Rates of convergence in the strong invariance principle for non adapted sequences. Application to ergodic automorphisms of the torus

Abstract : In this paper, we give rates of convergence in the strong invariance principle for non-adapted sequences satisfying projective criteria. The results apply to the iterates of ergodic automorphisms T of the d-dimensional torus, even in the non hyperbolic case. In this context, we give a large class of unbounded functions f for which the partial sum of f o T +... + f o T^n satisfies a strong invariance principle with an explicit rate of convergence.
Type de document :
Communication dans un congrès
High dimensional probability 6, Oct 2011, Banff, Canada. 66, pp.113-138, 2013, High dimensional probability 6, Progr. Probab
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00713797
Contributeur : Jérôme Dedecker <>
Soumis le : lundi 2 juillet 2012 - 16:22:31
Dernière modification le : vendredi 13 janvier 2017 - 15:50:46
Document(s) archivé(s) le : mercredi 3 octobre 2012 - 03:18:37

Fichier

torusrevised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00713797, version 1

Citation

Jérôme Dedecker, Florence Merlevède, Françoise Pene. Rates of convergence in the strong invariance principle for non adapted sequences. Application to ergodic automorphisms of the torus. High dimensional probability 6, Oct 2011, Banff, Canada. 66, pp.113-138, 2013, High dimensional probability 6, Progr. Probab. <hal-00713797>

Partager

Métriques

Consultations de
la notice

196

Téléchargements du document

105