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Abstract. In this article, we propose an integrated model for oxygen transfer into the blood, coupled with a
lumped mechanical model for the ventilation process.

Objectives. We aim at investigating oxygen transfer into the blood at rest or exercise. The first task consists
in describing nonlinear effects of the oxygen transfer under normal conditions. We also include the possible
diffusion limitation in oxygen transfer observed in extreme regimes involving parameters such as alveolar and
venous blood oxygen partial pressures, capillary volume, diffusing capacity of the membrane, oxygen binding
by hemoglobin and transit time of the red blood cells in the capillaries. The second task consists in discussing
the oxygen concentration heterogeneity along the path length in the acinus.

Method. A lumped mechanical model is considered: a double-balloon model is built upon physiological
properties such as resistance of the branches connecting alveoli to the outside air, and elastic properties of the
surrounding medium. Then, we focus on oxygen transfer: while the classical Roughton & Forster [33] approach
accounts for the reaction rate with hemoglobin by means of an extra resistance between alveolar air and blood,
we propose an alternate description. Under normal conditions, the Hill’s saturation curve simply quantifies the
net oxygen transfer during the time that venous blood stays in the close neighborhood of alveoli (transit time).
Under degraded and / or exercise conditions (impaired alveolar-capillary membrane, reduced transit time, high
altitude) diffusion limitation of oxygen transfer is accounted for by means of the nonlinear equation representing
the evolution of oxygen partial pressure in the plasma during the transit time. Finally, a one-dimensional model
is proposed to investigate the effects of longitudinal heterogeneity of oxygen concentration in the respiratory
tract during the ventilation cycle, including previous considerations on oxygen transfer.

Results. This integrated approach allows us to recover the right orders of magnitudes in terms of oxygen
transfer, at rest or exercise, by using well-documented data, without any parameter tuning or curve fitting
procedure. The diffusing capacity of the alveolar-capillary membrane does not affect the oxygen transfer rate
in the normal regime but, as it decreases (e.g. because of emphysema) below a critical value, it becomes
a significant parameter. The one-dimensional model allows to investigate the screening phenomenon, i.e. the
possibility that oxygen transfer might be significantly affected by the fact that the exchange area in the peripheral
acinus poorly participates to oxygen transfer at rest, thereby providing a natural reserve of transfer capacity
for exercise condition. We do not recover this effect: in particular we show that, at rest, although the oxygen
concentration is slightly smaller in terminal alveoli, transfer mainly occurs in the acinar periphery.

Introduction

The respiratory system is designed to achieve two main functions: oxygen transfer from the outside air to
the blood, and expulsion of carbon dioxide from the blood to the air. Those transfers are achieved through
passive diffusion across a membrane which separates both phases (the gaseous air and the liquid blood), at an
instantaneous rate which depends on the difference in partial pressures, the area of the exchange surface, and
its properties in terms of diffusion. As this diffusion tends to reduce the partial pressure difference, a constant
renewal must be made on both sides of the membrane. Renewal of air is achieved by the ventilation process,
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which consists in periodic inspiration-expiration cycles that provide the inside of the lung with fresh air, whereas
venous blood is periodically pumped onto the exchange zone by the heart.

The exchange area is the boundary of a huge collection of small cavities (around 300 million units), called
alveoli, which scale around a quarter millimeter, which makes an exchange area of about 100 m2, see [43,47] for
typical values. Each of this alveolus is surrounded by a network of very small blood vessels, called capillaries,
whose diameter is about 5 to 10 µm, see [47]. Gas exchanges occur through the alveolar-capillary membrane,
which is less than a micrometer wide. The alveoli are connected to the outside world through the respiratory
tract, which is an assembling of interconnected pipes following a dyadic-tree structure that can be described
as follows see [43, 47]: the trachea (with a diameter around 2 cm) divides onto two sub-branches, which divide
further onto smaller branches, and so on, up to 23 levels of bifurcations, although the total number of generations
depends on the subject, see [45]. The first generations are purely conductive, exchanges do not take place
before generation 16 or 17: bronchi are lined up with alveoli from generation 17 to the end but alveoli are
quite dispersed in generation 17 and their number increases with the generation, see [18, 31, 39, 45]. Beyond
that point, all branches are lined up with alveoli, up to the last generation. Fig. 1 gives an overview of the
different zones of the respiratory system, from the trachea to alveolar-capillary membrane, together with orders
of magnitude in terms of dimensions. For a normal person, under resting conditions, the volume of air available
for gas exchange corresponds to the alveolar zone, it sums up around 2.5 to 3 L. This volume is easily accessible
to measurement. The volume of blood in the neighborhood of the exchange surface is called the capillary volume
Vc, it is estimated around 70 mL, see [4, 18, 47], although it is much less accessible to direct measurement and
usually estimated by mean of indirect methods which rely on some modeling assumptions. The efficiency of
the lung as oxygen exchanger is well documented in the literature: the standard flow of oxygen that goes into
the bloodstream of an adult ranges between 250 mL min−1 and 400 mL min−1 under resting conditions, and
may reach 3 L min−1 during exercise, and even more for well-trained athletes, see [18, 31], all the values above
expressing the quantity of oxygen as the volume it would occupy as a gas at standard temperature and pressure.

As far as one considers healthy lungs, the apparent geometric complexity of the respiratory tract is not a
crucial issue in terms of oxygen transfer: the dyadic structure makes it relevant to consider that, under normal
conditions, all quantities shall be approximately constant in each generation, so that the overall phenomenon
is in some way mono-dimensional: the only relevant dimension is the longitudinal one, i.e. the path length
expressing the distance from the entrance of the system, nose or entrance of the trachea.

Far more crucial are the two following issues, on which the present paper focuses:

(1) The chemistry of the oxygen-hemoglobin reaction is complex; in particular the relation between oxygen
partial pressure in the plasma (which controls the rate at which oxygen crosses the membrane) and
the actual content of oxygen in the blood (oxygen is mainly present as combined with hemoglobin) is
nonlinear.

(2) The concentration of oxygen is not uniform overall the lungs. Oxygen is advected by the global flow of
air induced by ventilation, and it also diffuses in the air. Advection is predominant in the upper part of
the tree, whereas transfer is essentially diffusive in the acinar region. As oxygen diffuses away through
the membrane, concentration gradients appear. Diffusion tends to uniformize the concentration, but
as we shall see the diffusion characteristic times are of the order of magnitude of the ventilation cycle
duration, during which air is renewed. As a consequence, significant differences in oxygen concentration
are likely to appear, and influence the overall transfer process.

Point (1) is addressed as follows. At a macroscopic level, the oxygen transfer into the blood is commonly
quantified by the pulmonary diffusing capacity for oxygen. This quantity DL is defined (see [8, 43–45], and the
pioneering work by Roughton and Forster [33] on carbon monoxide) by the following relation

V̇O2
= DL

(
PA − P c

)
, (1)

where PA is the partial pressure of oxygen in the alveolar air, P c is the mean partial pressure of oxygen in
the capillary, and V̇O2

the oxygen transfer rate (usually expressed in mL min−1). Note that some authors (see
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Figure 1. Overall view of the process of oxygen transfer into blood: from the bronchial tree
to the capillaries

e.g. [8]) tend to favor the term transfer factor for DL. The associated resistance is usually decomposed onto
two contributions (see e.g. [33, 45]):

