
HAL Id: hal-00714381
https://hal.science/hal-00714381

Submitted on 4 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection and Segmentation of FMCW Radar Signals
based on the Chirplet Transform

Fabien Millioz, Michael E. Davies

To cite this version:
Fabien Millioz, Michael E. Davies. Detection and Segmentation of FMCW Radar Signals based on
the Chirplet Transform. Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on, May 2011, Prague, Czech Republic. pp.1765 - 1768, �10.1109/ICASSP.2011.5946844�.
�hal-00714381�

https://hal.science/hal-00714381
https://hal.archives-ouvertes.fr


DETECTION AND SEGMENTATION OF FMCW RADAR SIGNALS BASED ON THE

CHIRPLET TRANSFORM

Fabien Millioz and Michael E. Davies

School of Engineering and Electronics

The University of Edinburgh, King’s Buildings, Mayfield Rd

Edinburgh EH9 3JL - United Kingdom

email: {fmillioz,mike.davies}@ed.ac.uk

ABSTRACT

In this paper we present a algorithm designed to detect and

characterise the signal coming from Frequency Modulation

Continuous Wave radars. The signals are made of linear

frequency modulations. A few relevant coefficients of the

chirplet transform are selected, and then gathered into chirps

whose starting time, length, and chirprate are estimated. An

example is provided on a synthetic signal.

Index Terms— LPI radar, FMCW radar, chirplet trans-

form, parameter estimation

1. INTRODUCTION

Low Probability of Intercept (LPI) Radars are a type of radar

designed to hide their emissions from hostile receivers. It

aims to see without being seen, which is critical on battle-

fields. This goal may be achieved by several techniques, such

as power management, antenna side lobe reduction or fre-

quency agility [1].

This paper aims to detect and identify Frequency Modu-

lation Continuous Wave (FMCW) radars. This class of LPI

radar signals may be modelled by

r(t) =
N

∑

n=1

An cos(2πfn(t)t + φn), (1)

with fn(t) a piecewise linear function and n(t) a white Gaus-

sian noise of variance σ2. To extend the possibility of the

model, we consider both continuous and non-continuous

functions fn(t). In the context of a radar interceptor, a sensor

should detect a signal s(t) coming from several LPI radars,

embedded in a white Gaussian noise n(t) of variance σ2

s(t) = n(t) +

I
∑

i=1

ri(t) (2)
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where I radars emits the signals ri(t).

Given the model, the chirplet transform [2] seems to be an

natural tool to analyse the signal. Several methods exist based

on the chirplet transform.

Matching-pursuit based method [3] by Leveau et al.,

which searches for chirps in the signal and iteratively subtract

them from the signal. The main drawback is the computations

required by the matching-pursuit framework. Chirplet chains

[4, 5] are based on the search of a single best path in the

time-frequency domain, and are applied in the low Signal-

to-Noise Ration (SNR) context of gravitational waves. Only

a non-linear chirp is detected in the signal. A more general

chirplet chain based on a parametric model is proposed by

Dugnal et al. [6], which uses local maxima to start chirplet

chains, and a single criterion based on the smoothness of the

frequency modulation. In our case, we have a strong a priori

information used in these works, the chirps are piece-wise

linear, and in a multi-signal case, chirps may be crossing.

This paper proposes a new algorithm for detecting and

estimating the parameters of the chirps constituting FMCW

radars. This method is based on the chirplet transform, pre-

sented in the section 2. The main goal is to amalgamate

chirplet coming from a crude chirplet transform into differ-

ent chirps, corresponding to the instantaneous frequency lines

fn(t) from the model 1. To do this, section 3 presents a selec-

tion of relevant chirplet coefficients. This selection is comes

first from a signal detection signal with an estimated noise

level. To have as few relevant coefficients as possible, a refin-

ing of this detection is made with a search for local maxima.

These coefficients are gathered in an algorithm presented in

section 4, and used to estimate the chirps parameters. A re-

sult of this algorithm is given on a synthetic signal imitating

an antenna receiving four FMCW radar signals.

2. DISCRETE CHIRPLET TRANSFORM

The chirplet transform [2] C(n, k, c) of a discrete signal x[m]
is determined by



C(n, k, c) =

+
Mφ−1

2
∑

m=−
Mφ−1

2

x[n + m]φ[m]ej2π c
2
m2

e−j2πm k
K

(3)

with n, k are the time and frequency indices respectively,

φ[m] an energy-normalised smoothing window of Mφ points,

K the number of frequencies and l the chirprate. Let N be

the number of time indices.

The chirprate is discretized such that

c =
l

L
cmax (4)

with l an integer varying from −L to L. Consequently, there

are 2L + 1 different chirprates.

