).

Recall (p. 406) that by definition k ∈ GO3a
i (1xi,

1yi), the set of possible departure
positions.

416 Queueing Syst (2010) 65: 385–421

Recall further, that for the transition x → y there exists a uniquely determined
u ∈ {0,1}J such that u ⊕ 2x = 2y and u ⊕ 2y = 2x.

From this description we can immediately deduce that (y, x) ∈ R3a:
Because of n(1yj) � 1 and 2(u(y)) = u ⊕ 2y = 2x (and therefore 2(u(y))j = 0)

we can apply T̄ [j ; k] to transform u(y) as follows.
On position n(1yj) at node Q[j] resides a class (m, s′) customer, s′ = A(x, (m, s)).

His stage after the time reversed jump (according to T̄ [j ; k] ◦ u(y)) is s′′ =
Ā(u(y), (m, s′)) = max{t | 0 � t < s′, 2xw(m,t) = 0} and obviously s′′ = s holds.
This implies that the destination node of the jumping customer (in reversed time)
is indeed Q[i]. There the jumping customer is inserted into position k, yielding
x = (T̄ [j ; k] ◦ u)(y) with u = 2x ⊕ 2y.

We notice en passant that exactly those positions k ∈ {1, . . . ,Ci(
1xi)}, where a

class (m, s) customer can depart from Q[i] to join the tail of the class sequence 1yj

at Q[j] to perform the transformation x → y in the original system, are the positions
where in the time reversed system the class (m, s) customer can be inserted at Q[i]
who departed as the class (m, s′) customer from the single service position at Q[j]
to perform the transition x ← y. This yields

GO3a
i

(1xi,
1yi

) = ḠR3a
i

(1yi,
1xi

)
.

Inserting (24) and (14), the left side of (23) is (we abbreviate in the formulas below
J := {1,2, . . . , J })

π(x)p(x, y)

= 1

K

(
n(x)∏

k=1

b(k − 1)

c(k)

)
J∏

l=1

(
n(1xl)∏

k=1

α(1xl,k,1)

Cl(k)

)
q

n(1xl)−Cl(n(1xl))
l

p
n(1xl)
l

al

(2xl ⊕ 1, 2xl

)

· c(n(x)
)∣
∣GO3a

i

(1xi,
1yi

)∣
∣pi

qi

(∏

l∈UP(x)

q
Cl(n(1xl))
l

)(
J∏

l=1

al

(2xl,
2yl

)
)

= 1

K

(

c
(
n(x)

) n(x)∏

k=1

b(k − 1)

c(k)

)(
J∏

l=1

al

(2xl,
2yl

)
al

(2xl ⊕ 1, 2xl

)
)

×
(

∣
∣GO3a

i

(1xi,
1yi

)∣
∣
(

qi

pi

)n(1xi)−1 n(1xi)∏

k=1

α(1xi,k,1)

Ci(k)

)

×
((

qj

pj

)n(1xj) n(1xj)∏

k=1

α(1xj,k,1)

Cj (k)

)

×
(

∏

l∈UP(x)\{i,j}

(
ql

pl

)n(1xl) n(1xl)∏

k=1

α(1xl,k,1)

Cl(k)

)

×
(

∏

l∈J\UP(x)

q
n(1xl)−Cl(n(1xl))
l

p
n(1xl)
l

n(1xl)∏

k=1

α(1xl,k,1)

Cl(k)

)

. (26)

Queueing Syst (2010) 65: 385–421 417

Inserting (24) and (21), the right side of (23) is

π(y)p̄(y, x)

= 1

K

(
n(y)∏

k=1

b(k − 1)

c(k)

)
J∏

l=1

(
n(1yl)∏

k=1

α(1yl,k,1)

Cl(k)

)
q

n(1yl)−Cl(n(1yl))
l

p
n(1yl)
l

al

(2yl ⊕ 1, 2yl

)
,

× c
(
n(y)

)
Cj

(
n
(1yj

)) |ḠR3a
i (1yi,

1xi)|
Ci(n(1yi) + 1)

pj

qj

×
(

∏

l∈UP(u(y))

q
Cl(n(1yl))
l

)(
J∏

l=1

al(
2yl,

2xl)

)

= 1

K

(

c
(
n(y)

)
n(y)∏

k=1

b(k − 1)

c(k)