1

DL

=
1

Dm

+
1

θVc

, (2)

whereDm stands for the alveolar-capillary membrane diffusion capacity (also called diffusive conductance in [7]),
Vc is the capillary volume, and θ accounts for the binding rate of hemoglobin with oxygen. The physiological
meaning of this latter quantity is not fully understood, and its actual measurement is delicate (see [43]). Besides,
actual measurements of DL may lead to values which depend on PA itself, see e.g. [2], although its definition
relies on Eq. (1), which rules out such a dependance. Our motivation to propose a model which does not rely
on this parameter θ is based on the following arguments. As we will detail in Section 2, kinetics of oxygen-
hemoglobin interaction is such that partial pressures will reach equilibrium before the available time is attained,
under normal conditions. Indeed, the time that blood remains in the neighborhood of the exchange zone is
about three times larger than the time it takes to achieve balance. As a consequence, a decrease of Dm may well
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decelerate the process, it will not be followed by any observable consequence on the oxygen transfer rate, whereas
it decreases DL according to (2). The striking consequence of this simple remark is that the permeability of the
membrane (which is related to the membrane diffusing capacity Dm) does not appear as a relevant parameter
to model oxygen transfer under normal conditions. In other word, it is not an observable parameter in the
standard regime. Of course a strong decrease of Dm will eventually be harmful to the overall process, and we
shall quantify this phenomenon of diffusion limitation, but consequences will not be observed if the changes are
small. Our second remark pertains to the diffusing capacity (of transfer factor)DL, which states a linear relation
between oxygen transfer rate and difference of pressures. As it has been extensively discussed in the literature,
the oxygen-hemoglobin reaction can be described by the so-called Hill’s curve, which relates the partial pressure
of oxygen in the plasma to the actual quantity of oxygen carried by hemoglobin. The Hill’s curve is far from
being linear in the zone of interest. In particular, as we shall see, it is almost flat in the neighborhood of the
partial pressure which balances the standard partial pressure of oxygen in the alveolar air. As another striking
fact, the oxygen transfer rate is quasi independent from oxygen partial pressure in the alveoli, PA, and the
dependency is far from being linear, because of the sigmoid pattern of the saturation curve. In the Roughton
& Forster approach [33] described by Eq. 2, parameter θ carries information on all those non-linear phenomena
(mainly hemoglobin saturation and diffusion kinetics), in a very indirect manner. The approach we propose
does not rely on a representation of chemical reactions as an extra resistance in series with the membrane, but
rather incorporates the chemical reaction with hemoglobin by means of an expression of the net transfer based
on the Hill’s curve expressing the saturation function, together with an evolution equation on plasma oxygen
partial pressure, to account for possible diffusion limitation.

Point (2) has been addressed more recently as diffusion screening phenomenon, as results tend to provide
a new evidence of the existence of diffusional screening at the acinar level, implying permanent spatial inho-
mogeneity of oxygen and carbon dioxide partial pressure. This phenomenon has been primarily studied in
abstract geometric models of the acinus such as the Hilbert acinus [35] then extended to 3D model geometries
such as the Kitaoka acinus [12–14] and further discussed in [34]. In the meanwhile, [20] suggests that the lung
operates in the partial-screening regime, close to the transition to no screening, for respiration at rest and in
the no-screening regime for respiration at exercise. The approach we propose here provides new insight on those
issues. We shall disregard here the Péclet number approach proposed in the mentioned references, and use a
one-dimensional model of the oxygen distribution in the lung to investigate the relative weights of advection
and diffusion in the quantity of oxygen which is actually transferred to the blood.

1. Mechanical model

Although the mechanical behavior of the lung is not our prior objective here, we aim at investigating the
influence of some mechanical parameters upon the oxygen transfer, which makes it necessary to propose a global
system controlled by the actual action performed by a patient, namely the contraction of the diaphragm and,
possibly, the abdominal muscles. Mechanical modeling of the ventilation process involves two main ingredients:
resistance of the branches connecting alveoli to the outside air, and elastic properties of the surrounding medium.
We present here a double-balloon model, see Fig. 1, which will make it possible to distinguish between the forcing
term resulting from the contraction of the diaphragm and the pleural pressure, which is directly accessible to
measurement and commonly considered to be close to the esophageal pressure, which is actually measured
in practice (see [40]). The inner balloon in the model accounts for the lung itself, which is considered as a
nonlinear elastic medium which tends to reduce its volume V (actually the volume of air that it contains) close
to 0, because of elastic properties of the fibers which constitute the parenchyma, together with surface tension
forces which tend to reduce the size of alveoli. The elastic behavior of this inner balloon will be represented by
a function ϕL which relates the volume to the difference of partial pressure in the alveoli and in the pleura:

Palv − Ppl = ϕL(V ),

where Palv is the pressure of air in the alveoli, and Ppl the pleural pressure.



5

a)

b)

c)

alveoli

Palv

Ppl

P

Figure 2. Double-balloon model

The outer balloon corresponds to the thoracic cage, which would tend spontaneously to be slightly larger
than it is at rest, as it is maintained smaller by the negative pleural pressure. Its behavior is described as
previously by a function ϕC (note that the pleural pressure is now inside the balloon, whereas it was outside
the inner balloon). As the flesh within the lung is essentially incompressible (volume variations correspond to
variations of the gaseous and deformable parts, i.e. essentially the alveoli), the mechanical behavior can be
expressed in terms of the volume of air in the lung, as previously:

Ppl − P = ϕC(V ),

where P is the pressure “outside” the cage, often referred as airway opening pressure or transpulmonary pressure,
see e.g. [4,36]. Note that this quantity is not accessible to direct measurement. It accounts for the effort of the
diaphragm (P < 0 for inspiration), and possibly muscles of the abdomen during forced expiration (P > 0).

A simple ODE model can be obtained by eliminating the pleural pressure between both equations, this
double-balloon approach providing the possibility to recover the pleural pressure as an outcome of the model.
Furthermore, this approach allows to account for changes in the elastic properties of the lung and of the thoracic
cage independently. By simply adding both equation, one obtains

Palv − P = ϕL(V ) + ϕC(V ) := ϕ(V ).
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Figure 3. Elastic behavior of the lung: relation between the lung volume and the difference
of pressure (from [1]) for typical values of VRV = 1.2 L, VFRC = 2.5 L and VTLC = 6L.

We now write the generalized Poiseuille law for the whole tree, which relates the flux V̇ to the difference of
pressure between alveoli and the outside world (considered at pressure 0):

0− Palv = RV̇ .

We finally obtain
RV̇ + ϕ(V ) = −P,

The assumption we shall make on ϕ are based on Fig. 3, which represents the reciprocal (in the pressure-volume
plane) functions of ϕL (dashed curve on the right), ϕC (dashed curve on the left), and ϕ (central bold curve).
On each of those curves, the slope corresponds to the local compliance, and its reciprocal to the elastance.

Before giving an explicit expression for ϕ, let us first note that, as function ϕ is increasing (which simply
express that each balloon of the model tends to get larger as the inner pressure increases), it blows up to +∞
(resp. −∞) as the volume goes to some maximal value VTLC corresponding to the Total Lung Capacity (resp.
some minimal value VRV corresponding to the Residual Volume). Function ϕ vanishes at a unique volume which
corresponds to static equilibrium corresponding to the end of a passive expiration. According to physiological
tradition, we shall denote this value by VFRC (Functional Residual Capacity). Note that the linear model which
is commonly used in practice, see [4], can be recovered in a natural way by writing, in the neighborhood of
VFRC,

ϕ(V ) ≃ ϕ(VFRC)
︸ ︷︷ ︸

=0

+ϕ′(VFRC)(V − VFRC),

which leads to
RV̇ + EV = EVFRC − P,

where E = ϕ′(VFRC) is the elastance at VFRC, and −EVFRC corresponds to the negative pleural pressure at rest
which balances elastic forces which tend to reduce the volume of air in the lung. To obtain a non-linear model
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which is compatible with the experimental data near VFRC, and reproduces the high stiffness of the system near
its extremal values VRV and VTLC, we propose the following construction: ϕ is built as a sum of two hyperbolic
functions, which are singular at VRV and VTLC, respectively, then translated to recover the right value for VFRC

which is commonly measured in medical practice, and then multiplied by a factor to obtain the right value for
the elastance near VFRC. More precisely, considering a patient for which VRV, VTLC, VFRC and elastance E near
VFRC are known, we define ϕ as

ϕ(V ) = λ

(
1

VTLC − V
−

1

V − VRV
−

(
1

VTLC − VFRC
−

1

VFRC − VRV

))

, (3)

with

λ = E

(
1

(VTLC − VFRC)2
+

1

(VFRC − VRV)2

)−1

Note that this approach makes it possible to recover the pleural pressure Ppl as

Ppl(t) = P (t) + ϕC(V (t)).