The chirplet transform may be interpreted twofold. By

considering a chirped window φc[m] = φ[m]ej2π c
2
m2

, the

chirplet transform has the same definition as the usual Short

Time Fourier Transform, using a Fast Fourier Transform al-

gorithm. On the other hand, it may be interpreted as the pro-

jection of the signal x[m] on a set of atoms e−j2π( k
K

m+ c
2
m2

),
corresponding to chirplets of different chirprates c, centred

on time n and normalised frequency k
K

.

The chirplet is redundant: the redundancy coming from

the usual STFT is multiplied by the number of chirprates.

Next section aims to select a set of relevant chirplet coeffi-

cients to use for the estimation of the chirps’ parameters.

3. SIGNAL DETECTION

The goal of this section is to select a set of chirplet coefficients

relevant to the chirps to estimate. Additionally, we try to se-

lect as few coefficients as possible, to limit the computation

needed for the estimation.

A first step in the selection of chirplet coefficients is to de-

termine whether a time-frequency coefficient contains signal,

called hypothesis H1, or not, the hypothesis H0. We consider

the square modulus of the chirplet transform, the energy of

the chirplet coefficients. A chirplet coefficient containing sig-

nal should have a higher energy than coefficients containing

noise only. In other words, the hypothesis test is solved by

selecting a detection threshold t.
In the hypothesis H0, the chirplet coefficient contains

Gaussian noise only, and consequently has a circular com-

plex Gaussian distribution, and its square modulus has a χ2

distribution with two degrees of freedom.

To simplify the detection problem, we define the maxi-

mum chirplet D[n, k] at a given time-frequency point [n, k],
containing all maxima of the square modulus of the chirplet

coefficients along the chirprates

D[n, k] = max
c

|C[n, k, c]|2. (5)

The chirprates CR[n, k] associated to the maxima are

CR[n, k] = c / |C[n, k, c]|2 = D[n, k]. (6)

In the hypothesis H0, D[n, k] is the maximum of 2L + 1
random variables having a χ2 distribution with two degrees

of freedom. Assuming that |C[n, k, ci]|
2 and |C[n, k, cj ]|

2for

i 6= j, the order statistics [7] leads to the distribution of

D[n, k] of noise only fD[n,k],H0

fD[n,k],H0
= (2L + 1)

(

1 − e−
−x

2σ2

)2L 1

2σ2
e−

−x

2σ2 (7)

In this paper, the detection strategy chosen is a Neyman-

Pearson approach. With a chosen probability of false alarm

pfa, the threshold t is such that

t / Prob (D[n, k]H0
> t) = pfa (8)

t = −σ2 ln
(

1 − (1 − pfa)
1

2L+1

)

(9)

This threshold depends on the noise level σ2, which must

be estimated. To do this, we use a noise level estimation

based on the spectral kurtosis of the minimal statistics [8].

This estimation is not discussed in this paper, and we consider

in the following that the noise level is known.

We aim to detect only a few signal points, consequently

we choose a low probability of false alarm, that is pfa =
10−5. The set of detected points S is

S = {[n, k]/D[n, k] > t} (10)

This set contains the maxima of the energy of the signal in the

time-frequency plane. However, this set may contain redun-

dant information by containing several time-frequency loca-

tions belonging to a single spectral window.

To refine the signal detection, we keep only the local max-

ima along the frequencies of the selected coefficients, in or-

der to select only the maxima of the spectral windows. Local

maxima along the time is not considered, given that stationary

frequencies does not present local maxima along time.

The set of local maxima M is

M = {[n, k] / D[n, k] ≥ D[n, k′]} , (11)

k′ = [k − 10, k − 9, ...k + 9, k + 10]

The range of frequencies around k, from k− 10 to k +10 has

been chosen large enough to avoid selecting too many local

maxima, and small enough to include close different frequen-

cies.

Finally, the set of time-frequency coefficients P used in

the chirp estimation is the intersection of the set of detected

signal points and the set of local maxima

P = S ∩M (12)

The selected coefficients are gathered in the next section,

and used to estimate the chirps parameters.



4. CHIRPS ESTIMATION

Given the set of chirplet coefficients detected in the previous

section, we aim to gather them in a small set of chirps in a

real time framework, these chirps corresponding to each lin-

ear part of the analysed signal. Each chirp is characterised by

four parameters: the starting point ns, the end point ne, the

initial frequency ki at time ns and the chirprate cr.