)(
J∏

l=1

al

(2yl,
2xl

)
al

(2yl ⊕ 1, 2yl

)
)

×
(

Cj

(
n
(1yj

))
(

qj

pj

)n(1yj)−1 n(1yj)∏

k=1

α(1yj,k,1)

Cj (k)

)

×
(

|ḠR3a
i (1yi,

1xi)|
Ci(n(1yi) + 1)

(
qi

pi

)n(1yi) n(1yi)∏

k=1

α(1yi,k,1)

Ci(k)

)

×
(

∏

l∈UP(u(y))\{i,j}

(
ql

pl

)n(1yl) n(1yl)∏

k=1

α(1yl,k,1)

Cl(k)

)

×
(

∏

l∈J\UP(u(y))

q
n(1yl)−Cl(n(1yl))
l

p
n(1yl)
l

n(1yl)∏

k=1

α(1yl,k,1)

Cl(k)

)

. (27)

We check the equality of (26) and (27) by comparing line by line.

• First line: The products in the first huge brackets are equal because the total pop-
ulation size is not changed in course of the transformation x → y, so n(x) = n(y).
Equality of the products in the second huge brackets can be seen by formal manip-
ulation, because for all u,v ∈ {0,1} we have

al(u, v)al(u ⊕ 1, u) = al(v,u)al(v ⊕ 1, v)

which for u �= v follows from al(0,1)al(0 ⊕ 1,0) = al(0,1)al(1,0) = al(1,0) ×
al(1 ⊕ 1,1).

• Fourth and fifth line: The transition in the reversed process x ← y starts with
updating the availability and yields 2u(y) = 2x, especially UP(x) = UP(u(y));
furthermore, at nodes other than Q[i], Q[j] the local queueing state is not changed,
i.e., 1xl = 1yl for l ∈ J \ {i, j}. Combining these observations, we can directly
check equality of the third lines.

418 Queueing Syst (2010) 65: 385–421

• Second and third line: The specification of the jump of a class-(m, s)-customer
from Q[i] as a class-(m, s′)-customer to Q[j] and vice-versa yields n(1yj) − 1 =
n(1xj) and n(1yi) + 1 = n(1xi). Also, the jumping customer’s type remains un-
changed, therefore it follows that

α
(1yj,n(1yj),1

)
n(1yi)∏

k=1

α
(1yi,k,1

) =
n(1xi)∏

k=1

α
(1xi,k,1

)
,

because the customers on positions 1,2, . . . , n(1yi) at node Q[i] are not involved
in the transition, and 1yj,n(1yj),1 = m is the jumping customer’s type. Furthermore,
we already noticed that

GO3a
i

(1xi,
1yi

) = ḠR3a
i

(1yi,
1xi

)
.

Combining these observations we transform the second line of (27):

(

Cj

(
n
(1yj

))
(

qj

pj

)n(1yj)−1 n(1yj)∏

k=1

α(1yj,k,1)

Cj (k)

)

×
(

|ḠR3a
i (1yi,

1xi)|
Ci(n(1yi) + 1)

(
qi

pi

)n(1yi) n(1yi)∏

k=1

α(1yi,k,1)

Ci(k)

)

=
((

qj

pj

)n(1xj)
(n(1xj)∏

k=1

α(1yj,k,1)

Cj (k)

))

×
(

∣
∣ḠR3a

i

(1yi,
1xi

)∣
∣
(

qi

pi

)n(1xi)−1 α(1yj,n(1yj),1)
∏n(1yi)

k=1 α(1yi,k,1)

∏n(1xi)
k=1 Ci(k)

)

=
(

∣
∣GO3a

i

(1xi,
1yi

)∣
∣
(

qi

pi

)n(1xi)−1 n(1xi)∏

k=1

α(1xi,k,1)

Ci(k)

)

×
((

qj

pj

)n(1xj) n(1xj)∏

k=1

α(1xj,k,1)

Cj (k)

)

,

which is the second line of (26). �

6 Conclusion

We have investigated in this paper a discrete time open network of queues with unre-
liable nodes, which in our opinion is an important model because already its reliable
version and variants of it have found applications, e.g., in telecommunication and
production systems. Our aim was to find an analog to the celebrated product form
steady state distributions which are well known in the equilibrium theory of queue-
ing networks in continuous time as well as in discrete time.