Remark 1.1. Let us note that, in practice, VTLC and VRV are measured for finite effort so that blow up is
actually considered for a maximal volume which is slightly larger than the actual VTLC, and a minimal volume
which is smaller than VRV. In our model, we assume that VTLC and VRV actually correspond to an infinite
respiratory system pressure, for the sake of simplicity. This modification does not significantly affect the aspect
of the elastic response for the regimes we considered (rest or exercise) but should be taken into account in a
more accurate way in the case of forced maneuvers, in the context of spirometry for instance.

2. Lumped oxygen transfer model

In [4], Ben Tal presents a hierarchy of lumped models of the human lungs for both the mechanical behavior
of the lung, considered as a single compartment container, and the description of gas exchange. In particular,
a large overview of the literature on the different phenomena involved in the gas exchange process is described.
In a more general context, [18, 21, 32, 47] and references therein describe at various levels of details the main
principles of pulmonary ventilation, pulmonary circulation, then physical principles of gas exchange such as
diffusion of oxygen and carbon dioxide through the respiratory membrane: the basic principles leading to the
oxygen uptake along the pulmonary capillary that are presented implicitly deal with an average lumped model,
although highlighting the evidence of spatial heterogeneity of the gas transfer.

2.1. The reaction-diffusion model

The simplest model for oxygen uptake in the blood is obtained as follows: the empty space in the lung is
considered a single balloon with volume V , with uniform oxygen concentration t 7→ c(t). The latter is expressed
as a dimensionless number in [0, 1], so that the volume of oxygen in the balloon is cV . During inspiration, the

rate of oxygen which enters the balloon is c0V̇ > 0, where c0 = 0.2 corresponds to fresh air. During expiration,
it becomes cV̇ < 0 as oxygen is rejected. Now denoting by Q the quantity of oxygen which diffuses onto the
blood, the evolution of the volume of oxygen in the balloon can be expressed

d

dt
(cV ) = H(V̇ )c0V̇ + (1 −H(V̇ ))cV̇ −Q,

where H( · ) is the Heaviside graph (characteristic function of R+). One obtains

ċ =
1

V

(

V̇ (c0 − c)H(V̇ )−Q
)

.
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To estimate Q, we introduce the transit time τb as the time that a red blood cell spends in the exchange
zone, and we consider, as in [38], that the following phenomenon happens every τb: a quantity Vc of venous
blood is brought instantaneously in the neighborhood of alveoli. It stays there during τb, allowing exchanges
to take place, then it is evacuated and replaced by the same amount of venous blood. The net oxygen transfer
is the total quantity after the cycle minus its initial value. We furthermore consider Bohr assumptions, see [5],
considering that the alveolar oxygen partial pressure PA is constant and uniform, the diffusing properties of
the blood–gas barrier are constant and uniform along the capillaries, and the chemical reaction of oxygen with
hemoglobin is instantaneous. According to this set of assumptions, the concentration γ of oxygen in the plasma
is considered to be uniform at any time over the whole capillary volume Vc. The total concentration of oxygen
contained in the considered volume of blood is γ plus a contribution due to the fact that some oxygen has
been captured by hemoglobin. This latter contribution writes 4Cf(γ), where C is the total concentration of
hemoglobin (in both native and combined forms), f(γ) ∈ [0, 1] quantifies the saturation of hemoglobin, and 4
is the maximal number of oxygen molecules that a molecule of hemoglobin may carry. According to various
sources, see e.g. [22], this saturation function corresponds to Hill’s curve, and can be expressed as

f(γ) =
γn

γ̃n + γn
, n = 2.5 , γ̃ ≃ 26 σmmHg. (4)

The fact that n is larger than 1 can be explained by the cooperative character of the complex reaction between
hemoglobin and oxygen, see e.g. [11], i.e. the fact that, once a first molecule of oxygen has been captured by
hemoglobin, others bind more easily. This explains the sigmoid character of this curve, but the actual value
has to be obtained experimentally by a curve fitting procedure, and it varies in the literature between n = 2.5
and n = 2.8 (it is 2.5 in [22], and 2.7 in [5]). Some authors, e.g. [38,48], favor an alternative expression, namely
the Kelman dissociation curve [23] which is built as the quotient between two fourth order polynomials, whose
coefficients are determined by curve fitting according to experimental data.

Note that f is very small and flat for small values of γ, and saturates toward 1 for large values. The stiff
transition between extreme situations takes place around γ̃ for oxygen concentration, which corresponds to a
partial pressure of 26 mmHg. As the partial pressure of the venous blood PV is about 40 mmHg, possibly
30 mmHg during exercise, all phenomena take place on the right-hand side of this transition value, in a zone
where the function is concave. Fig. 4, which corresponds to the Hill’s curve, see Eq. (4), plots the saturation
function γ 7→ f(γ). Venous blood enters the exchange zone with hemoglobin saturated at 75%.

The instantaneous flux of oxygen through the membrane by passive diffusion is proportional to the difference
of partial pressures (PA in the alveoli, and γ/σ in the blood, where σ is the solubility of oxygen in the plasma),
and the relation involves a crucial quantity Dm already mentioned in the introduction as diffusing capacity of
the alveolar-capillary membrane:

Dm(PA − γ/σ) =
Dm

σ
(γA − γ),

where γA = σPA is the oxygen concentration in the plasma which balances alveolar partial pressure. The
concentration of oxygen in the blood in both forms (free and captured by hemoglobin) writes γ + 4Cf(γ). If
we denote by Vc the capillary volume (i.e. volume of blood involved in the process that is under consideration),
the balance on total quantity of oxygen writes

Vc

d

dt
(γ + 4Cf(γ)) =

Dm

σ
(γA − γ) ,

which yields

(1 + 4Cf ′(γ)) γ̇ = κ(γA − γ) , with κ =
Dm

σVc

. (5)

If there were no hemoglobin, one would get an exponential relaxation of γ to γA, with a characteristic time 1/κ.
But f ′ has a Gaussian shape around γ̃, and the initial condition, corresponding to the concentration of oxygen
in the venous blood, is γinit > γ̃. Therefore this term tends to decrease γ̇ at the beginning, then it goes down
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Figure 4. Oxygen-hemoglobin dissociation curve: partial pressure of oxygen in the blood-
stream is about 40 mmHg for incoming blood at rest (1∗) and 30 mmHg for incoming blood at
exercise (1∗∗) ; it reaches 100 mmHg in outcoming blood (2).

to 0 as γ increases to γA, so that this nonlinear terms tends to stiffen the evolution from γinit to γA, compared
to a standard exponential relaxation.

Under standard conditions, the concentration of oxygen in venous blood is commonly considered to be
γV = 40 σmmHg, whereas γA (considered constant) is around 100 σ mmHg. As for the membrane diffusing
capacity Dm, we consider the value proposed in [4, 7]:

Dm ≃ 21mLmin−1mmHg−1 = 1.59 ×10−5mol s−1mmHg−1.

The capillary volume [4, 7] is Vc ≃ 70mL, γ̃ = 26 σmmHg [22]. The concentration of hemoglobin is

C ≃ 150 g L−1 =
150 g L−1

68000 g mol−1 = 2.2 10−3mol L−1.

