Pairwise Markov model applied to unsupervised image separation

Abstract : The paper deals with blind separation and recovery of a noisy mixture of two binary signals on two sensors. Such a model can be applied in the context of recovery of scanned documents subject to show-through and bleed-through effects. The problem can be considered as a blind source separation one. Due to a complex noise and data structure, it is tackled from the more general approach of Bayesian restoration. The data is assumed to follow a Pairwise Markov Chain model: it generalizes Hidden Markov Chain models but it still allows one to calculate the a posteriori distributions of the data. The Expectation-Maximization (EM) and Iterative Conditional Estimation (ICE) methods are considered for parameter estimation, yielding an unsupervised processing. Finally, simulations show the interest of our approach on simulated and real data.
Type de document :
Communication dans un congrès
SPPRA '11 : The Eighth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, Feb 2011, Innsbruck, Austria. Acta Press, 2011, 〈10.2316/P.2011.721-044〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00714717
Contributeur : Médiathèque Télécom Sudparis & Institut Mines-Télécom Business School <>
Soumis le : jeudi 5 juillet 2012 - 14:28:50
Dernière modification le : jeudi 7 février 2019 - 16:20:14
Document(s) archivé(s) le : samedi 6 octobre 2012 - 02:41:13

Fichier

iasted11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Selwa Rafi, Marc Castella, Wojciech Pieczynski. Pairwise Markov model applied to unsupervised image separation. SPPRA '11 : The Eighth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, Feb 2011, Innsbruck, Austria. Acta Press, 2011, 〈10.2316/P.2011.721-044〉. 〈hal-00714717〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

88