Queueing Syst (2010) 65: 385–421 419

The positive message obviously is that even in discrete time networks with un-
reliable nodes product form modeling is possible when breakdown and repair are
incorporated into an integrated model. On the other hand it turned out that the proofs
are extremely tedious and generalizations towards more complicated networks seem
to be not easy.

Nevertheless, there is still much research to be done. We hope that our ongoing
research in this area will contribute to further modeling techniques to obtain product
form network scenarios for networks with unreliable servers and different rerouting
schemes.

A counterpart of our main theorem holds for closed networks of queues with un-
reliable nodes. The proof is by rewriting the proof of the present paper along the lines
of the proofs which are given in Sect. 5.6 in [10] for the case of reliable nodes.

Part of our present research is concerned with networks with discrete time sym-
metric servers; see [11, 12, 43, 53, 54] for the case of reliable network nodes.

An interesting question arises from the observation that our main work in the proof
was to establish the structure of the time reversed process and the associated network:
Is it possible to develop a discrete time analog of the continuous time Reversed Com-
pound Agent Theorem (RCAT) of Harrison (for a short description and generaliza-
tions see [17]), or of the compositional approach to performance modeling of Hill-
ston [22], which would then produce to a certain extent automatically the time re-
versed model which we obtained in the present paper by the reversed process method
directly?

We believe that the answer is in the affirmative (not proposing to see the final con-
struction), but this would need much more work. The main point will be: Complexity
of simultaneous-event description, and handling concurrent state changes at different
network nodes. So the question is still open whether this would reduce the amount of
notation and the handling of combinatorial complexity of the system presented here.

Acknowledgements We thank three anonymous referees for their careful reading of the manuscript and
their constructive critics which (as we hope) made the paper much more easily accessible to the audience.

Especially, the possible connection of our method of proof to the (continuous time) Reversed Com-
pound Agent Theorem (RCAT) of Harrison and the compositional approach to performance modeling of
Hillstonism was remarked by one of the referees.

References

1. Berman, O., Krass, D., Menezes, M.B.C.: Facility reliability issues in network p-median problems:
Strategic centralization and co-location effects. Oper. Res. 55, 332–350 (2007)

2. Boucherie, R.J., van Dijk, N.M.: Spatial birth–death processes with multiple changes and applications
to batch service networks and clustering processes. Adv. Appl. Probab. 22, 433–455 (1990)

3. Boucherie, R.J., van Dijk, N.M.: Product forms for queueing networks with state-dependent multiple
job transitions. Adv. Appl. Probab. 23, 152–187 (1991)

4. Bremaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Texts in Applied
Mathematics, vol. 31. Springer, New York (1999)

5. Bruneel, H., Kim, B.G.: Discrete-Time Models for Communication Systems Including ATM. Kluwer
Academic, Boston (1993)

6. Buzacott, J.A., Yao, D.D.: On queueing network models of flexible manufacturing systems. Queueing
Syst. Appl. 1, 5–27 (1986)

420 Queueing Syst (2010) 65: 385–421

7. Chakka, R., Mitrani, I.: Approximate solutions for open networks with breakdowns and repairs. In:
Kelly, F.P., Zachary, S., Ziedins, I. (eds.) Stochastic Networks, Theory and Applications. Royal Sta-
tistical Society Lecture Notes Series, vol. 4, pp. 267–280. Clarendon, Oxford (1996). Chap. 16

8. Chao, X., Miyazawa, M., Pinedo, M.: Queueing Networks—Customers, Signals, and Product Form
Solutions. Wiley, Chichester (1999)

9. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks. Springer, Berlin (2001)
10. Daduna, H.: Queueing Networks with Discrete Time Scale: Explicit Expressions for the Steady State

Behavior of Discrete Time Stochastic Networks. Lecture Notes in Computer Science, vol. 2046.
Springer, Berlin (2001)

11. Daduna, H., Schassberger, R.: A discrete-time round-robin queue with Bernoulli input and general
arithmetic service time distributions. Acta Inform. 15, 251–263 (1981)