Fig. 5 represents the solution to Eq. (5), that was obtained numerically, expressed in terms of partial pressure.
This explains why the partial pressure of oxygen in the blood during the 0.25 s that the process takes is usually
represented as linear. Note that the presence of hemoglobin capturing oxygen slows down the increase of γ
in the plasma. Indeed, the dimensionless quantity 1 + 4Cf ′(γ) is much bigger than 1 in the neighborhood
of γ ≃ 40 σ mmHg. Without hemoglobin, γ would balance with γA almost instantaneously. But, as already
mentioned, it drastically increases the quantity of oxygen in the blood when the balance is reached. Note that
West [47] and Hughes [21] explicitly address in a similar way diffusion limitation (failure to achieve complete
alveolar-end capillary equilibration) by highlighting comparison between rest regime and exercise regime.

Now let us focus on two aspects of the gas exchange: determination of the oxygen transfer rate, and diffusion
limitation of oxygen transfer.
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Oxygen transfer rate. Let us first notice that, assuming that the balance between partial pressures is attained
during the time τb that venous blood spends in contact with alveoli, the quantity of oxygen which has been
transferred does not depend on kinetics (it will be considered below). If we denote by Vc the capillary volume
expressing the total volume of blood in the neighborhood of the alveoli, the oxygen transfer rate can be derived
under the assumption that we already mentioned: a quantity Vc of venous blood is brought instantaneously
in the neighborhood of the alveoli, then stays there during τb, allowing exchanges to take place, and is finally
evacuated and replaced by the same amount of venous blood ; this phenomenon is periodically reproduced each
time period τb. In this context, the net oxygen transfer is the total quantity after the cycle minus its initial
value. As the initial concentration of oxygen in the plasma is σPV , and the final concentration is σPA (after a
time τb), and as the total concentration of oxygen in both free and combined forms at a given concentration in
the plasma γ is γ + 4Cf(γ), we obtain the following formula for the oxygen transfer rate:

Q =
Vc

τb

[

γ + 4Cf(γ)
]σPA

σPV

:=
Vc

τb
(σPA − σPV + 4C(f(σPA)− f(σPV ))) . (6)

Remark 2.1. As pointed out in [43], the amount of oxygen carried by the plasma may reach about 10% of the
total quantity when pure oxygen is breathed. Yet, under standard conditions, it is negligible1, meaning that γ
is small in front of 4Cf(γ), and the simpler expression

Q ≃ 4C
Vc

τb
(f(σPA)− f(σPV )) ,

may be used.

1Indeed, the concentration of oxygen potentially captured by hemoglobin is about 4 × 2.2 ≃ 9 mmol L−1, whereas the concen-
tration in the plasma which balances alveolar partial pressure is 104σmmHg = 0.15mmol L−1 (about 60 times smaller).
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This simple model makes it possible to recover, without tuning up any parameter, the order of magnitude
of the oxygen transfer rate at rest: using Vc = 70 mL, τb = 0.75 s, PA = 100 mmHg, P 0

c = 40 mmHg,
σ = 1.4 10−6 mol L−1 mmHg−1 and C = 2.2 10−3mol L−1, one obtains

Q = 1.8 10−4mol s−1 = 243 mL min−1,

which is accordance with physiological observations (about 250 mL min−1) that can be found in the litera-
ture [18, 43, 45].

Diffusion limitation on oxygen transfer. The estimate proposed previously was based on the assumption
that balance between partial pressures is achieved during the time that blood spends in the neighborhood of
alveoli. This assumption has some robustness: under normal conditions, at rest, the time needed to realize this
balance is about the third of the available time τb = 0.75 s (see Fig. 5). Yet, this fact might be invalidated in
some situations, for example:

(1) if Dm is reduced (e.g. in case of emphysema), the process is slowed down, and the time necessary to
achieve balance might be larger than τb (see the dashed line in Fig. 5, which is obtained by reducing
Dm by a factor 4) ;

(2) if τb is reduced significantly (e.g. during exercise), it may drop below the time necessary to achieve
balance ;

(3) in the same spirit, if Vc is larger, the quantity of oxygen needed to achieve balance is larger, and it
increases the duration of the process.

The model has to be extended to account for the fact that balance might not be achieved during the available
time τb. It is done simply by solving Eq. (5) during τb, starting from an initial value set at the concentration
of oxygen in the venous blood, namely σPV . If we denote by γ⋆

A the value of γ at time τb, the corresponding
oxygen transfer rate is

Q =
Vc

τb

[

γ + 4Cf(γ)
]γ⋆

A

σPV

:=
Vc

τb
(γ⋆

A − σPV + 4C(f(γ⋆
A)− f(σPV ))) .

Note that one does not have to decide a priori whether we are in the standard situation considered previously
(when there is enough time to achieve balance) or not. Indeed, if the speed of the diffusion process is sufficient
to achieve balance during τb, we shall obtain γ⋆

A very close to γA = σPA, and we are brought back to the simple
model.

2.2. Global model

The coupling between alveolar and plasma compartments is completed by expressing the partial pressure of
oxygen in the alveoli as cP atm, where

P atm = Patm − PH2O = 760 −47 =713 mmHg (= 950 hPa)

is the reduced atmospheric pressure. Indeed, as the alveolar air is saturated in water vapor, the actual partial
pressure associated to oxygen at a given concentration c is reduced: this saturated vapor pressure of 47 mmHg,
see e.g. [4], has to be subtracted to standard atmospheric pressure.
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The global model for oxygen transfer finally reads







RV̇ + ϕ(V ) = −P (t)

ċ =
1

V

(

V̇ (c0 − c)H(V̇ )−Q
)

Q =
Vc

τb
(γ⋆

A − σPV + 4C(f(γ⋆
A)− f(σPV )))

γ⋆
A = F (Dm, Vc, PV , τb, γA)

(7)

where function F , which computes the oxygen concentration in plasma at the end of the exchange phase, maps
onto the solution at τb of the following ordinary differential equation:

γ̇ =
κ

(1 + 4Cf ′(γ))
(γA − γ) , γ(0) = σP 0

c , with κ =
Dm

σVc

, γA = σcP atm.

Note that, as previously mentioned, under normal conditions (healthy person at rest), the kinetics of diffusion
does not play any role, and it simply holds

γ⋆
A = F (Dm, Vc, PV , τb, γA) ≃ γA = σcP atm,

but the general form has to be kept if one aims at modeling pathological or extreme situations (drastic reduction
of Dm, reduction of τb during exercise, etc.). The global system involving diffusion limitation contains implicit
assumptions on the different time scales. In particular, it is considered that actual oxygen transfer occurs at
a time scale much smaller than time scales corresponding to variations of c (concentration of oxygen in the
lung). In other words, the reaction phenomenon expressed by function F is considered as instantaneous with
respect to the first two equations. In practical computations, for a given regime, the relationship between the
alveolar concentration and the concentration in plasma at the end of the exchange phase, namely γA 7−→ γ⋆

A,
may be tabulated. The previous set of equations can be seen as a controlled system: the control variable is
t 7→ P (t), which corresponds to the action of the diaphragm on the lung. At rest, P (t) < 0 during inspiration
and P (t) = 0 during expiration, which is passive. Actually, the control variable also includes the action of the
abdominal muscles during forced expiration, in which case P (t) > 0. The output of the process, which can be

considered as a utility function, is the mean oxygen transfer rate, usually denoted by V̇O2
, corresponding to the

average quantity of oxygen (expressed in volume at standard temperature and pressure) transferred into the
bloodstream per minute. As we are mainly interested here in the respiration process at a given regime, we shall
consider that P is T -periodic (with T ≃ 5 s at rest, T ≃ 3 s at exercise), so that

