Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives

Abstract : A time-domain numerical modeling of Biot poroelastic waves is presented. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce order 1/2 shifted fractional derivatives involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. Thanks to the dispersion relation, the coefficients in the diffusive representation are obtained by performing an optimization procedure in the frequency range of interest. A splitting strategy is then applied numerically: the propagative part of Biot-JKD equations is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. Comparisons with analytical solutions show the efficiency and the accuracy of this approach.
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger
Contributeur : Bruno Lombard <>
Soumis le : mardi 11 décembre 2012 - 16:24:41
Dernière modification le : mardi 22 mars 2016 - 01:26:09
Document(s) archivé(s) le : mardi 12 mars 2013 - 10:25:35


Fichiers produits par l'(les) auteur(s)



Emilie Blanc, Guillaume Chiavassa, Bruno Lombard. Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives. Journal of Computational Physics, Elsevier, 2013, 237, pp.1-20. 〈10.1016/〉. 〈hal-00713127v2〉



Consultations de
la notice


Téléchargements du document