12. Daduna, H., Schassberger, R.: Networks of queues in discrete time. Z. Oper. Res. 27, 159–175 (1983)
13. Economou, A., Fakinos, D.: Product form stationary distributions for queueing networks with block-

ing and rerouting. Queueing Syst. Appl. 30, 251–260 (1998)
14. Fiems, D., Steyaert, B., Bruneel, H.: Analysis of a discrete-time GI-G-1 queueing model subjected to

bursty interruptions. Comput. Oper. Res. 30(1), 139–153 (2003)
15. Fiems, D., Steyaert, B., Bruneel, H.: Discrete-time queues with generally distributed service times

and renewal-type server interruptions. Perform. Eval. 55(3–4), 277–298 (2004)
16. Gusak, O., Dayar, T., Fourneau, J.-M.: Stochastic automata networks and near complete decompos-

ability. SIAM J. Matrix Anal. Appl. 23(2), 581–599 (2001)
17. Harrison, T.T., Lee, P.G.: Separable equilibrium state probabilities via time reversal in Markovian

process algebra. Theor. Comput. Sci. 346(1), 161–182 (2005)
18. Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K.: Performability Modeling, Technique and Tools.

Wiley, New York (2001)
19. Henderson, W., Pearce, C.E.M., Taylor, P.G., van Dijk, N.M.: Closed queueing networks with batch

services. Queueing Syst. Appl. 6, 59–70 (1990)
20. Henderson, W., Northcote, B.S., Taylor, P.G.: Triggered batch movement in queueing networks.

Queueing Syst. Appl. 21, 125–141 (1995)
21. Henderson, W., Pearce, C.E.M., Taylor, P.G., van Dijk, N.M.: Insensitivity in discrete-time gener-

alized semi-Markov processes allowing multiple events and probabilistic service scheduling. Ann.
Appl. Probab. 5, 78–96 (1995)

22. Hillston, J.: A compositional approach to performance modelling. PhD thesis, University of Edinburgh
(1994)

23. Hsu, J., Burke, P.J.: Behaviour of tandem buffers with geometric input and markovian output. IEEE
Trans. Commun. 24, 358–361 (1976)

24. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Chichester (1979)
25. Kleinrock, L.: Time-shared systems: A theoretical treatment. J. Assoc. Comput. Mach. 14(2), 242–

261 (1967)
26. Kleinrock, L.: Queueing Theory, vol. I. Wiley, New York (1975)
27. Kleinrock, L.: Queueing Theory, vol. II. Wiley, New York (1976)
28. Kobayashi, H., Mark, B.L.: Product-form loss networks. In: Dshalalow, J.H. (ed.) Frontiers in Queue-

ing, Models and Applications in Science and Engineering. Probability and Stochastics Series, pp. 147–
195. CRC Press, Boca Raton (1997). Chap. 6

29. Malchin, C., Daduna, H.: Availability and performance analysis in a discrete time tandem network
with product form steady state. In: German, A., Heindl, R. (eds.) Proceedings of the GI/ITG Confer-
ence on Measuring, Modelling and Evaluation of Computer and Communications Systems, pp. 381–
398. VDE-Verlag, Berlin (2006)

30. Malchin, C., Daduna, H.: Discrete time queueing network with product form steady state: Availabil-
ity and performance analysis in an integrated model. Preprint 2006-02, Schwerpunkt Mathematische
Statistik und Stochastische Prozesse, Fachbereich Mathematik der Universität Hamburg (2006, sub-
mitted), 40 p.

31. Miyazawa, M.: On the characterisation of departure rules for discrete–time queueing networks with
batch movements and its applications. Queueing Syst. Appl. 18, 149–166 (1994)

32. Miyazawa, M.: Stability of discrete-time Jackson networks with batch movements. In: Glasserman,
P., Sigman, K., Yao, D.D. (eds.) Stochastic Networks: Stability and Rare Events. Lecture Notes in
Statistics, vol. 117, pp. 76–93. Springer, New York (1996). Chap. 5

33. Pestien, V., Ramakrishnan, S.: Asymptotic behavior of large discrete–time cyclic queueing networks.
Ann. Appl. Probab. 4, 591–606 (1994)

Queueing Syst (2010) 65: 385–421 421

34. Pestien, V., Ramakrishnan, S.: Features of some discrete-time cyclic queueing networks. Queueing
Syst. Appl. 18, 117–132 (1994)