V̇O2
=

1

T

∫ τ+T

τ

Q(t) dt,

where we assume that the periodic regime has been attained: τ is chosen sufficiently large in practical compu-
tations. The output function on which we shall focus in the section dedicated to numerical experiments is built
as follows: consider T > 0 a time period, P a T -periodic function, we will investigate the behavior of V̇O2

as a
function of all the parameters:

V̇O2
:= Λ(ϕ,R, T, P,Dm, Vc, PV , τb, C, Patm) (8)

which is obtained by considering the periodic solution of System (7).
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3. One-dimensional model for distributed oxygen transfer

To account for non-uniformity of the oxygen distribution in the lung, we introduce here a one-dimensional
PDE model based on the longitudinal dimension x, which corresponds to the distance from the entrance of the
respiratory tract. To our knowledge, Paiva & Engel [31] were the first ones to propose a one-dimensional PDE
in order to investigate the heterogeneity of the gas distribution during the respiratory process: an equation of
convection and diffusion for oxygen concentration is proposed although the model contains strong limitations:
there is no source term describing the oxygen uptake (oxygen concentration is prescribed in the end of the acinar
pathway) and the mechanical process is not considered per se (a sinusoidal volume is prescribed). The approach
was extended in [16] to account for oxygen transfer. A similar approach was proposed in [38], including an
intensive study of acinar gas mixing and gas exchange from both qualitative and quantitative points of view.
See also [41] for a convective diffusive one-dimensional PDE to model the mixing of a marker gas in the lung,
and [25] for the description of spirometric maneuvers for a model integrating lung mechanics, pulmonary blood
flow, and gas exchange, by means of fitting procedures. Yet the equations which we obtain here present
important differences: the (negative) source term describing the gas exchange along the path length in the
acinus is estimated according to the nonlinear model presented in the previous section, and the set of equations
itself is derived in a different way, so that the obtained equation is fully conservative (unlike the models proposed
in [16,38]), thus providing consistent properties from a physical point of view: maximum principle and Jensen’s
inequality.

3.1. The PDE model

The core of the approach relies on four geometric quantities which can be defined at every level along the
one-dimensional representation of the tree (see [31, 39, 43, 45]):

(1) Mean length of each generation. The path length, from mouth to the end of the terminal generation, is
built upon these data.

(2) Cross section, denoted by s: it corresponds to the total cross section available for longitudinal flux.
Near the entrance, before the first bifurcation, it is simply the cross section of the trachea, whereas at
generation n (after n bifurcation), it is set at 2n times the cross section of a single branch. This variable
is well-documented in the literature.

(3) Lineic volume Ṽ . It corresponds to the volume of the lung per unit longitudinal length, including the
volume of all alveoli connected to the branches at the considered level. Note that for the conductive
part, it is equal to the previous variable s, whereas it may be much larger as soon as one enters the
acinar zone in which branches are connected to alveoli, beyond the 16th or 17th generation.

(4) Lineic exchange surface Σ̃. It corresponds to the area of the surface of the alveoli available for gas
exchange per unit length. It is homogeneous to a length. It is 0 for the conductive part, and starts to
increase as soon as one enters the respiratory zone. The total alveolar surface, which is about 130m2,
is distributed over the generations in proportion to the bronchial surface, according to [17, 45].

Figs. 6 and 7 illustrate the one-dimensional representation on the lung, based on the previous geometric
considerations. If one denotes by L the “length” of the lung, i.e. the distance along the tree between the
entrance of the trachea and the last generation, x runs over the interval [0, L]. The quantity defined above are
such that

∫ L

0

Ṽ (x, t) dx = V (t),

where V (t) is the total volume of air contained in the lungs, and

∫ L

0

Σ̃(x, t) dx =

∫ L

xr

Σ̃(x, t) dx = Σ(t),
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Figure 7. Lineic representation of the lung tree
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where xr corresponds to the separation between the conductive part and the respiratory part (generation 15 or
16), and Σ is the total exchange surface. Denoting by u the longitudinal velocity of the air along the tree, the
equations are obtained by expressing the conservation of air volume, considered as incompressible, and local
balance of oxygen:







∂t(Ṽ ) + ∂x(su) = 0 ,

∂t(Ṽ c) + ∂x (scu)−DO2
∂x(s∂xc) = −

Σ̃

Σ
q(c),

(9)

where q(c) describes the oxygen transfer into the blood, following the approach developped in the lumped model
presented in the previous section (we disregard here diffusion limitation to simplify the presentation, but it could
be accounted for, as in the lumped model)

q(c) =
Vc

τb

(
σcP atm − σPV + 4C(f(σcP atm)− f(σPV ))

)
. (10)

Note the particular form of the transport equation (first equation of System (9)). As alveoli can be seen as
air reservoirs attached to the ducts, the corresponding volume per unit length is involved in the first term of
the transport equation, but the transport in the longitudinal direction is based on the sole duct section (lineic

volume of branches), which explains that both Ṽ and s appear in this equation. It is crucial to differentiate

those two lineic volumes, as they are very different in the respiratory zone (Ṽ ≫ s near the end of the tree).
In the context which we consider here, this transport equation is not actually solved in a standard manner,
but it is used to build the instantaneous longitudinal velocity field u. Indeed, as detailed in the next section,
s will be considered as constant in time and depending on the space variable only, although we could account
within this framework to variations of the duct cross sections. The variations of the total volume are computed
according to the lumped mechanical model presented in Section 1, and this volume is then distributed along
the acinar zone according to the data given in [43]. The transport equation is then used to recover the field u
which ensures volume conservation and oxygen concentration can be determined by solving the second equation
of System (9).

Remark 3.1. A key assumption under this approach is that the concentration of oxygen is considered uniform
in the transverse direction, i.e. it only depends on the distance from the root of the tree. This assumption
is actually twofold. As already mentioned, it restricts this approach to the regular situation, where geometric
characteristics together with dynamics variables depends on this longitudinal dimension only. It also relies on
the fact that, at the level of a single branch, the concentration is uniform in each section, up to the alveoli which
might be attached to the branch at the considered level. This latter assumption can be justified if one considers
the diffusion coefficient of oxygen in the air, which is DO2

= 2 10−5m2 s−1. Considering a transverse direction
of the order h = 1 mm, it gives a characteristic time of h2/DO2

= 0.05 s, so that passive diffusion ensures quasi
instantaneous local uniformity in the transverse direction.

Balance of oxygen and link with the lumped model. Global balance of oxygen can be obtained straight-
forwardly by integrating the second equation of System (9) over [0, L]:

d

dt

(
∫ L

0

(Sc)(x, t) dx

)

= s(0, t)u(0, t)c(0, t)−DO2
s(0, t)∂xc(0, t) (Flux at 0)

−s(L, t)u(L, t)c(L, t) +DO2
s(L, t)∂xc(L, t) (Flux at L (= 0))

+

∫ L

0

Σ̃(x, t)

Σ(t)
q(c(x, t)) dx (Oxygen transfer rate Q(t)) .

(11)
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Let us first remark that the diffusive part of the flux at 0 is likely to be much smaller than its advective
counterpart as the concentration is fairly uniform in this zone. As for the advective term suc|x=0, note that

su = V̇ , so that this term can be related to the considerations we presented at the beginning of section 2: we
actually considered an inner domain at uniform concentration c, an outside world at concentration c0, and we
followed an upwind principle to account for this source term. A first difference with the lumped model can be
pointed out here: as the actual concentration is not constant, and as it is likely to be always maximal at 0, the
lumped model underestimates the advective losses of oxygen during expiration.

Remark 3.2 (Maximum principle). The oxygen transfer rate (last term in (11)) can be interpreted as the

expectancy of q(c) according to the probability measure Σ̃(x, t) dx/Σ(t) on [0, L]. Note that, as q is increasing,
we have

Q ∈ [q(cmin), q(cmax)].