For all selected chirplet coefficients, from the smallest

time index and frequency index to the highest indices, we

search if the chirplet coefficients fits in an existing chirp, and

update the chirp’s parameters with the new coefficient. Oth-

erwise, we create a new chirp, whose starting point and end

point are the first point and the last point of the window as-

sociated with the chirplet coefficient, chirprate is set to the

chirplet’s chirprate, and initial frequency is deduced from the

central frequency and the chirprate of the chirplet. The algo-

rithm is summarised as follows:

for all selected chirplet coefficients do

for all created chirps do

if current chirplet ∈ current chirp then

Associate the time-frequency location of the chirplet

coefficient to the chirp;

Estimate the chirp’s parameters with a linear regres-

sion from all associated time-frequency locations;

else

Create a new chirp of parameters the chirplet’s;

end if

end for

end for

The conditions for the belonging of a chirplet coefficient, cen-

tred on time index n and frequency index k with a chirprate

c, to a chirp are:

• time condition, the chirp and the chirplet overlap:

ns ≤ n ≤ ne + δt;

• chirprate condition, the chirplet and the chirps have ap-

proximately the same chirprate:

|c − cr| ≤ δc.

• frequency condition, the central frequency of the

chirplet is located on the chirp:

|ki + cr(n − ni) − k| ≤ δk;

Each selected chirplet is associated to only one chirp. In other

words, chirplets located at the crossing of two chirps can be

linked to only one of these chirps, and the other chirp will

miss this coefficient. Moreover, the detection step may miss

some signal coefficients. Consequently, the gathering process

should be tolerant enough to miss some coefficients.

The three thresholds δt, δk and δc are chosen in respect to

the parameters of the chirplet transform. The time threshold

δt allows the association of closely disconnected chirplets to

a chirp. In the following, we set δt = Mφ, the length of the

analysis window of the chirplet transform.

The chirprate threshold δc is set to the chirprate discretiza-

tion step and the frequency threshold δk to the maximum be-

tween the frequency index step and the frequency index step

due to the discretization of the chirprate

δc =
1

L
cmax (13)

δk = max

(

1,K
l

L
cmax

Mφ

2

)

(14)

When chirps are crossing, some chirplet coefficients may be

wrongly selected due to the interferences between the chirps.

As a post-processing, we remove chirps with length equal to

the length of a single chirplet.

4.1. Results

Figure 1 shows the result of the algorithm on a synthetic sig-

nal made of 20 chirps, with a SNR of 3dB. The chirplet is

computed with a Gaussian window of 4095 points, an overlap

between consecutive windows of 2047 points, and 4096 com-

puted frequencies. 51 discrete chirprates are computed, from

−10−5 to 10−5.

98 chirps are created from 379 selected chirplets coeffi-

cients. The post-processing removes 78 chirps made of only

one chirplet, leading to the 20 chirps existing in the analysed

signal.

The errors on the estimated starting points and end points

are all smaller than the overlap parameter of the chirplet

transform, and the error of the estimated frequency smaller

than the frequency step. Thanks to the linear regression, the

chirprates are very accurately estimated: the errors on the

chirprates vary from 1/5 to 1/40 of the chirprate step of the

chirplet transform, except for a chirp with an error equal to

approximately the chirprate step.

The most computationally intensive part of the full analy-

sis is the chirplet transform, which takes twice the computa-

tional time of the chirplet selection and the chirps estimation.

5. CONCLUSION

We have presented in this paper an efficient algorithm for de-

tecting and estimating linear chirps, in a context of LPI radars

made of frequency modulation waves. Using the chirplet

transform, a first step selects a few relevant chirplet coeffi-

cients, containing the signal and being local maxima along

frequencies. This step avoids including redundant chirplet

coefficients. The second step gathers these coefficients with

criterion based on time, frequency and chirprate, and esti-

mates the chirps from a linear regression from the gathered

coefficients. A post-processing removes ”false alarm” chirps

created with wrongly selected coefficients in the first step.

This algorithm has been illustrated on a synthetic signal imi-

tating 4 FMCW radars.
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Fig. 1. Up left, spectrogram of the synthetic signal to analyse. Up right, zoom on the select chirplets. Down left, results of

the gathering of selected chirplets, with a Gaussian windows of Mφ=4095 points. Short ”false alarm” chirps are created where

frequencies are crossing, as well as at beginnings and ends of chirps. The black box indicates the area of the zoom of the up

right figure. Down right, the estimated chirps without the false-alarm chirps removed by the post-precessing.

The result on a synthetic signal are very good and accu-

rately estimates the chirps parameters. The next step is to

use these results in order to classify the radars. This may

be done by gathering the obtained chirps in order to estimate

their modulation bandwidths, modulation periods and carrier

frequencies. Another approach may be to use dictionaries of

FMCW radars, searching for the different pulse repetitions

and chirprates.

Future work will consider the influence of the parameters

and try to determine the minimal redundancy of the chirplet

transform required for the algorithm to give good results.
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