35. Pittel, B.: Closed exponential networks of queues with saturation: the Jackson-type stationary distrib-
ution and its asymptotic analysis. Math. Oper. Res. 4, 357–378 (1979)

36. Pujolle, G., Claude, J.P., Seret, D.: A discrete queueing system with a product form solution. In:
Hasegawa, T., Takagi, H., Takahashi, Y. (eds.) Proceedings of the IFIP WG 7.3 International Seminar
on Computer Networking and Performance Evaluation, pp. 139–147. Elsevier, Amsterdam (1986)

37. Sakata, M., Noguchi, S., Oizumi, J.: An analysis of the M/G/1 queue under round-robin scheduling.
Oper. Res. 19, 371–385 (1971)

38. Sauer, C.: Stochastic product form networks with unreliable nodes: Analysis of performance and
availability. PhD thesis, University of Hamburg, Department of Mathematics (2006)

39. Sauer, C., Daduna, H.: Separable networks with unreliable servers. In: Charzinski, J., Lehnert, R.,
Tran-Gia, P. (eds.) Providing QoS in Heterogeneous Environments. Teletraffic Science and Engineer-
ing, vol. 5b, pp. 821–830. Elsevier, Amsterdam (2003)

40. Sauer, C., Daduna, H.: Availability formulas and performance measures for separable degradable
networks. Econ. Qual. Control 18, 165–194 (2003)

41. Sauer, C., Daduna, H.: Degradable networks with general up and down time distributions. In: Buch-
holz, P., Lehnert, R., Pioro, M. (eds.) Proceedings of the 12th GI/ITG Conference on MMB Together
with 3rd PGTS, pp. 185–194. VDE-Verlag, Berlin (2004)

42. Schassberger, R.: A new approach to the M/G/1 processor-sharing queue. Adv. Appl. Probab. 16,
202–213 (1984)

43. Schassberger, R., Daduna, H.: A discrete–time technique for solving closed queueing network models
of computer systems. In: Kühn, P.J., Schulz, K.M. (eds.) Messung, Modellierung und Bewertung von
Rechensystemen. Informatik–Fachberichte, vol. 61, pp. 122–134. Springer, Berlin (1983)

44. Serfozo, R.F.: Introduction to Stochastic Networks. Applications of Mathematics, vol. 44. Springer,
New York (1999)

45. van Dijk, N.M.: On Jackson’s product form with ‘jump-over’ blocking. Oper. Res. Lett. 7(5), 233–235
(1988)

46. van Dijk, N.M.: Queueing Networks and Product Forms—a Systems Approach. Wiley, Chichester
(1993)

47. Vinck, B., Bruneel, H.: System delay versus system content for discrete-time queueing systems subject
to server interruptions. Eur. J. Oper. Res. 175, 362–375 (2006)

48. Walrand, J.: A discrete–time queueing network. J. Appl. Probab. 20, 903–909 (1983)
49. Woodward, M.E.: Communication and Computer Networks: Modelling with Discrete-Time Queues.

IEEE Comput. Soc., Los Alamitos (1994)
50. Woodward, M.E.: Product-form closed discrete-time queueing networks with finite capacity shared

buffer nodes. Electron. Lett. 32(20), 1875–1876 (1996)
51. Woodward, M.E.: Size-limited batch movement in product-form closed discrete-time queueing net-

works. ACM SIGMTRICS Perform. Eval. Rev. 25(1), 139–146 (1997)
52. Woodward, M.E.: Product form solutions for discrete-time queueing networks with bursty traffic.

Electron. Lett. 36(17), 1512–1514 (2000)
53. Yates, R.D.: High speed round-robin queueing networks. PhD thesis, Department of Electrical Engi-

neering and Computer Science, Massachusetts Institute of Technology (1990)
54. Yates, R.D.: Analysis of discrete time queues via the reversed process. Queueing Syst. Appl. 18,

107–116 (1994)

	Discrete time queueing networks with product form steady state. Availability and performance analysis in an integrated model
	Abstract
	Introduction
	System dynamics
	Overview
	The details
	The queueing-availability process
	Examples
	Discussion of the model and the result
	Sketch of the proof

	Evolution of the network
	Network transitions
	One-step transition probabilities

	Evolution of the time reversed network
	Network transitions
	One-step transition probabilities

	Proof of Theorem 1
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