Remark 3.3 (Jensen’s inequality). As c 7→ q(c) is concave in the zone of interest, Jensen’s inequality gives

Q(t) ≤ q(c(t)) , with c(t) =

∫ L

0

Σ̃(x, t)

Σ(t)
c(x, t) dx,

c being the instantaneous mean value of the concentration of oxygen. Note also that this inequality is strict as
soon as the concentration is not constant, and this latter remark sheds a light on another difference with the
lumped model: the latter is based on the fact that the oxygen transfer rate can be estimated as q(c), where c is
the mean value of c overall the lung. This approach would be exact if q was affine but, as it is strictly concave
in the zone of interest, this expression (on which the lumped model is based) systematically overestimates this
transfer.

3.2. Time and space discretization scheme

In practice, computations are performed as follows. Consider the lung volume at rest VFRC. Then, the
geometric data of a 24-generation lung lead to the definition of piecewise constant functions αV : (0, L) → R

defined by

αV (x) =
V g(x)

Lg(x)VFRC
,

where V g(x) and Lg(x) respectively denote the volume and path length of generation g such that x is localized
in generation g. Note that αV satisfies, by construction,

∫ L

0

αV (x) dx = 1.

Then,
Ṽ (x, t) := αV (x)V (t),

where V (t) denotes the lung volume at time t. Thus, Ṽ defines the lineic volume of the lung. A similar procedure

is used to define the lineic exchange surface Σ̃ based on the knowledge of the exchange surface Σ.
We consider a finite volume discretization. Assume that (ci)

n
i=1...N is the discretized concentration on the

cells at time tn. At first stage, we solve the mechanic problem which provides V n+1 and V̇ n+1, namely the
volume and the variation of volume of the lung at time tn+1. We define the lineic variation of volume (∂tṼ )n+1

i

which is the lineic version of V̇ n+1. We also define Ṽ n+1
i and sn+1

i as the lineic versions of the lung volume

V n+1(= V n+1
a + V n+1

b ) and bronchial volume V n+1
b respectively. Then, we determine the air velocity un+1

i in
the airway with an upwinded discretization of the transport equation:

(

(su)i − (su)n+1
i−1

∆x

)

1[V̇ n+1>0] +

(

(su)n+1
i+1 − (su)i

∆x

)

1[V̇ n+1<0] = −(∂tṼ )n+1
i ,
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so that the average flow in cells can be determined by supplementing the previous set of equations with the
boundary condition (su)n+1

1 = V̇ n+1 at inspiration and (su)n+1
N = 0 at expiration. At second stage, we write

the discretized equation on oxygen conservation under the form:

(Ṽ c)n+1
i +

∆t

∆x

(

Φi+ 1
2
− Φi− 1

2

)

= (Ṽ c)ni −∆t
Σ̃

Σ
q(cn),

where Φi± 1
2
is an implicit approximation of the total flux (composed of an advective contribution and a diffusive

one). Here, the advective flux is upwinded (as in the computation of the air velocity) and the numerical flux is
thus defined as

Φi+ 1
2
:= (su)n+1

i cn+1
i 1[V̇ n+1>0] + (su)n+1

i+1 cn+1
i+1 1[V̇ n+1<0] −DO2

sn+1
i+ 1

2

cn+1
i+1 − cn+1

i

∆x
.

The boundary conditions depend on the regime: at inspiration, the value of the concentration is prescribed
(cn+1

1 = c0, where c0 is the concentration of fresh air) while, at expiration, a free flux condition is imposed ; in
both cases, at the end of the lung tree, the flux ΦN+ 1

2
is zero, meaning that the end of the tree behaves like an

insulation boundary (note that the air velocity is already taken to 0).
Although classical, this three-point scheme preserves important properties. In particular, constant states (for

the concentration) are preserved, due to the fact that the advective flux exactly matches the flux of the airflow
in that particular case. As a consequence, the scheme preserves the maximum principle. This is an important
feature that may be put in default if the two schemes do not coincide, because the variations of section s are
large. Note that the source term is treated in an explicit way.

4. Numerical experiments, sensitivity analysis

4.1. Parameters

We shall consider the following set of assumptions and parameters corresponding to the standard situation
of an healthy person at rest, see Table 1.

During exercise, some parameters have to be modified. In particular, because of the increase of the heart
beat, the arterial time period τb is set to 0.25 s ; blood partial pressure in oxygen is 30 mmHg ; the mean
oxygen transfer rate reaches 2.5 L min−1. Capillary volume is multiplied by a factor 3, and so is the membrane
diffusing capacity. Moreover, the external pressure P , accounting for the effort of the diaphragm (and possibly
muscles of the abdomen during forced expiration), is T -periodic, with

P (t) =

{
Pinsp. < 0, if t ∈ [0, ηT [,
Pexp. ≥ 0, if t ∈ [ηT, T [.

At rest, we use T = 5 s, η = 0.35, Pinsp. = −2 cmH2O and Pexp. = 0 cmH2O since expiration is passive ; during
exercise, we use T = 3 s, η = 0.50, Pinsp. = −5 cmH2O and Pexp. = +3 cmH2O.

4.2. Simulation results for the lumped model

Numerical results have been performed with this set of parameters in the lumped model. At rest or exercise,
observable data such as volume variation, flow, mean alveolar concentration and mean oxygen transfer are
reproduced qualitatively and quantitatively. In particular, the model captures the correct magnitude of the
mean oxygen transfer rate: 250 mL min−1 at rest, and 2.5 L min−1 at exercise, in accordance with the values
found in the literature, see e.g. [43], p. 284.
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Parameters Ref.

Membrane diffusing capacity Dm 21 mLmin−1mmHg−1 [4, 18]
Capillary volume Vc 70 mL [4, 18, 47]
Elastance E0 3.5 cmH2OL−1 [3, 4, 18]
Resistance R0 2.0 cmH2OsL−1 [4, 18]
Arterial time period τb 0.75 s [4, 22, 47]
Reduced atmospheric pressure Patm − PH2O 713 mmHg [4, 18]
Partial pressure of oxygen in the venous blood PV 40 mmHg [18, 47]
Total lung capacity VTLC 6.00 L [18]
Residual volume VRV 1.20 L [18, 24]
Functional residual capacity VFRC 3.00 L [18, 24, 39]
Concentration of hemoglobin C 2.2 10−3 mol L−1 [4, 19]

Solubility of oxygen in plasma σ 1.4 10−6 mol−1 L−1 mmHg−1 [4, 22]

Observable quantities Ref.

Tidal volume VT 0.50 L [39, 47]

Flux V̇ ±0.50 L s−1 [47]
Alveolar partial pressure of oxygen PA 100 mmHg [4, 18, 24, 47]

Mean oxygen transfer rate V̇O2
0.25 L min−1 [18, 45]

Table 1. Parameters of the models: at rest
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Figure 8. Lumped model: volume and oxygen concentration at rest (l) and during exercise (r).
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Parameter at rest at exercise

Membrane diffusing capacity Dm 0.00 +0.35
Elastance E −0.07 −0.26
Resistance R at 2 cmH2O L−1 −0.01 −0.07
Resistance R at 4 cmH2O L−1 −0.04 −0.28
Resistance R at 8 cmH2O L−1 −0.56 −3.18
Arterial time period τb −0.93 −0.44
Capillary volume Vc +0.92 +0.65

Table 2. Sensitivity of the oxygen transfer rate with respect to the parameters of the model

In this section we are interested in quantifying the dependence of the utility function Λ (see (8)) upon its
parameters. Considering Λ as a function of parameters {αi}i, we define the sensitivity with respect to αi as

Sαi
:=

∂Λ

∂αi

αi

Λ
.

This dimensionless quantity, quantifies the relative variation of Λ with respect to the relative variations of αi.
Table 2 presents the sensitivity of oxygen transfer rate, in the framework of our model, with respect to some
relevant parameters. Computations have been performed with a standard finite difference approximation.

The most striking feature of these results is the zero sensibility to Dm, under normal conditions. It is
a direct consequence of the fact, already mentioned, that partial pressures balance in a time which is much
(about three times) shorter than τb. The system is highly robust from this standpoint, as Dm can be reduced
threefold without any significant effect on oxygen transfer. Note though that this robustness is typical of resting
conditions. When at exercise, with a higher heart frequency (τb close to 0.25 s), this “security” zone does no
longer exist, and a decrease of membrane diffusion capacity shall have an immediate effect on oxygen transfer,
as suggested in the first line of Table 2.

Another source of degeneracy lies in the flatness of Hills’s curve in the neighborhood of the concentration
which balances alveolar partial pressure. Disregarding here diffusion limitation and considering that γ⋆

A = γA,
the transfer rate

Q =
Vc

τb

[

γ + 4Cf(γ)
]γ⋆

A

σPV

:=
Vc

τb
(γ⋆

A − σPV + 4C(f(γ⋆
A)− f(σPV )))

depends on the saturation function f evaluated at at γA = σcP atm. As illustrated by Fig. 4, this value is almost
constant when oxygen alveolar partial pressure is larger than, say, 70 mmHg, which corresponds to an alveolar
concentration of 70/713 ≃ 10%. The oxygen transfer rate is quite insensitive to the mean alveolar concentration
of oxygen as far as it remains above 10%. This explains why the sensitivity to mechanical parameters in the
neighborhood of the standard situation is weak. For example, increasing the elastance will mechanically reduce
the tidal volume, thus the renewing of oxygen by ventilation, and it will lead to a decrease in the alveolar
concentration. But as far as this value (which is about 15% in standard conditions) remains above 10%, it will
not affect the oxygen transfer rate in a significant manner. Similarly, increasing slightly the resistance will not
affect the oxygen transfer rate. Yet, if this increase of resistance is large enough to really deteriorate the renewal
of alveolar oxygen, and reduces it to values smaller than 10%, the sensitivity becomes more important, as it
appears in Table 2. For example, the sensitivity with respect to resistance at R = 8 cmH2O L−1 (about 4 times
its standard value) is already 0.5, whereas it is close to 0 at 2 cmH2O L−1. The importance of this threshold
value around 70 or 75 mmHg for the arterial partial pressure of oxygen, below which a strong deterioration
in oxygen transfer is observed, is illustrated in [6]: noninvasive ventilation is considered as successful when it
increases the arterial oxygen partial pressure from around 65 mmHg to 80 mmHg.



20

4.3. Simulation results for the one-dimensional model

We present here some numerical experiments pertaining to the one-dimensional model. In particular we
quantify the heterogeneity of oxygen distribution over the respiratory tract, we investigate what is the contri-
bution to the different acinar generations in the oxygen transfer rate, and we finally illustrate how this model
allows to quantify the relative importance of advection and diffusion processes, depending on the generations
and the regime which is considered (rest or exercise).

Oxygen heterogeneity. The one-dimensional model leads to values for oxygen transfer rate which are es-
sentially the same as the simpler lumped model: 250 mL min−1 at rest and up to 2.5 L min−1 at exercise.
Additionally, it provides valuable information on the manner oxygen is distributed along the tract. Fig. 9 (top)
represents, for each generation, the local mean concentration of oxygen, together with extremal values during the
ventilation cycle. The mean concentration is quite uniform in the conducting part of the tree up to generation
15, then drops down to a smaller value as it enters the respiratory zone, and remains quasi uniform and constant
in time in the last generations. Note that the value of 14% that is obtained in this zone, where most part of
transfer takes place, corresponds to a partial pressure of 0.14×713 mmHg ≃ 100 mmHg, in accordance with the
available literature, see [4,18,24,47]. Fig. 9 (bottom) details the different contributions to oxygen transfer rate
of the different generations. In particular, the interest of the one-dimensional model is to be able to capture
the well-documented value of the average oxygen concentration in alveoli, which is about 14%, whereas the
lumped model tends to overestimate this average value. As expected, most part of the exchange area lies in
the 2 last generations so that the transfer is essentially concentrated near the very end of the tree and oxygen
transfer outside peripheral acinar regions is mostly negligible. From a qualitative point of view, our results are
close to the ones described in [38] in the sense that diffusional screening [12,14,34] does not significantly impair
acinar gas exchange function. In particular, oxygen transfer does not play a significant role in the decrease in
partial pressure of oxygen along the path length. But unlike previous models, our criteria selection depends not
only on the heterogeneity of the oxygen concentration c along the path length, but also on a quantitative study
of the oxygen transfer that may include nonlinear effects such as diffusion limitation. The same experiment
has been led under exercise, see Fig. 9: the variations of oxygen concentration are larger than under resting
conditions ; in terms of oxygen transfer, there is no significant difference with the rest regime, as the oxygen
flux is nearly constant in each generation, with the notable exception of the last one: the maximal value and the
mean value are nearly equal, meaning that the minimal value corresponding to the end expiration is attained
during a characteristic time which is negligible.

Fig. 11 and 12 show the temporal variation in oxygen concentration at the trachea, acinus entrance, and acinus
periphery over two steady-state breaths. They appear to be in good agreement with the results presented in [38]:
the sharp transitions at the trachea at end inspiration and end expiration are due to the square-wave breathing
function t 7→ P (t). At the acinus entrance, the oxygen concentration increases after a delay following the start
of an inspiration as fresh air reaches the acinus through the deadspace. The oxygen concentration in the acinus
periphery only varies a little.

Transition between advection and diffusion. In [39] Sznitman investigates, by means of local estimates
of the Péclet number, the relative importance of convection and diffusion in the transport of oxygen in the
pulmonary acinus. In order to focus on the relative importance of advective and diffusive contributions in the
gas transfer process along the path length, we propose the following approach. At any location x ∈ [0, L], the
instantaneous flux of oxygen through x can be decomposed onto two contributions

Φ(x, t) = (suc)(x, t)
︸ ︷︷ ︸

advective

− (DO2
s∂xc)(x, t)

︸ ︷︷ ︸

diffusive

= Φa(x, t) + Φd(x, t).
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Figure 9. One-dimensional model: average concentration and oxygen transfer rate per gener-
ation at rest. Circles indicate the mean value over a period, whereas upper (resp. lower) bars
indicate the maximal (resp. minimal) value of the concentration during the period.
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Figure 10. One-dimensional model: average concentration and oxygen transfer rate per gen-
eration during exercise. Circles indicate the mean value over a period, whereas upper (resp.
lower) bars indicate the maximal (resp. minimal) value of the concentration during the period.
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Figure 11. At rest: temporal variation of oxygen concentration over 2 breaths, at the trachea,
acinus entrance, acinus periphery.
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Figure 12. At exercise: temporal variation of oxygen concentration over 2 breaths at the
trachea, acinus entrance, acinus periphery.
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Figure 13. Transition between advection and diffusion in the acinus at rest (t) and during
exercise (b).

The mean flux over the period T

Φ(x) =
1

T

∫ T

0

Φ(x, t) dt =
1

T

∫ T

0

(suc)(x, t) dt−
1

T

∫ T

0

(DO2
s∂xc)(x, t) dt = Φa(x) + Φd(x)

corresponds to the quantity of oxygen which has been transferred to the blood in the zone which corresponds
to interval [x, L]. It is then natural to define

θa(x) =
Φa(x)

Φa(x) + Φd(x)
,

as an indicator of the importance of advection at x, whereas θd = Φd/(Φa +Φd) = 1− θa pertains to diffusion.
In this way, θa + θd ≡ 1 and we expect that θa is close to 1 in the upper part of the bronchial tree (i. e. in
the non-alveolated area) whereas θd becomes predominant in the end of the bronchial tree (in particular, in the
last generation), with a transition that occurs in the acinus. Fig. 13 highlights this behavior: the transition
between advection and diffusion is localized at generation 18 at rest, and generation 21 at exercise: muscular
efforts leading to an increase of the flow during exercise have a direct impact over the advective flux.

5. Discussion

5.1. Main results

Diffusion limitation in extreme maneuvers. The diffusing capacity of the alveolar-capillary membrane
does not affect the oxygen transfer rate in the normal regime but, as it decreases (e.g. because of emphysema)
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below a critical value, it becomes a significant parameter: this phenomenon explicitly results from the diffusion
limitation. In this way, at rest or exercise, the oxygen transfer is optimal in a standard situation as blood
that goes out of the capillaries is fully satured in oxygen ; but the oxygen transfer is much more sensitive to
parameters such as elastance or membrane diffusing capacity in a situation at exercise than at rest, because of
diffusion limitation combined with a set of physiological data which are closer to critical values at exercise than
at rest.

Acinar heterogeneity. A one-dimensional model has been derived, based on mass-flow conservative properties
in order to investigate the acinar heterogeneity in terms of oxygen concentration and oxygen transfer into the
blood. It has led us to investigate the diffusional screening phenomenon, i.e. the possibility that oxygen
transfer might be significantly affected by the fact that the peripheral exchange area participates poorly to
oxygen transfer at rest, thereby providing a natural reserve of transfer capacity for exercise condition. We do
not recover this effect in the regime we consider. In particular we show that, at rest, although the oxygen
concentration is slightly smaller in terminal alveoli, transfer mainly occurs in the acinar periphery, at rest and
at exercise.

5.2. Limitations of the model

Mechanical model. The mechanical model we considered is quite simple. We assumed in particular that the
resistance of the respiratory system is constant. In fact, bronchi have elastic walls and the lumen of the bronchi
are not constant during the ventilation, see e.g. [15, 30]. It is possible, in our model, to model nonlinear effects
of the resistance. Indeed, it is known that the resistance varies with the volume (it is roughly proportional
to the inverse of the volume): elementary calculus based on the Poiseuille law (see e.g. [29, 47]) together with
experimental studies (see e.g. [24], page 85) lead to consider that the conductance 1/R depends linearly on the
volume. It is then natural to assume

R := R(V ) =
VFRC

V
R0, (12)

where VFRC is the volume at static equilibrium (functional residual volume), andR0 the corresponding resistance.
This dependence might be very significant in extreme situation (e.g. spirometry), yet it does not affect much
the mechanical behavior in the situation we considered. Besides, in terms of oxygen transfer, the significant
variable is the tidal volume (it conditions the rate of renewal), and this tidal volume can be checked to be almost
insensitive to the resistance, under normal conditions.

Lumped transfer model. The oxygen transfer model relies on quantities which are well documented in the
literature: capillary volume Vc, transit time τb, membrane diffusion capacity Dm, and oxygen partial pressure
in the venous blood PV . We did not investigate the effect of capillary closing on oxygen transfer onto the blood,
and how it may affect the sense given to the capillary volume Vc, which was assumed here to be constant. The
transit time τb plays a critical role in the model, it carries the information pertaining to the way blood circulates
in capillaries, in the neighborhood of alveoli. Weibel [43] estimates that, at rest, an erythrocyte spends less than
one second on the alveolar capillary, and the reference value of 0.75 at which we set τb is widely documented in
the literature. During strenuous exercise, this transit time is considered to be reduced to the third of its value
at rest (a value of 0.3 is given in Weibel [43] during strenuous exercise). Like most authors, we considered here
that a decrease of the heart beat period (during exercise) induces a proportional decrease of τb. Note those
quantities are considered as intrinsically different in [9], but our model, in its present form, does not allow such
a distinction. All the parameters of the transfer model are supposed to be known and constant, for a given
regime (rest or exercise).

Transverse heterogeneity. A first source of heterogeneity lies in the fact that the actual lung is not perfectly
symmetric. It is known in particular that when a branch separates onto two subbranches, the dimensions of
the daughter branches are unbalanced, see [27]. Another source of non-uniformity in the transverse direction
is related to inertial effects. It was pointed out in [28] that, because of inertia, the Poiseuille velocity profile is
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deformed in the first generations, which might induce heterogeneity in fluxes, depending on bifurcation angles.
Note though that this effect is restricted to the first generations, where inertial effect are most significant.
Beyond these deterministic sources of dissymmetry, geometrical data have some intrinsic inter- and intra-
subject variability. In particular, for terminal bronchioles (between generation 12 and 15), lengths and diameters
variations go up to 60%, as reported in [37]. For all those reasons, advective transfer of air in the respiratory
tract is likely to deviate from the perfect symmetry that we assumed to build the one-dimensional model.
Note that the incidence of neglecting this transverse heterogeneity upon oxygen transfer can be estimated.
Firstly, the one-dimensional model is likely to over-estimate the oxygen transfer rate (because of the concavity
of the saturation function, see Remark 3.3), compared to a more sophisticated model which would account
for transverse heterogeneity. Secondly, according to Remark 3.3, the oxygen transfer rate is interpreted as the
expectancy (or mean value) of q(c) according to some probability measure. This principle is quite general: a
more sophisticated model, accounting for transverse heterogeneity, would lead to a similar property, with a
different measure. As a consequence, whenever concentration c ranges in a zone where q is almost flat, the
oxygen transfer rate is quite insensitive to heterogeneities in oxygen concentrations. The latter remark concerns
normal conditions (with an oxygen alveolar partial pressure larger than 90 mmHg, so that the saturation
function is almost flat). In critical situations, for example for breathing in altitude, smaller values of alveolar
oxygen partial pressure could be obtained, attaining zones where the saturation function is stiffer. In the
latter situation, accounting for transverse heterogeneities would have significant effects on the computed oxygen
transfer. Note also that, if the assumption of transverse homogeneity is ruled out, the transition between
advection and diffusion could not be properly defined for the global tree (as it is illustrated by Fig. 13), but
may depend upon the subtree in which it is estimated.

Localized impairing. Let us add that the one-dimensional model does not allow, in its present form, to
account for a localized impairing of the alveolar-capillary membrane, or to large heterogeneities in terms of
perfusion. As an example, panacinar emphysema is likely to affect the acini belonging to the lower lobes of
the lung, and an accurate description of this type of situation necessitates a more sophisticated transfer model,
possibly built as a combination of interconnected one-dimensional models, coupled to a full mechanical model
to account for heterogeneities in the local compliance of the lung tissues.

Ventilation-perfusion ratio. Other types of heterogeneities have not been taken into account in this article:

• regional differences in ventilation: it is well-known [47] that the lower regions of the lung are better
ventilated than the upper regions, because of the effects of gravity on the lung ;

• regional differences in perfusion: blood flow is highly variable within the human lung, due to the
difference between the arterial pressure and the alveolar pressure, and may be affected by change of
posture and exercise.

Thus, the different perfusion zones and the differences in ventilation have not been considered, although al-
teration (increase or decrease) of the ventilation-perfusion ratio may have a strong impact on the overall gas
exchange efficiency. It is well-known [47] that the ventilation-perfusion ratio decreases down the lung. The
integration of such heterogeneities shall be considered as major improvements of our model.

Conclusion

We presented an integrated model for oxygen transfer onto the blood, which relies solely on quantities with
a clear physiological meaning. The lumped version of the model allows to recover well-documented orders of
magnitude for oxygen transfer rate, in different regimes, and reproduces possible diffusion limitation when both
extreme regimes and membrane impairing are considered. The one-dimensional version of the model allows
to investigate the effects of longitudinal heterogeneity of oxygen concentration upon the mean transfer rate.
Oxygen concentration is found to be smaller in the last generations of the acini, without affecting significantly
oxygen transfer: most part of it is realized in the periphery, in all the regimes that we considered.
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